
Schedae Informaticae Vol. 25 (2016): 127–138
doi: 10.4467/20838476SI.16.010.6191

Word Embeddings for Morphologically Complex Languages*

Grzegorz Jurdziński
Department of Theoretical Computer Science

Faculty of Mathematics and Computer Science of the Jagiellonian University
ul. prof. Stanisława Łojasiewicza 6, 30-348 Kraków, Poland

e-mail: grzegorz.jurdzinski@student.uj.edu.pl

Abstract. Recent methods for learning word embeddings, like GloVe or Word2-
Vec, succeeded in spatial representation of semantic and syntactic relations. We
extend GloVe by introducing separate vectors for base form and grammatical
form of a word, using morphosyntactic dictionary for this. This allows vectors
to capture properties of words better. We also present model results for word
analogy test and introduce a new test based on WordNet.

Keywords: machine learning, word embeddings, natural language processing,
morphology

1. Introduction

Word embedding methods assign vectors in continuous n-dimensional space to words
from a language. These can be used for various tasks, such as information retrieval [1],
document classification [2], question answering [3], named entity recognition [4] and
parsing [5].

Most word vector methods are supposed to cluster words that have similar mean-
ing and their performance was evaluated based on experiments testing distance or

Received: 11 December 2016 / Accepted: 30 December 2016
* First version of this work was prepared as Bachelor Thesis at Institute of Computer Science

of University of Wrocław. Its preparation was supervised by Jan Chorowski Ph.D., Institute of
Computer Science, Faculty of Mathematics and Computer Science of the University of Wrocław,
ul. Joliot-Curie 15, 50-383 Wrocław (e-mail: jan.chorowski@cs.uni.wroc.pl)

128

angle between pairs of words. [6] introduced a more complex evaluation scheme. It is
based on word analogies that examine finer structure of word vector space on various
dimensions of difference. For example, the analogy “king is to queen as man is to
woman” should be encoded in vectors by equation vector(“king”) – vector(”queen”)
= vector(“man”) – vector(“woman”). Indeed many of mentioned word embedding
methods produce representations encoding such relations well.

Models like Word2Vec [7] and GloVe [8] receive worse scores on syntactic part of
this test. The idea of our solution is to produce separate vectors for the base form of a
word and the set of tags describing its grammatical form (called tagset in further part
of this work). For example for Polish word “jabłek” (genitive case of word “apples”)
its base form is “jabłko” (“apple”) and its tagset is “subst:pl:gen:n2” (describing that
it is a plural form of a noun in genitive case with neuter grammatical gender). Such
decomposition of a word can be obtained using morphosyntactic dictionaries (e.g.
Polimorfologik for Polish). Then, during learning, vector for each word is represented
as sum of vectors of its base form and tagset. One of benefits of such approach is
giving the model a possibility to gather more information about rare words. Models
mentioned above treat occurrences of the same word in different grammatical forms
as separate words. For example there is no direct connection between “jabłkami” and
“jabłku”. Out model has a common base form vector for all forms of “jabłko” so it is
able to make use out of each occurrence of word regardless its grammatical form.

1.1. Related work

Word embedding was analyzed and implemented in various works. We shortly describe
some important examples below.

Feedforward Neural Net Language Model (NNLM) [9] uses word vectors as its pa-
rameters. The network itself models the language – that means than when fed with N
words (where N is a fixed, chosen number) it produces a probability distribution over
all words from the language. For each word it should be the probability of appearing
after the N given words. Part of the neural network is a shared matrix of word vectors.
NNLM consist of input, projection, hidden and output layers. In the input layer N
previous words are encoded using 1-of-V coding (where V is size of the vocabulary),
then it is projected to a projection layer P that has dimensionality N ·D (where D
is the dimensionality of word vectors), using a shared projection matrix. That means
that each 1-of-V vector is replaced with a word vector from the shared matrix and
then all of them create one big N ·D vector. Between the projection and hidden layers
there is a dense connection and results of the hidden layer are used by the output
layer to compute a probability distribution over all words in the vocabulary using the
softmax function.

Word2Vec [7, 10] implements two models – Continuous Bag-of-Words Model
(CBOW) and Continuous Skip-gram Model (Skip-gram). Both models were based
on NNLM. They consist of input, projection and output layers. CBOW, after pro-
jecting words to their vectors, averages them to one vector (NNLM was joining them
to create bigger vector) and uses an output layer to predict the word. Also, instead of

129

predicting next word, after given N words, it predicts middle word given words within
certain range. Skip-gram model, instead of predicting a single word based on context,
predicts the context itself. Authors of Word2Vec made many improvements with re-
spect to the complexity of the model. They have replaced softmax with its efficient
approximations – they have tested Hierarchical Softmax and Negative Sampling [7].

Problem of representing morphology in word embeddings was already tackled be-
fore. One of the examples are morphoRNN [11] and [12]. Both of these works split
words into morphemes and learn separate vectors for theme. For example word “un-
fortunately” would be split into “un”, “fortunate” and “ly”. To get a vector for a
word [12] sum up vectors of its morphemes. They also learn a separate vector for each
word and add it to its morphemes vectors, so for example vector for word “green-
house” would be vector(“greenhouse”) + vector(“green”) + vector(“house”) (final
vector for the word “greenhouse” and the vector used to compute it are two differ-
ent vectors). [11] present more complex way of combining morpheme’s vectors. To
produce a word vector a small neural network is used. At each step one affix and
word stem are combined. A new vector is produced from stem vector (xstem) and affix
vector(xaffix) as follow: p = f(Wm[xstem;xaffix] + bm). Vectors for stem and affix are
combined into bigger vector and multiplied by the matrix of parameters (Wm) and
bias vector (bm) is added. f is an element-wise activation function (tanh for exam-
ple). So for example a vector for a word (“unfortunately”) would be computed in two
steps. First vector for “unfortunate” would be computed by combining vectors for
“un” and “fortunate”. Then vectors for “unfortunate” and “ly” would be combined
to give vector for “unfortunately”.

The main difference between these two works and the approach we present is the
way of splitting the words – instead of looking at the morphemes the word consists
of we take its base form and the set of the tags describing its grammatical form.

GloVe was introduced by [8]. Since our work is based on it, we will describe it
precisely in next section.

2. GloVe model

GloVe model, introduced by [8], utilizes two approaches to the problem – matrix fac-
torization methods and shallow window-based methods. First uses a large matrix that
captures statistical information about a corpus, e.g. rows can correspond to terms,
columns to documents in the corpus and cells are numbers of occurrences of term in
document. Such approach is used by [13] in latent semantic analysis (LSA). Examples
of shallow window-based methods are NNLMs and Word2Vec. Their approach is to
learn word representation which aim is to predict word given a local context window
of a few, typically 5–15 words.

Before learning vectors a co-occurrence matrix X is created by counting word
co-occurrences in a corpus. For that the context window size is being chosen – let’s
denote it as ws. We will say that a word j occurs in context of a word i if it occurs
in the corpus within ws distance from i. X ∈ NV×V (where V is size of vocabulary

130

– number of different words in corpus) is a word-word co-occurrence matrix, that
means Xij is number of occurrences of word j in context of word i. We will call word
j a context word.

Word vectors are learned based on the matrix X. For each word there are two
separate vectors in GloVe – the word vector and the context vector. Let wi be the
word vector of word i and w̃i be the context vector of word i. Analogically there are
two biases for each word – bi and b̃i.

Authors of GloVe claim that word vectors should satisfy the following equation
([8] give full justification for this formula):

wTi w̃j + bi + b̃j = log(Xij) (1)

For learning vectors equation 1 is treated as least squares problem. This results in
a cost function defined as following:

J =
V∑

i,j=1

f (Xij)
(
wTi w̃k + bi + b̃k − logXik

)2
(2)

where f(Xij) is a weighting function. Main reason for introducing it is to prevent rare
co-occurrences from influencing the model too strongly. According to Pennington et
al. weighting function should satisfy the following properties:

1. f(0) = 0. If f is viewed as a continuous function, it should vanish as x→ 0 fast
enough that the limx→0 f(x) log2 x is finite.

2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.

3. f(x) should be relatively small for large values, so that frequent co-occurrences
are not overweighted.

Authors of GloVe were using the following weighting function:

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise
(3)

where xmax and α are left as free parameters. They have discovered that xmax does
not influence the model strongly and were using xmax = 100 for all their tests. They
have also found that α = 3/4 gives slight improvement over α = 1.

The cost function (2) is minimized using the AdaGrad algorithm [14] – variation
of regular Gradient Descent. At each step a pair of words i and j is being chosen
and the cost of approximating Xij is being computed. Every parameter (vectors and
biases) is then being updated using gradient. A full iteration of the algorithm goes
over all pairs of words. The program is being run for a fixed number of iterations.

Resulting vectors create many clusters – words with similar meaning or grammat-
ical form are grouped together. Unfortunately often syntactics of words is not rep-
resented by these clusters so words considering similar subject but with completely
different grammatical form are close.

131

3. Extentded GloVe model

The main idea of our extension of GloVe model is to replace word vectors with vectors
for base forms and tagsets – for each word its vector will be the sum of vectors of
its base and grammatical form. It requires finding the base form and the tagset for
each word in the vocabulary and changing the model itself. Such approach gives less
freedom to the model – regular GloVe could easily place word vectors in most suitable
place, here it is not always possible since base forms vectors and tagsets vectors are
shared by various words – but it also gives extra information that model can use.

3.1. Obtaining base forms and tagsets for words

For obtaining base forms and tagsets for words we have used the morphosyntactic
dictionary Polimorfologik [15]. For each word it defines its base form and a set of tags
describing its syntactic form. If its ambiguous, several tagsets, separated with plus
sign, are defined. An example line of Polimorfologik looks like this:

kot;kotami;subst:pl:inst:m1+subst:pl:inst:m2
The example word is “kotami” (“cats” in instrumental case). The first column is the
base form – kot (“cat”) here. The second column is the word itself – kotami. The
third column – subst:pl:inst:m1+subst:pl:inst:m2 – is the set of tags describing
grammatical form of the word. Two tags (subst:pl:inst:m1 and subst:pl:inst:m2)
are separated by the + sign due to the ambiguouity of the grammatical form of the
word. Both contain parts describing that it is a noun (subst), in plural form (pl),
in instrumental case (inst). The difference between them is the part responsible for
grammatical gender of the word (m1 and m2). The word “kotami” in Polish can be
interpreted as as in two of three possible musculine grammatical genders – personal
and animate.

We have prepared scripts extracting base forms and tagsets for words from vocab-
ulary, putting them in separate files and creating a file that for each word contains line
with its base form and tagset. For words that were not found in the Polimorfologik
we have the word itself to be its base form and assigned an empty grammatical tag.
Therefore all unknown words are assigned to the same grammatical tagset. Please
note that this doesn’t preclude learning correct embeddings for words not found in
Polimorfologik – in fact, since the base form of such words is unique their embedding
is not shared with other words and the model is free to place them whenever is ap-
propriate in the embedding space so the results for these words should be similar to
the regular GloVe.

132

3.2. Learning separate vectors

Introducing separate vectors for base forms and tagsets required changes in model.
First denote Jij as single element of a sum from equation 2 for words i and j. Let
fdiff = f (Xij) (wTi w̃j + bi + b̃j − logXij) and wi,k be kth element of vector wi. Then
we have

∂Jij
∂wi,k

=
∂

∂wi,k
f(Xij)(wTi w̃j + bi + b̃j + logXij)2

= 2 · fdiff · ∂

∂wi,k

(
n∑

l=1

wi,lw̃j,l + bi + b̃j − logXij

)

= 2 · fdiff · w̃j,k

(4)

where n is dimensionality of vectors.
For learning separate vectors for base forms and tagsets we replaced word vectors

with sums of vectors of its forms, resulting with following cost function:

J (2) =
V∑

i,j=1

f(Xij)((wi + vi)T (w̃j + ṽj) + (bwi + bvi) + (b̃wj + b̃vj) + logXij)2 (5)

where wi and vi are vectors of base form and tagset of word i (analogically for context
word and biases).

Let J (2)ij be analogical to Jij for equation 5 and fdiff to the previous definition.
Than we have:

∂J
(2)
ij

∂wi,k
=

∂

∂wi,k
f(Xij)((wi + vi)T (w̃j + ṽj) + (bwi + bvi) + (b̃wj + b̃vj) + logXij)2

= 2 · fdiff · ∂

∂wi,k

(
n∑

l=1

(wi,l + vi,l)(w̃j,lṽj,l) + (bwi + bvi) + (b̃wj + b̃vj) + logXij

)

= 2 · fdiff · ∂

∂wi,k

(
n∑

l=1

(wi,l + vi,l)(w̃j,lṽj,l)

)

= 2 · fdiff · ∂

∂wi,k
(wi,kw̃j,k + wi,kṽj,k + vi,kw̃j,k + vi,kṽj,k)

= 2 · fdiff · ∂

∂wi,k
(wi,kw̃j,k + wi,kṽj,k) = 2 · fdiff · (w̃j,k + ṽj,k)

(6)

(analogically for other vectors and biases).
We have set xmax = 100 and α = 3/4 since these were the values that gave best

results for GloVe.
By separating vectors responsible for meaning and grammar of words the model

can easily group one type of vectors by semantics of words and second one by syntac-
tics.

133

4. Experiments

4.1. Corpora and training details

For Polish language we have trained my model on a 2016 Wikipedia dump with over
350 billion words. We lowercased the corpus and removed punctuation marks with
simple script, built a vocabulary of words appearing in the corpus at least 20 times
(resulting with over 400 million words vocabulary). Then we built the co-occurrence
matrix X using a window size 10.

For all experiments we set xmax = 100 and α = 3/4. The model was trained
using asynchronous AdaGrad, stochastically sampling non-zero elements from X (co-
occurrences are randomly shuffled after counting and before starting learning), with
initial learning rate set to 0.05. We have trained our model for vectors of size 50, 100,
200 and 300.

4.2. Word analogies test

It has been observed that words with the same grammatical form or similar meaning
tend to spread among subspace of original vector space. This suggests that some part
of vectors might be responsible for certain features of words. Following this observation
[6] has proposed new technique to measure quality of word vector representations. It
intends not only to check whether similar words are close to each other but also to
investigate multiple degrees of similarity.

Similarities of word vector representations apply not only to syntactic properties
of words but also to semantic. [10] describe word offset technique that uses simple
algebraic operations applied to vectors . For example, as we have mentioned in the in-
troduction, vector(“king”) – vector(“man”) + vector(“woman”) results with a vector
that is closest to the vector representation of word queen.

To examine these regularities Mikolov et al. has introduced the word analogy test.
It consists both of semantic and syntactic tests divided into categories. Each file
consists of one type of regularity. In each line there are two pairs of words

For our needs we have translated files with these tests to Polish and extended
with tests for regularities that are absent in English. Examples of each categories are
presented in Table 1. We have avoided multi-word entities (like New York). Overall
there are 8869 semantic and 10000 syntactic questions.

We evaluate vectors accuracy for all question types and for each question type
separately (semantic, syntactic). Question is assumed to be answered correctly if and
only if the nearest word to the vector computed suing method described above is
exactly the word from question.

GloVe model vectors score better results in the semantic part of the test. Learning
separate vectors for base and grammatical forms of words gives the model extra

134

Table 1. Examples of word analogies divided into types.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Ateny Grecja Oslo Norwegia

All capital cities Astana Kazachstan Harare Zimbabwe
Currency Angola kwanza Iran rial

City-in-state Chicago Illinois Stockton Kalifornia
Man-Woman brat siostra wnuk wnuczka

Adjective to adverb niezwykły niezwykle pozorny pozornie
Opposite stały niestały świadomy nieświadomy

Comparative zły gorszy miękki miększy
Superlative duży największy bliski najbliższy

Nationality adjective albania albański japonia japoński
Past tense tańczy tańczył zmniejsza zmniejszał

Plural nouns ptak ptaki butelka butelki
Grammatical gender jadł jadła znalazł znalazła
Nominative-genitive kalafior kalafiora pierwiastek pierwiastka

information about morphology. It results with much better scores for syntactic part
of the word analogy test but it also lowers scores for semantic part.

We have experimented with two ways of computing vectors for each word – adding
vectors of its base form and tagset (BF + TS) and adding also vectors of the word
itself (the one computed for the regular GloVe; BF + TS + word). Similar technique
to the second one was used in [12]. Results are presented in Table 2.

Table 2. Accuracy for word analogy test.

Model Dim. Sem. [%] Syn. [%] Tot. [%]
GloVe 50 25.57 18.97 22.36

BF+TS 50 13.92 37.17 25.23
BF+TS+word 50 17.46 24.61 20.94

GloVe 100 46.47 25.36 36.20
BF+TS 100 22.10 41.46 31.59

BF+TS+word 100 31.57 37.77 34.59
GloVe 200 56.96 28.43 43.09

BF+TS 200 21.69 44.21 32.64
BF+TS+word 200 42.83 46.24 44.49

GloVe 300 57.64 28.64 43.54
BF+TS 300 20.15 43.46 31.49

BF+TS+word 300 40.97 48.01 44.39

These results show that when splitting a word into its base and grammatical form
the model tends to loose information about semantics of the word for its syntactic.
Possible reason for that is lower freedom of placing vectors for the extended model
than in the regular one. Both base forms vectors and tagsets vectors are shared by
many various words what makes it much harder for the model to place word vector in
most convenient location. Grammatical properties represented by tagsets are always

135

Table 3. Weighted vector sums accuracy for dimensionality 300.

BF weight TS weight word weight Sem. [%] Syn. [%] Tot. [%]
Regular GloVe 57.64 28.64 43.54

0.6 0.4 0 14.53 59.27 36.29
0.7 0.3 0 11.55 55.31 32.83
0.8 0.2 0 9.42 51.18 29.73
0.4 0.3 0.3 39.22 57.51 48.11
0.3 0.3 0.4 51.87 50.53 51.22
0.4 0.2 0.4 46.68 49.35 47.98
0.4 0.4 0.2 30.60 61.57 45.66

strictly defined and base forms can be ambiguous what might make tagsets vectors
„dominate” base forms vectors. For this reason we have tested assigning different
weights to base form, tagset and word vectors when summing these vectors. Results
for vectors of dimensionality 300 are presented in Table 3. For comparison we have
also included results for the regular GloVe in the first row.

Our model outperforms regular GloVe in the syntactic part of the test for any
weights. Even though regular GloVe is still better for the semantic part of the test,
our model receives almost equal score for some weights. What is also worth noticing
is the fact that for weights 0.3, 0.3, 0.4 our model get best total result out of all
combinations we have tested and also very good scores for both semantic and syntactic
parts of the test. That gives us a model that balances between semantic and syntactic
performance well.

4.3. Wordnet

For this test we have used the polish wordnet – Słowosieć [16]. Wordnet is a semantic
dictionary reflecting lexical system of polish language. Entries of wordnet are con-
nected by relations creating net. For example car is a type of vehicle, consists of
wheels, engine and others and its synonyms include automobile and truck. Słowosieć
has been created together by computer scientists and linguists.

For our tests we have used the shortest path distance in wordnet graph as word
similarity measure. We have defined test set, consisting of 72 popular words and 64
rare words. For each of them we have found 5–20 closest word vectors. Then we have
computed the average distance of their base forms (wordnet contains only base forms
of words) in wordnet graph from starting word.

Like in the word analogy test, we have tested regular GloVe vectors, sums of base
and grammatical forms and sums of all three. Since the wordnet test examines only
semantic features of word vectors we have also tested it for base form vectors (for each
word we have assigned vector of its base form as its vector). Results are presented in
Table 4. We have tested it for 10 closest words.

As it was expected, best results were scored for base form vectors – this test
examines only semantics of words so tagset vectors only “disturb”. The model we

136

Table 4. Accuracy for wordnet test for 10 closest words.

Model Dim. Popular words Rare words Total
GloVe 100 2.612 1.824 2.272

BF+TS 100 2.904 2.476 2.674
BF+TS+word 100 2.907 2.215 2.563

BF 100 0.593 0.605 0.599
GloVe 200 2.559 1.471 2.088

BF+TS 200 2.730 2.390 2.550
BF+TS+word 200 2.696 2.453 2.583

BF 200 0.434 0.546 0.491
GloVe 300 2.541 1.686 2.175

BF+TS 300 2.701 2.273 2.473
BF+TS+word 300 2.797 2.416 2.617

BF 300 0.396 0.595 0.498

have implemented has the advantage of gaining information about the meaning of
word regardless of its grammatical form so no matter in what case the word occurs,
it contributes to learning of the meaning of all of its forms.

5. Conclusion

In our work we have presented, implemented and tested methods to enhance word
vectors performance. Feeding model with additional information about base and gram-
matical forms of words allows it to extract semantic and syntactic information better.
It also allows the model to use the corpus more efficiently – occurrences of rare
words in different forms are connected and we are able to gather more information
about them. We have also translated to Polish set of questions for words analogy test
prepared by [10] for testing my model and we have introduced new test basing on
Słowosieć [16].

5.1. Future work

Several improvements can still be tested. One of them can be a syntactic tagging
of corpus for word disambiguation. In our work for each word we have chosen its
base and grammatical form not regarding its context. If its grammatical form was
ambiguous a tagset was created.

Testing another models, like Skip-gram and CBOW [10], might also help to investi-
gate capabilities of splitting word vectors. Although models implemented in Word2Vec

137

and GloVe are somehow similar, the first ones are more complex what might give the
opportunity to capture language structure better.

Another methods of constructing word vectors from vectors of its base forms and
tagsets could be tested too. [11] construct word vectors with small neural network,
what gives the model more flexibility and makes the process of combining vectors
learnable. Another, simpler method could be concatenating two vectors into one bigger
(so if vectors of base forms and tagsets would be from Rn the resulting vector would
be from R2n).

Word embeddings are useful as a way of preprocessing data. When used in bigger
model it is hard to tell how the vectors affect the model exactly and which of its parts
should be improved. Due to this fact the performance of our vectors on downstream
tasks could be also tested and discussed in future. [17] present more methods for
evaluating word embeddings.

Acknowledgements

The authors would like to acknowledge the support of the National Science Center
(Poland) grant Sonata 8 2014/15/D/ST6/04402 and thank the Wroclaw Center for
Networking and Supercomputing for donating computer time.

6. References

[1] Manning C.D., Raghavan P., Schütze H., Introduction to Information Retrieval.
Cambridge University Press, 2008.

[2] Sebastiani F., Machine learning in automated text categorization. ACM comput-
ing surveys (CSUR), 2002, 34 (1), pp. 1–47.

[3] Tellex S., Katz B., Lin J., Fernandes A., Marton G., Quantitative evaluation of
passage retrieval algorithms for question answering. In: Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in
informaion retrieval, 2003, pp. 41–47.

[4] Turian J., Ratinov L., Bengio Y., Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, Association for Computational
Linguistics, 2010, pp. 384–394.

[5] Socher R., Bauer J., Manning C.D., Ng A.Y., Parsing with compositional vector
grammars. In: ACL (1), 2013, pp. 455–465.

138

[6] Mikolov T., Yih W.t., Zweig G., Linguistic regularities in continuous space word
representations. In: HLT-NAACL. vol. 13., 2013, pp. 746–751.

[7] Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J., Distributed represen-
tations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems 26, 2013, pp. 3111–3119.

[8] Pennington J., Socher R., Manning C.D., Glove: Global vectors for word repre-
sentation. In: EMNLP. vol. 14., 2014, pp. 1532–43.

[9] Bengio Y., Ducharme R., Vincent P., Jauvin C., A neural probabilistic language
model. Journal of Machine Learning Research, 2003, 3 (Feb), pp. 1137–1155.

[10] Mikolov T., Chen K., Corrado G., Dean J., Efficient estimation of word repre-
sentations in vector space. CoRR, 2013, abs/1301.3781.

[11] Luong T., Socher R., Manning C.D., Better word representations with recursive
neural networks for morphology. In: Proceedings of the Seventeenth Conference
on Computational Natural Language Learning, CoNLL 2013, Sofia, Bulgaria,
August 8-9, 2013, 2013, pp. 104–113.

[12] Botha J.A., Blunsom P., Compositional morphology for word representations and
language modelling. In: ICML, 2014, pp. 1899–1907.

[13] Deerwester S., Dumais S.T., Furnas G.W., Landauer T.K., Harshman R., Index-
ing by latent semantic analysis. Journal of the American Society for Information
Science, 1990, 41 (6), pp. 391.

[14] Duchi J., Hazan E., Singer Y., Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 2011, 12
(Jul), pp. 2121–2159.

[15] Miłkowski M., Polimorfologik. https://github.com/morfologik/polimorfologik
2016.

[16] Maziarz M., Piasecki M., Szpakowicz S., Approaching plWordNet 2.0. In: Pro-
ceedings of the 6th Global Wordnet Conference, January 2012.

[17] Schnabel T., Labutov I., Mimno D.M., Joachims T.,Evaluation methods for un-
supervised word embeddings. In: Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17–21, 2015, 2015, pp. 298–307.

