
Schedae Informaticae Vol. 25 (2016): 9–23
doi: 10.4467/20838476SI.16.001.6182

Extreme Classification under Limited Space and Time Budget

Kalina Jasinska1, Krzysztof Dembczyński1,
Nikos Karampatziakis2

1Institute of Computing Science, Poznan University of Technology, Poznań, Poland
2Microsoft Research, Redmond, USA

e-mail: {kjasinska,kdembczynski}@cs.put.poznan.pl, nikosk@microsoft.com

Abstract. We discuss a new framework for solving extreme classification (i.e.,
learning problems with an extremely large label space), in which we reduce the
original problem to a structured prediction problem. Thanks to this we can obtain
learning algorithms that work under a strict time and space budget. We mainly
focus on a recently introduced algorithm, referred to as LTLS, which is to our best
knowledge the first truly logarithmic time and space (in the number of labels)
method for extreme classification. We compare this algorithm with two other ap-
proaches that also rely on transformation to structured prediction problems. The
first algorithm encodes original labels as binary sequences. The second algorithm
follows the label tree approach. The comparison shows the trade-off between
computational complexity (in time and space) and predictive performance.

Keywords: supervised learning, space and time complexity of learning algo-
rithms, extreme classification, multi-class classification, learning reductions

1. Introduction

Extreme classification refers to multi-class and multi-label problems where the size
m of the output space is extremely large. This type of problems appears in many
application areas of machine learning, such as recommendation, ranking, and language

Received: 11 December 2016 / Accepted: 30 December 2016

10

modeling. The extreme setting brings a lot of challenges, such as, time and space
complexity of training and prediction, long tail of labels, missing labels and very few
training examples per label.

A naive solution for the problem is to train an independent model for each label
individually. This approach, often referred to as one-vs-all (OVA), has linear time and
space complexity in the number of labels. Unfortunately, in many real world problems
this complexity is too costly. One of the main challenges of extreme classification is
to reduce the complexity, bearing in mind the need to control the trade-off between
lowering the complexity and retaining good predictive performance. To achieve this
goal, we consider a new approach for solving extreme classification, which casts the
original problem to a structured prediction problem.

An example of a simple structured prediction problem is sequence labeling in
which a categorical label is assigned to each member of a sequence of observed values.
The aim is to find the most probable labeling for a given sequence. Finding the best
output for a given example usually relies on performing a complex inference task.
For simple problems, different variants of Viterbi algorithm [1, 2] can be applied.
For more complex problems, advanced search techniques are used to explore the
large output space efficiently [3]. A structured prediction problem can be treated as
a complex multi-class classification problem over all possible label assignments to the
sequence. In this paper, we consider the opposite approach that casts classification to
structured output prediction. The simplest transformation of this type is to encode
labels by sequences of bits. The length of the sequence does not have to be the
same for each label. Then, by choosing a proper dependence structure between bits
and using appropriate training and inference methods one can get a very compact
representation of an extreme classification problem. In this new reduction framework,
we can formulate the problem as optimizing the predictive performance under limited
time and space budged.

Recently, Jasinska and Karampatziakis [4] have introduced a truly log-time and
log-space training and prediction algorithm that can produce its top k predictions
in time O(k log(k) log(m)) for an output space of size m. To do so, the algorithm,
referred to as LTLS, encodes labels as paths in a trellis of width 2. The inference
consists in finding the longest weighted path in the trellis from the source node to the
sink node. Each weight associated with an edge in the trellis is obtained from a binary
classifier trained by stochastic gradient descent. To perform efficient inference a variant
of Viterbi algorithm is used. In the following we compare this approach to two other
methods. The first method is also logarithmic in time and space, but treats all the
code bits to be independent. We refer to this method as sequences of independent
bits (SIB). The second method are probabilistic classifier trees (PCTs) [6, 5]. In
this method the labels are coded by paths in a tree. Such a tree can be treated as
a generalization of the trellis. Unfortunately, for this method we cannot give strict
logarithmic bounds on time and space, but as shown in [5] this method is statistically
consistent. In this paper we focus on multi-class problems, however, PCTs and LTLS
can also be easily modified to multi-label problems [4, 6].

The paper is organized as follows. The next section shortly describes state-of-
the-art methods for extreme classification. Section 3 states the problem formally.
In Section 4 and 5 we present the SIB and PCT algorithm, respectively. Section 6
describes a variant of LTLS that is made to be similar to the previous methods in

11

order to perform a fair comparison between these different approaches. Section 7
presents experimental results. Last section concludes the paper.

2. Related work

There are several groups of extreme classification algorithms that follow different
paradigms such as sparsity, low-rank approximation, tree-based search, or label filtering.

The sparsity-based methods can reduce model size and sometimes training and
prediction times due to fewer operations. An example of such an approach is PD-Sparse
[7], where the authors show that it is possible to get accurate sparse models in high
dimensional datasets. However sparsity is not guaranteed to reduce the model size
without severely hurting model accuracy. Examples of the low-rank methods, also
called embedding methods, are SLEEC [8], LEML [9], WSABIE [10] or Rembrandt
[11]. These techniques can be thought of as (supervised) dimensionality reduction
followed by an OVA classifier. All these approaches still remain linear in the size of
the output space during training and prediction unless additional approximations are
employed, such as subsampling of the negative labels.

The tree-based approaches can be divided into decision tree- and label tree-based
methods. Those methods reduce prediction time, but not necessary lead to models
with space complexity that is logarithmic in the number of labels. For example,
FastXML [12] builds a tree of depth logarithmic in the number of training examples.
The multi-class logarithmic time prediction is also addressed by LOMtree [13]. Label
tree-based methods such as PCT, discussed later in this paper, have usually O(log(m))
training time, since an update with one training instance is applied to O(log(m))
models. Even though these algorithms reduce prediction time significantly, by not
querying all the models, their complexity in general is greaten than O(log(m)).

The last group of algorithms assumes that learning can be performed off-line (so
the complexity of training is allowed be higher) and focuses on the use of appropriate
data structures to accelerate classification of test examples in the prediction phase.
Therefore, this approach is sometimes called label filtering [14] as it avoids a linear
scan over all labels. The label partitioning for sublinear ranking method [15] uses
clustering to group training examples, and then assigns a set of possible labels to
each group in a way that optimizes the overall performance. The clustering step is
used only for filtering the labels and is performed independently from training a final
model which can be any multi-class or multi-label classifier, even very expensive.
During classification a test example is first assigned to one of the groups, and then
the final model is called only for labels assigned to this group. Other approaches
use Bloom filters [16], filtering lines [14] or tree structures [17]. In case of linear
models (e.g., logistic regression, perceptron, the last layer in a deep network), the
problem of speeding up classification of test examples is often referred to as maximum
inner product search (MIPS) [18, 19]. An exact solution can be optimally obtained
by the so-called threshold algorithm [20] which can be used in a variety of machine
learning tasks [21]. However, this algorithm does not scale well to extreme classification.

12

Therefore approximate algorithms need to be considered. The MIPS problem is similar,
but not equivalent, to the nearest neighbor search. It is therefore possible to adapt
approximate nearest neighbor algorithms to this problem. For example, a modified
variant of the locality-sensitive hashing [22] has been introduced in [19]. Let us also
emphasize that the MIPS problem can be applied during training as a specific instance
of negative sampling [18].

3. Problem Setting

In the following we consider multi-class classification problems. We denote with (x, y)
a multi-class instance, where x is a feature vector, x ∈ Rd, and y a label, y ∈ {1, . . . , m}.
We focus on classification methods that are optimized for precision@k. In case of
k = 1, this performance measure corresponds to accuracy, or stated differently, to:

precision@1 = 1− `0/1(y, f(x)) = 1− Jy 6= f(x)K ,

where `0/1(y, f(x)) is the 0/1 loss and f(x) a multi-class classifier.
The methods we consider rely on representing labels as binary sequences. The

difference between methods lays in the choice of encoding and the assumed dependence
structure between elements of the sequence. In general, this approach reduces the
original problem to a bunch of binary subproblems. The task is then to appropriately
transform original training examples to binary examples for each subproblem. During
prediction, the binary outcomes are decoded to original labels. This inference task
can vary depending on the chosen encoding and dependence structure.

We analyze each method under a strict time and space budget. For example, we
would like to have budget that is logarithmic in the number of labels. We follow
here the learning reduction framework [23] which studies a decomposition of complex
learning tasks into simpler problems for which numerous and powerful algorithms
are available. This decomposition should guarantee that a solution to the simple
subproblems gives a solution to the original problem [24]. Ideally, a no-regret (i.e.,
optimal) solution to each base problem should translate into an optimal solution to the
original problem. In such case, a reduction (i.e., decomposition) is called consistent.
It is, however, an open question whether we can obtain consistent reductions under
a strict time and space budget.

We assume that the time complexity of training of a binary classifier with respect
to a single training example is O(1). Similarly, calling a binary classifier for a single
test example is also O(1). The space complexity is harder to formalize in this way.
We assume, however, that storing a single binary classifier is also O(1). In this way
we can easily express the computational complexity in terms of the number of labels.
In the analysis, we do not take into account the space complexity needed for storing
the mapping between original labels and bit sequences, which in general is O(m), and
the time complexity needed to encode labels to bit sequences.

13

4. Simple coding by sequences of independent bits

We start our discussion with a very simple algorithm. It relies on encoding labels as
sequences of independent bits in such a way that each label is assigned to one and only
one binary code. We refer to this approach as sequences of independent bits (SIB).
In general, we encode an original label y by a binary code c(y) of length l. Let ci(y)
indicate the i-th bit in the code. If we assume that bits of the code are independent,
then the probability of label y can be obtained by:

P (y |x) = P (c(y) |x) =
l∏

i=1
P (ci(y)|x) .

To get the model, we need to train base classifiers that estimate P (ci(y)|x). We can
use any method that estimates probabilities, for example, logistic regression.

start

c1(y) = 1

c1(y) = 0

d1

c2(y) = 1

c2(y) = 0

d2

c3(y) = 1

c3(y) = 0

d3

c4(y) = 1

c4(y) = 0

end

stop

e(0,1)

e(0,0)

1

1

e(1,1)

e(1,0)

1

1

e(2,1)

e(2,0)

1

1

e(3,1)

e(3,0)

1

1

1

e(2,stop)

e(3,stop)

Figure 1. A trellis used in SIB for m = 22. Node start is connected to both states
of the first bit; both states of the last bit are connected to node end. To handle
an arbitrary number of classes m we connect to the stop node the up states at bits
corresponding to 1’s in binary representation of m.

When the number of labels is a power of 2, then we can use binary coding of fixed
length. In such a case, learning and prediction with SIB is straight-forward. Otherwise,
we need to use a specific coding to make the method logarithmic in time and space
with the number of labels. We use here encoding similar to the one used in LTLS [4].
The codes of labels can be visualized as paths in a trellis with additional by-pass edges
(see Figure 1). The binary states of bits are represented by up and down nodes (for
the i-th bit, these are nodes ci(y) = 1 and ci(y) = 0, respectively). Moreover, we use
auxiliary nodes, begin, end, and stop. The first two indicate the start and the end
of the code. The stop node determines an early stop of the code. The intermediate

14

nodes di are used to show independence of bits. In this representation, we have exactly
m paths, one for each label. More formally, let 2a ≤ m ≤ 2a+1. Then, the first 2a

labels can be coded using a vanilla binary code on a bits. The rest of labels b = m−2a

are coded using shorter codes. We assume that the last bit in such code is always set
to 1. In that way we can encode arbitrary number b of labels, b ∈ {1, 2a − 1}. If the
code ends after the i-th bit, then we get additional 2i−1 codes. The use of this code,
however, requires to train a base classifier for additional stop class, for each bit i we
use to extend the number of codes.

All incoming edges to up, down, and stop nodes are associated with a probability
estimation function Qe(x). To indicate an edge we use a pair (i, ci(y)), where i is
the bit and ci(y) its value. For all other edges, we use weight equal 1. Thanks to
this convention, prediction of the most probable label corresponds to finding the most
probable path. To this end, we can use dynamic programming, which in context of
probabilistic models is known as the Viterbi algorithm [1]. The top-k scoring paths
can be found by a modification of the Viterbi algorithm called List Viterbi [2]. Let us
remark that the upper bound of the number E of edges with probability estimates in
the trellis is 3blog2 mc. So, the space complexity of the model is logarithmic in the
number of labels. Since the Viterbi algorithm is also linear with the number of edges,
the time complexity is also logarithmic.

To compute estimates P (ci(y)|x), we train edge classifiers Q(i,ci(y))(x) in such
a way that:

Q(i,0) + Q(i,1) = 1 .

Moreover, we need to train additional classifiers that check the early stop of the code,
i.e., Q(i,stop). In such a case, we can assume:

Q(i,0) + Q(i,1) + Q(i,stop) = 1 .

Let us underline that the code described above is not entirely binary, as it includes
additional symbol stop.

The independence assumption made in SIB is rather unrealistic. Therefore, this
method will often lead to a very crude approximation. However, this simple approach
can be treated as a good baseline for other methods with a strict time and space budget,
since its time and space complexity is logarithmic with the number of labels. Let us
also remark that SIB resembles the ECOC (Error-Correcting Output Codes) approach
for classification [25]. ECOC uses, however, codes with additional redundancy, what
is not a case of SIB.

5. Probabilistic classifier trees

In contrast to SIB, probabilistic classifier trees (PCTs) [5] take all dependences between
bits into account. Moreover, they use prefix codes, so there is no need to use any
additional symbol, like stop in case of SIB. For label y coded by c(y) of length l its

15

start

c1(y) = 0

c2(y) = 0

c3(y) = 0

e(0,0,0)

c3(y) = 1

e(0,0,1)

e0

c2(y) = 1

e(0,1)

e(0)

c1(y) = 1

c2(y) = 0

e(1,0)

c2(y) = 1

e(1,1)

e(1)

end

1
1

1 1 1

Figure 2. A tree used in PCT for m = 5. All leaf nodes are additionally connected
with node end to resemble the trellis used in SIB.

conditional probability in PCT is given by:

P (y |x) = P (c(y) |x) =
l∏

i=1
P (ci(y)|ci−1(y), . . . , c1(y), x) .

In other words, each bit of the code depends on all antecedent bits. This formulation
is known as the chain rule of probability and holds for any joint distribution, i.e.,
any distribution can be factorized in this way. Therefore PCTs are statistically
consistent [5].

Let us recall that any prefix code can be represented by a tree with 0/1 splits. If
the number of labels is a power of 2, then binary coding of fixed length can be used
(in result a fully balanced tree is obtained). Otherwise, one can use complete trees or
Huffman coding [26]. Each path from the root to a leaf node corresponds to a code
word. Figure 2 shows an example of a coding tree for multi-class classification with 5
labels. To make the representation of the tree to be similar to the trellis used in SIB,
we denote the root node as the start node and added the end node. All nodes except
those incoming to the end node are associated with probability estimators Qe(x). To
indicate an edge, we use bits on a path from the start node to the node to which the
edge directs, i.e., (c1(y), . . . , ci(y)). To compute estimate P (ci(y)|ci−1(y), . . . , c1(y), x),
we train edge classifiers Q(c1(y),...,ci(y))(x) in such a way that:

Q(c1(y),...,ci−1(y),0)(x) + Q(c1(y),...,ci−1(y),1)(x) = 1 .

It is easy to see that there are m− 1 classifiers in the tree (i.e., one classifier per
internal node of the tree). Therefore, the space complexity of this method is linear

16

in the number of labels. However, by using the hashing trick [27] jointly over all
models, the space complexity can be made constant. One can also use model sharing
to reduce the space complexity, for example, by using one model for each tree level.
The learning time for Huffman and balanced trees is logarithmic, since a given training
example is used only in classifiers on a path corresponding to the code of a given
label. Prediction can be logarithmic if it is made in a greedy way. PCTs can use,
however, more involved search procedures such as uniform-cost search or A∗ [28, 29].
Thanks to them, the regret of PCTs can be bounded. Moreover, it can be shown
that search time is inversely proportional to the probability of the top label. If this
probability is lower bounded, then for the balanced trees the top label can be found
in the logarithmic time. In the worse case scenario, however, the time complexity of
the prediction procedure is linear in the number of labels [5, 28].

Let us notice that similar algorithms to PCTs appear under different names in the
literature. In multi-class classification, this method is also known under the name of
conditional probability trees [30] and nested dichotomies [31]. The same concept is
also known in neural networks and natural language processing under the name of
hierarchical softmax [32].

6. LTLS

LTLS, proposed by Jasinska and Karampatziakis [4], is a model that can be situated
in-between sequences of independent bits and probabilistic classifier trees. In the
following, we consider a specific instance of this approach that resembles maximum
entropy markov models (MEMMs). In general, MEMMs take dependencies up to the
k-th degree into account:

P (y |x) = P (c(y) |x) =
l∏

i=1
P (ci(y)|ci−1(y), . . . , ci−k(y), x) .

We use k = 1, i.e., the current bit depends only on one previous bit. There are
different possibilities of estimating P (ci(y)|ci−1(y), x) and coding of original labels.
LTLS undertakes the following approach.

As already mentioned above, SIB use the same encoding as LTLS. The trellis used
in LTLS, presented in Figure 3, resembles the one used in SIB. As before, we have up
and down nodes, and three auxiliary nodes, start, end, and stop. The number of bits is
also blog(m)c. The main difference lays in additional edges that model dependencies
between consecutive bits. Therefore, the upper bound of the number E of edges
with probability estimates in the trellis is 5blog2 mc. To indicate an edge we use here
a triple (i, ci(y), ci−1(y)), i.e., e = (2, 1, 0) means that the edge is between the up state
of the second bit and the down step of the first bit. As before, prediction is made by
using the Viterbi algorithm.

17

Training of LTLS is logarithmic in the number of labels. To compute estimates of
P (ci(y)|ci−1(y), x), LTLS trains edge classifiers Q(i,ci(y),ci−1(y)) in such a way that

Q(i,0,1) + Q(i,1,1) = 1 and Q(i,1,0) + Q(i,0,0) = 1 .

As in case of SIB, we also need to train additional classifiers checking the early stop of
the code, i.e., Q(i,stop,1)(x). In such a case, we have:

Q(i,0,1) + Q(i,1,1) + Q(i,stop,1) = 1 .

Probability estimators Q can be trained in various ways. In this paper, for the
sake of consistency, we use logistic regression. We refer to this method using the name
LTLS-LR.

start

c(y)1 = 1

c(y)1 = 0

c(y)2 = 1

c(y)2 = 0

c(y)3 = 1

c(y)3 = 0

c(y)4 = 1

c(y)4 = 0

end

stop

e(1,1,·)

e(1,0,·)

e(2,1,1)

e(2,0,1)

e(2,1,0)

e(2,0,0)

e(3,stop,1)

e(3,1,1)

e(3,0,1)

e(3,1,0)

e(3,0,0)

e(4,stop,1)

e(4,1,1)

e(4,0,1)

e(4,1,0)

e(4,0,0)

1

1

1

Figure 3. A trellis used in LTLS-LR for m = 22. Node start is connected to both
states of the first bit; both states of the last bit are connected to node end. To handle
an arbitrary number of classes m we connect to the stop node the up states at bits
corresponding to 1’s in binary representation of m. The code corresponding to path
[e(1,1,·), e(2,0,1), e(3,1,0), e(4,stop,1)] is (1, 0, 1).

One can also consider a learning procedure, which will make LTLS to be very
similar to conditional random fields [33]. We do not discuss this possibility in this
paper. Let us, however, remark that in the original paper LTLS has been used with
a learning procedure that minimizes a variant of structured hinge loss. From this point
of view, LTLS can be seen as an instance of structured support vector machines [34].
In this paper, however, we have decided to investigate a variant of LTLS that is as
much as possible similar to SIB and PCT to make a fair comparison between these
methods.

18

7. Experiments

This section presents experimental evaluation of analyzed approaches. We report the
results of SIB, LTLS-LR and PCT. For comparison, we also include results of two
well-known tree-based algorithms, LOMtree [13], and FastXML [12]. We have run
SIB, LTLS-LR and PCT on datasets used in [7], where one can find a comparison of
a set of multi-class and multi-label classification algorithms in terms of precision@1,
prediction time, and model size. The basic information about the datasets is given in
Table 1. Table 2 contains performance results of all methods. The results of LOMtree
and FastXML are taken from [7]. We do not report here other methods whose results
are reported in the cited paper (including PD-sparse introduced therein), since we
focus on graph- and tree-based methods, and other methods apply different approach.

We report precision@1 and the model size. We report precision@1 only since this
value was given in [7]. To compare the model size in a comprehensive way, we need to
remind several important issues. FastXML uses a sparse representation of the weight
vectors. LOMtree (implemented in vw [35]) and PCT use feature hashing, so their
model size can be treated as constant (i.e., can be set to all available memory; if it
is too small then many conflicts between feature weights occur, which deteriorate
their performance). The weight vectors of SIB and LTLS-LR are stored in dense
representation. Therefore, in case of SIB and LTLS-LR the model size is proportional
to d× E, where E is the number of edges (with probability estimators).

Comparing the results of SIB, LTLS-LR and PCT one can see the trade-off between
model size and predictive performance. With a growing size of the model, precision@1
also grows. The results of LTLS-LR are comparable to LOMtree and FastXML. On
Dmoz dataset LTLS-LR gets results close to LOMtree, using a much smaller model.
Results of PCT are competitive to FastXML.

The training and prediction times of all methods are not comparable due to
significant differences in implementation, therefore they are not reported. Moreover,
even training and prediction times of methods implemented in a similar manner cannot
be clearly compared on benchmark datasets, since they depend not only on the number
of labels, but also on the number of features and non-zero features in the dataset.
Therefore, to show the dependence on the number of labels of SIB, PCT and LTLS-LR,
we report results of an experiment on artificial data. Figure 4 shows the prediction
times as a function of the number of labels, from 24 to 213, scaled logarithmically. One
can notice, that in case of both LTLS-LR and SIB the dependence of the prediction
time on the logarithm of m is definitely linear, but with a different constant. The
prediction time of PCT does not depend linearly on the logarithm of m, but the
average prediction time is definitely sublinear in m.

19

1 2 3 4 5 6 7 8 9 10 11 12 130

5

10

15

20

25

30

log2(m)

Pr
ed

ic
tio

n
tim

e
[s]

LTLS-LR
PCT
SIB

Figure 4. The prediction time, in seconds, of LTLS-LR (blue), PCT (green) and
SIB (magenta) on artificial data. The artificial datasets were of the same number
of instances and features. The numbers of labels m in the datasets were subsequent
powers of 2.

Table 1. Basic statistics of benchmark datasets.

sector aloi.bin Dmoz LSHTC1
#examples 8658 100000 345068 83805
#features (d) 55197 636911 833484 347255
#labels (m) 105 1000 11947 12294

8. Conclusions

We have introduced a general learning reduction technique that relies on a transfor-
mation of a multi-class classification problem to a structured prediction problem. In
this way we can control the time and space complexity. By using different codes and
dependence structures between elements of the code, we show the trade-off between
the predictive performance and the complexity. The preliminary experiments show
that algorithms based on the proposed transformation technique can achieve results
comparable with the state-of-the-art algorithms that are more costly in terms of time
and space. The future work will aim at finding a well-sounded theoretical framework
for the reduction of extreme classification to structured prediction problem.

20

Table 2. Precision@1 and model size [MB] of compared algorithms.

SIB LTLS-LR PCT LOMtree FastXML

sector precision@1 0.8543 0.8616 0.8730 0.8210 0.8490
model size 6.43 12.06 16.00 17.00 7.00

aloi.bin precision@1 0.7697 0.8128 0.9088 0.8947 0.9550
model size 114 209 128 106 992

Dmoz precision@1 0.1819 0.2082 0.3263 0.2127 0.3840
model size 215 397 2048 1800 1500

LSHTC1 precision@1 0.0914 0.0950 0.1524 0.1056 0.2166
model size 272 525 1024 744 308

Acknowledgments

This work has been supported by the Polish National Science Centre under grant no.
2013/09/D/ST6/03917. Large-scale computations have been performed in Poznan
Supercomputing and Networking Center.

We would like to thank Wojciech Kotłowski for helpful discussions and valuable
insights.

9. References

[1] Viterbi A.J., Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 1967.

[2] Seshadri N., Sundberg C.E.W., List viterbi decoding algorithms with applications.
IEEE Transactions on Communications, 1994.

[3] Doppa J., Fern A., Tadepalli P., Hc-search: Learning heuristics and cost functions
for structured prediction. In: Journal of Artificial Intelligence Research (JAIR),
2013.

[4] Jasinska K., Karampatziakis N., Log-time and log-space extreme classication. In:
Workshop on Extreme Classification at Neural Information Processing Systems
(NIPS), 2016.

21

[5] Dembczyński K., Kotłowski W., Waegeman W., Busa-Fekete R., Hüllermeier
E.,Consistency of probabilistic classifier trees. In: European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD). Springer-Verlag 2016.

[6] Jasinska K., Dembczynski K., Busa-Fekete R., Pfannschmidt K., Klerx T., Hüller-
meier E., Extreme F-measure maximization using sparse probability estimates. In:
International Confernece on Machine Learning (ICML), 2016.

[7] Yen I.E.H., Huang X., Ravikumar P., Zhong K., Dhillon I., Pd-sparse: A primal
and dual sparse approach to extreme multiclass and multilabel classification. In:
International Conference on Machine Learning (ICML), 2016.

[8] Bhatia K., Jain H., Kar P., Varma M., Jain P., Sparse local embeddings for
extreme multi-label classification. In: Neural Information Processing Systems
(NIPS), 2015.

[9] Yu H., Jain P., Kar P., Dhillon I.S., Large-scale multi-label learning with missing
labels. In: International Conference on Machine Learning (ICML), 2014.

[10] Weston J., Bengio S., Usunier N., Wsabie: Scaling up to large vocabulary image
annotation. In: International Joint Conference on Artificial Intelligence (IJCAI),
2011.

[11] Mineiro P., Karampatziakis N., Fast label embeddings via randomized linear
algebra. In: European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD), 2015.

[12] Prabhu Y., Varma M., FastXML: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In: Knowledge Discovery and Data Mining (KDD),
2014.

[13] Choromanska A., Langford J., Logarithmic time online multiclass prediction. In:
Neural Information Processing Systems (NIPS), 2015.

[14] Niculescu-Mizil A., Abbasnejad E., Label filters for large scale multilabel classifi-
cation. In: Workshop on Extreme Classification at the International Confernece
on Machine Learning (ICML), 2015.

[15] Weston J., Makadia A., Yee H., Label partitioning for sublinear ranking. In:
International Conference on Machine Learning (ICML), 2013.

[16] Cissé M., Usunier N., Artières T., Gallinari P., Robust bloom filters for large
multilabel classification tasks. In: Neural Information Processing Systems (NIPS),
2013.

[17] Jasinska,K., Dembczynski K., Consistent label tree classifiers for extreme multi-
label classification. In: Workshop on Extreme Classification at the International
Confernece on Machine Learning (ICML), 2015.

[18] Vijayanarasimhan S., Shlens J., Monga R., Yagnik J., Deep networks with large
output spaces. In: Workshop contribution at International Conference on Learning
Representation (ICLR), 2014.

22

[19] Shrivastava A., Li P., Improved asymmetric locality sensitive hashing (ALSH) for
maximum inner product search (mips). In: Uncertainty in Artificial Intelligence
(UAI), 2015.

[20] Fagin R., Lotem A., Naor M., Optimal aggregation algorithms for middleware. In:
Principles of Database Systems (PODS). ACM 2001.

[21] Stock M., Pahikkala T., Airola A., De Baets B., Waegeman, W., Efficient pairwise
learning using kernel ridge regression: an exact two-step method. Computing
Research Repository (CoRR), 2016.

[22] Indyk P., Motwani R., Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: ACM Symposium on Theory of Computing, 1998.

[23] Beygelzimer A., Langford J., Zadrozny B., Machine learning techniques-reductions
between prediction quality metrics. In: Performance Modeling and Engineering.
Springer-Verlag 2008.

[24] Beygelzimer A., Daumé H., Langford J., Mineiro P., Learning reductions that
really work. In: Proceedings of the IEEE, 2016.

[25] Dietterich T., Bakiri G., Solving multiclass learning problems via error-correcting
output codes. Journal of Machine Learning Research (JMLR), 1996.

[26] Huffman D., A method for the construction of minimum-redundancy codes. Pro-
ceedings of the Institute of Radio Engineers (IRE), 1952.

[27] Weinberger K., Dasgupta A., Langford J., Smola A., Attenberg J., Feature hashing
for large scale multitask learning. In: International Conference on Machine
Learning (ICML), ACM, 2009.

[28] Dembczyński K., Waegeman W., Cheng W., Hüllermeier E., An analysis of
chaining in multi-label classification. In: European Conference on Artificial
Intelligence (ECAI), 2012.

[29] Mena D., Montanes E., Quevedo J.R., del Coz J.J., Using a* for inference in
probabilistic classifier chains. In: International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[30] Beygelzimer A., Langford J., Lifshits Y., Sorkin G.B., Strehl A.L., Conditional
probability tree estimation analysis and algorithms. In: Uncertainty in Artificial
Intelligence (UAI), 2009.

[31] Fox J., Applied regression analysis, linear models, and related methods. Sage,
1997.

[32] Morin F., Bengio Y., Hierarchical probabilistic neural network language model. In:
Artificial Intelligence and Statistics Conference (AISTATS), 2005, pp. 246–252.

[33] Lafferty J.D., McCallum A., Pereira F.C.N., Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In: International
Conference on Machine Learning (ICML), 2001.

23

[34] Tsochantaridis Y., Joachims T., Hofmann T., Altun Y., Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 2005.

[35] Langford J., Strehl A., Li L., Vowpal wabbit, 2007 http://mloss.org/software/
view/53/.

