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Abstract
The uniqueness of classical solutions to parabolic semilinear problems together with nonlocal initial 

conditions with integrals, for the operator ∂
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1, where t0 ∈ ℜ, 0 < T < ∞, are studied. The result requires 
that the nonlocal conditions with integrals be introduced.
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Streszczenie
W artykule omówiono jednoznaczność klasycznych rozwiązań parabolicznych semiliniowych zagadnień 
z  nielokalnymi początkowymi warunkami z całkami dla operatora 
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1  , w walcowym obszarze D D t t T n: ( , ) ,= × + ⊂ℜ +
0 0 0
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gdzie t0 ∈ ℜ, 0 < T < ∞. Wynik polega na tym, że zostały wprowadzone warunki nielokalne z całkami.
Słowa kluczowe: zagadnienia paraboliczne, równanie semiliniowe, nielokalny warunek początkowy z całką, obszar walcowy, 
jednoznaczność rozwiązań
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1. Introduction

In this paper we prove two theorems on the uniqueness of classical solutions to parabolic 
semilinear problems, for the equation
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where t0 ∈ ℜ, 0 < T < ∞. The coefficients aij (i, j = 1, ...n), c and the function f  are given.
The nonlocal initial condition considered in the paper is of the form
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where |h(x)| ≤ 1 for x ∈ D0.
The result obtained is a continuation of the results given by Rabczuk in [5], by Chabrowski 

in [3], by Brandys in [1] and by the first author in [1] and [2].
In monograph [5], Rabczuk gives two uniqueness criteria for classical solutions for initial 

– boundary problems to the equation
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In paper [3], Chabrowski studies nonlocal problems for the equation
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The nonlocal initial condition, considered in [3], is of the form

 
u x x u x T x x Di

i
i( , ) ( ) ( , ) ( ), ,0 0+ = ∈∑β ψ    

where t0 ∈ (0, T) and was introduced in this form as the first by Chabrowski.
In publication [2], two uniqueness criteria for classical solutions for equation (1) together 

with the nonlocal condition u x t h x u x t T f x x D( , ) ( ) ( , ) ( ), ,0 0 0 0+ + = ∈    are studied.

2. Preliminaries

The notation, definitions and assumptions from this section are valid throughout this paper.
We will need the set ℜ_ := (–∞, 0].
Let t0 be a real number, 0 < T < ∞ and x =(x1, ..., xn) ∈ ℜn. 
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Define the domain (see [1] or [2])
 D D t t T: ( , ),= × +0 0 0

where D0 is an open and bounded domain in ℜn  such that the boundary ∂D0  satisfies the 
following conditions:

(i) If n ≥ 2 then ∂D0  is a union of a finite number of surface patches of class C1 which have 
no common interior points but have common boundary points.

(ii) If n ≥ 3 then all the edges of ∂D0 are sums of finite numbers of (n – 2) – dimensional 
surface patches of class C1.
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The symbols L and P are reserved for two operators given by the formulas
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By nx where x ∈ ∂D0, we denote the interior normal to ∂D0 at x. In short, we denote, 
also, nx by n.

Let C D2 1, ( , ),ℜ  x ∈ ∂D0  and  t ∈ [t0, t0 + T]. The expression
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is called the transversal derivative of the function u  at the point (x0, t). If it does not lead to 

misunderstanding the transversal derivative du x t
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For the given functions aij(i, j = 1, ..., n)  and c satisfying Assumption (A1) and for the 
given functions f, f1, f0 and h satisfying Assumptions (A2) (i)–(iii) and (A3) the first Fourier’s 
semilinear nonlocal problem in D consists in finding a function u C D∈ ℜ2 1, ( , )  satisfying 
the equation
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and the boundary condition
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A function u possessing the above properties is called a  solution of the first Fourier 
semilinear nonlocal problem (5)–(7) in D.

If condition (7) from the first Fourier semilinear nonlocal problem (5)–(7) is replaced 
by the condition
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where k is the given function satisfying Assumption (A2)(ii′) then problem (5), (6) and (8) 
is said to be the mixed semilinear nonlocal problem in D. A function u C D∈ ℜ2 1, ( , )  satisfying 
equation (5) and conditions (6), (8) is called a solution of the mixed semilinear nonlocal 
problem (5), (6) and (8) in D.

Assumption (A4). For each two solutions w1 and w2 of problem (5)–(7) or of problem 
(5), (6) and (8) the following inequality
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Remark 2.1. The reason for which Assumption (A4) is introduced is that the problems 
considered are nonlocal.

3. Theorems about uniqueness

In this section we shall prove two theorems about the uniqueness of solutions of parabolic 
semilinear problems together with nonlocal initial conditions with integrals.

Theorem 3.1. Suppose that the coefficients aij (i, j = 1, ..., n) and c of the differential equation 
(5) satisfy Assumption (A1) and the functions f, f1, f0 and h satisfy Assumptions (A2)(i)–(iii) and 
(A3). Then the first Fourier semilinear nonlocal problem (5)–(7) admits at most one solution in D 
in the class of the solutions satisfying Assumption (A4).

Proof. Suppose that u1 and u2 are two solutions of problem (5)–(7) in D and let

 v u u D: .= −1 2      in    (9)

Then the following formulas hold:
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where dσx is a surface element in ℜn.
From (14), (12) and from Assumption (A1),
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Using integration by parts, it is easy to see that
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Formulae (15) and (16) imply the inequality 
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By the above inequality and by Assumption (A2)(i), we obtain
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The proof of Theorem 3.1 is thereby complete.
Theorem 3.2. Suppose that the assumptions of Theorem 3.1, concerning to the coefficients 

aij (i, j = 1, ..., n), c and the functions f, f1, f0 and h, are satisfied and that the function k satisfies 
Assumption (A2)(ii′). Then the mixed semilinear nonlocal problem (5), (6) and (8) admits at 
most one solution in D in the class of the solutions satisfying Assumption (A4).

Proof. Suppose that u1 and u2 are two solutions of problem (5), (6) and (8) in D, and let
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From (24), (23), and as in the proof of Theorem 3.1
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By (25) and Assumptions (A2)(ii′) and (A3) we obtain the inequality
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Consequently, as in the proof of Theorem 3.1,

 v x t x t D( , ) , )= ∈0   for   (

and the proof of Theorem 3.2 is complete.

4. Physical interpretation of the nonlocal condition (6)

Theorems 3.1 and 3.2 can be applied to descriptions of physical problems in heat 
conduction theory for which we cannot measure the temperature at the initial instant but we 
can measure the temperature in the form of the nonlocal condition (6).

Observe, also, that in Theorem 3.1 and 3.2, the nonlocal condition (6) considered is more 
general than the classical initial condition and the integral periodic condition and the integral 
anti-periodic condition. Namely, if the function h  from condition (6) satisfies the relation 

 h x x D( )= ∈0 0   for    then condition (6) is reduced to 

the initial condition



163

 u x t f x x D( , ) ( )0 0 0= ∈   for   .

Instead if the function h and f in (6) satisfy the conditions

 h x h x x D( ) [ ( ) ]=− = ∈1 1 0   for   ,

 f x x D0 00( )= ∈   for   ,

then condition (6) is reduced, respectively, to the integral periodic [antiperiodic] initial 
condition:
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