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Abstract
The uniqueness of classical solutions to parabolic semilinear problems together with nonlocal initial
. i L 0 0 0 .
conditions with integrals, for the operator Z—x a‘/(x,t)g +c(x,t)—5, x=(x,,,%,), in the
ij=1 OX, i

cylindrical domain D :=Dg % (t,,t,+T) R™ where t, € M,0< T< oo, are studied. The result requires
that the nonlocal conditions with integrals be introduced.

Keywords: parabolic problems, semilinear equation, nonlocal initial condition with integral, cylindrical domain, uniqueness
of solutions

Streszczenie

W artykule oméwiono jednoznaczno$¢ klasycznych rozwiazan parabolicznych semiliniowych zagadnier
z nielokalnymi poczatkowymi warunkami z catkami dla operatora
zi a, (x,t)i +c(x,t)—é, x=(x,,.,x,) , wwalcowym obszarze D:=Dyx(t,,t,+T) = R"™,
o Ox, ! 6x/ Ot

gdziet € M, 0 < T'<o0. Wynik polega na tym, ze zostaly wprowadzone warunki nielokalne z catkami.

Stowa kluczowe: zagadnienia paraboliczne, réwnanie semiliniowe, nielokalny warunek poczatkowy z catka, obszar walcowy,
jednoznaczno$¢ rozwigzan
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1. Introduction

In this paper we prove two theorems on the uniqueness of classical solutions to parabolic
semilinear problems, for the equation

iax( o, (o) 2421) ”}( e -2 e, )
=f(x,t,u(x,t)),

(x,t)eD:=D,x (t,,t, +T)=R"",

where £ € R, 0<T<o. The coefficients a, (i,j=1,..n), ¢ and the function f are given.
The nonlocal initial condition considered in the paper is of the form
I to+T
u(x,t,) +% I u(x,t)dt=f,(x), x€D,,
tO

where |h(x)|<1forx e D,

The result obtained is a continuation of the results given by Rabczuk in [ 5], by Chabrowski
in [3], by Brandys in [1] and by the first authorin [1] and [2].

In monograph [ 5], Rabczuk gives two uniqueness criteria for classical solutions for initial
- boundary problems to the equation

n 2
Za u(‘f;t) _ 8M(x;t) :f(x,t,u(x,t)), xeDO CSRn, £>0
i=1 axi ot

In paper [3], Chabrowski studies nonlocal problems for the equation

z”:a’] t)ﬁ u(x t) Zb( t)au(x t)+( ulot)— au(x t)

i,j=1 ]
= f(«,t), xeD,cR", te(0,T).
The nonlocal initial condition, considered in [3], is of the form
u(x,0) +Z[3i (0)u(x,T,)=y(x), x€D,,

where t, € (0, T) and was introduced in this form as the first by Chabrowski.
In publication [2], two uniqueness criteria for classical solutions for equation (1) together
with the nonlocal condition u(x,t,)+h(x)u(x,t,+T)= f,(x), x€D,, are studied.

2. Preliminaries

The notation, definitions and assumptions from this section are valid throughout this paper.
We will need the set R :=(-o0,0].
Let t be a real number, 0< T<ooand x=(x, ..., x ) € R".



Define the domain (see [1] or [2])
D:==Dyx(t,,t,+7T),
where D is an open and bounded domain in R" such that the boundary 0D, satisfies the
following conditions:
(i) Ifn>2then 0D, isaunion ofa finite number of surface patches of class C' which have
no common interior points but have common boundary points.
(i) If n>3 then all the edges of 0D are sums of finite numbers of (n-2) - dimensional
surface patches of class C'.

. Oa, — —
Assumption (A). a;, a—’eC(D,ER) (i,j,s=1,..,n), where aijzaij(x,t) for (x,t)eD

(i,j=L.n); a,(x,t)=a,(x,t) for (x,t)eD (i,j=1,.,n) and Zai}.(x,t)XiijO for

ij=1

arbitrary (x,t) € Dand (A,,.., A, ) € R"; ceC(D,R_).

Assumption (A).

(i) f:DxRa3(xt,z) > f(x,t,z)eR, feC(DxR,R), Z—feC(BXER,ER) and

z
M>O for (x,t)eD,z e R;
0z
(i) f,:0D,x[0,T]—>NR;
(ii") ke C(6D, x[0,T],R_);
(iii) f,:D, —R.
Assumption (A,). heC(D,,R) and |h(x)|<1forxe D,
ow Ow

Let C*'(D,R) be the space of all weC(D,R) such that —,
Ox,  Ox,0x,

€C(D,R) for

i i

i,j=1,..,nand aa—TEC(I_),SR).

The symbols L and P are reserved for two operators given by the formulas

(L)1) ::ig{agx,t) 6”(’“'”] @

ij=1 OX; Ox j

and

(Pw) (x,t) = (Lw) (,£) +c(x, t)w(ox, t) — 5’4’;’:’0

(3)

for weC*(D,R), (x,t)eD.
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By n_ where x € 0D, we denote the interior normal to 0D, at x. In short, we denote,
also, n by n.
Let C“(D R), x € 0D, and t€ [t,t +T]. The expression

du(x,t) (2, ,t) &
dv(x, ) _Z o Z a;(x,,t)cos(n, ,x;) (4)

is called the transversal derivative of the functlon u at the point (x,, t). If it does not lead to

misunderstanding the transversal derivative ——— du(ix,t) will be denoted by — u(xo ,t)orby d—

do(ax,,t) dv do,

For the given functions a,(i,j=1,..,n) and c satisfying Assumption (4,) and for the

given functionsf, f,, f, and h satisfying Assumptions (A,) (i)-(iii) and (A,) the first Fourier’s

semilinear nonlocal problem in D consists in finding a function ueC*'(D,R) satisfying
the equation

(Pu)(x,t)= f(x,t,u(x,t)) for (x,t)eD, ()

the nonlocal initial condition
(it )+ 1 )toj u(x,)dt=f,(x) for xeD, ©)

and the boundary condition
u(x,t)= f,(x,t) for x€dD,x[t,,t,+T]. (7)

A function u possessing the above properties is called a solution of the first Fourier
semilinear nonlocal problem (5)—-(7) in D.

If condition (7) from the first Fourier semilinear nonlocal problem (5)-(7) is replaced
by the condition

%u(x,t)+k(x,t)u(x,t)= F(x,t) for xedD,x[t, t, +T], 8)
where k is the given function satisfying Assumption (A,)(ii’) then problem (5), (6) and (8)
is said to be the mixed semilinear nonlocal problem in D. A function u€C>'(D,R) satisfying
equation (S) and conditions (6), (8) is called a solution of the mixed semilinear nonlocal
problem (5), (6) and (8) in D.
Assumption (A, ). For each two solutions w, and w, of problem (5)-(7) or of problem
(5), (6) and (8) the following inequality

to+T 2
l:% I (w, (x,7)—w, (x,7))dt S[wl(x,to+T)—w2(x,t0+T)]2 for xe D,

is satisfied.



Remark 2.1. The reason for which Assumption (A,) is introduced is that the problems
considered are nonlocal.

3. Theorems about uniqueness

In this section we shall prove two theorems about the uniqueness of solutions of parabolic
semilinear problems together with nonlocal initial conditions with integrals.

Theorem 3.1.  Suppose that the coefficients a_ (z,] 1,...,n) and c of the differential equation
(S) satisfy Assumption (A,) and the functions , f,, f and h satisfy Assumptions (A,)(i)-(iii) and
(A,). Then the first Fourier semilinear nonlocal problem (5)-(7) admits at most one solution in D
in the class of the solutions satisfying Assumption (A,).

Proof. Suppose that u and u, are two solutions of problem (5)-(7) in D and let

vi=u —u, in D. (9)
Then the following formulas hold:

(Pv)(x,t)= f(x,t,u,(x,t)) — f(x,t,u,(x,t)) for (x,t)eD, (10)

to+T
i) jv(x,'c)d‘czo for xeD,, (11)

v(x,ty)+——
v(x,t)=0 for (x,t)edD,x[t,,t,+T]. (12)

From the assumption that u,u, €C*'(D,R), from the second and third part of
Assumption (A,)(i) and from the mean value theorem, there exists 6 € (0, 1) such that

f Gty (x,8)) = f(x,t,u, (1)) (13)
= () L0 100)

By (13), (10), by Assumption (A ) by (2) and (3) and by [4] (Section 17.11),
to+T
j [J‘vzwdx} dt (14)

o a, Oz

to+T
= J {j vPvdx]
to+T to+T
= I {J‘vadx}ft-k J. {f cvzdx] dt
t, | D,

to Dy

for (x,t)eD.
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e}

0

:—toj { .[ chos(n x, )Za o dG :ld

ty | oD, =1
to+T B
T 2
to+T to+T 5
‘] { .[dZI - { jad]d

where dcx is a surface element in R".
From (14), (12) and from Assumption (4, ),

‘DJ*.T[ J. p de} dtﬁ_fuIT[ J- %de} dt.

t, | Do D,

Using integration by parts, it is easy to see that

ty | Do

Formulae (15) and (16) imply the inequality

to+T
J' {",ﬂ de} dt
Oz

to Dy

1 1
<—— j v* (x,t, + T )dx+— I v (x,t, )dx.
2 D, 2 D,

From (17) and (11), we have

to+T
I {[VZ wdx} dt
Oz

to D,

s-%jvz(x,to +T)dx+%é[[h(x) tuj v(x, r)erl x.

D,

By (18) and Assumption (A 4) ,

to+T
I {J.VZ wdx} dt
Oz

ty | Do

totT 81/ 1 1
j [I Evdx} dt :55[1)2 (x;to +T)dx_515[1)2 (x!to)dx'

(15)

(16)

(17)

(18)

(19)



<_EJ‘ v* (x,t, + T)dx+— J‘hz(x){ tOJtTv(x,T)d‘c:l dx

D, to

1 1
< —55[ v (x,t, +T)dx+§I£ W (a)v* (x,t, + T)dx

z_% [ v Gosty + T (112 () Y

From (19) and from Assumption (A ) we obtain

tOJtT{J. 8f(xtu2+6v) ] gt <o.

ty &

DK)
By the above inequality and by Assumption (A, )(i), we obtain
v*(x,t)<0 for (x,t)eD
and therefore
v(x,t)=0 for (x,t)eD.
The proof of Theorem 3.1 is thereby complete.
Theorem 3.2.  Suppose that the assumptions of Theorem 3.1, concerning to the coefficients
a (z,] 1,..,n), ¢ and the functions f, f,, f, and h, are satisfied and that the function k satisfies
Assumptzon (A,)(ii"). Then the mixed semilinear nonlocal problem (S), (6) and (8) admits at
most one solution in D in the class of the solutions satisfying Assumption (A,).
Proof. Suppose that u, and u, are two solutions of problem (5), (6) and (8) in D, and let

vi=u,—u, in D. (20)

Then the following formulas hold:

(PV)(x)t):f(x)t)ul(x)t))_f(x)t;uz(x)t)) for (x)t)EB) (21)

v(x,t, )+ hlax )tOJtTv(x 1)dt=0 for xeD,, (22)

div(x,t)+k(x,t)v(x,t)=o for (x,£)dD, x[t, b, T]. (23)
v

x

Applying a similar argument as in the proof of Theorem 3.1 and using the definition of

dd—u (see (4)), we have

X

tthT[Ivz of (x,t,u, +6v) dx} ” (24)

5, Oz

to



}'i 162

:—T[ j v—dcs }it

t, | D,

to+T )
_tJ;L!‘;auax x], :ldt

to+T to+T d
+ J {J.cvzdx} dt— I {J.d—:vdx} dt.

Dy ty | Do

From (24), (23), and as in the proof of Theorem 3.1

IT[ i af(x,t,auz +6v) dx} M -

tO DO 22

j{ [ kvdo }zt-— [ v (ot + T [1= 1 () e

By (25) and Assumptions (A,)(ii') and (A,) we obtain the inequality

t+T
j [J‘vzwd‘x} dt<o.

Oz

ty | Do

Consequently, as in the proof of Theorem 3.1,
v(x,t)=0 for (x,t)eD

and the proof of Theorem 3.2 is complete.

4. Physical interpretation of the nonlocal condition (6)

Theorems 3.1 and 3.2 can be applied to descriptions of physical problems in heat
conduction theory for which we cannot measure the temperature at the initial instant but we
can measure the temperature in the form of the nonlocal condition (6).

Observe, also, that in Theorem 3.1 and 3.2, the nonlocal condition (6) considered is more
general than the classical initial condition and the integral periodic condition and the integral
anti-periodic condition. Namely, if the function h from condition (6) satisfies the relation

h(x)=0 for xeD, then condition (6) is reduced to

the initial condition



u(x,ty)=f,(x) for xeD,.
Instead if the function h and fin (6) satisfy the conditions
h(x)=—1[h(x)=1] for x€D,
f,(x)=0 for xeD,,

then condition (6) is reduced, respectively, to the integral periodic [antiperiodic] initial
condition:

to+T to+T

u(x,to):% I u(x,t)dt [u(x,to):—% J. u(x,t)dt ] for xeD,,
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