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A b s t r a c t

There are many existing models for the interaction of a pantograph–catenary system. The 
authors propose a specific model, which is amended by taking into account the dynamic part 
of the motion equation. This model was compared to another attempt and conclusions were 
drawn. A numerical study was performed using the Matlab Simulink Environment.
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S t r e s z c z e n i e

W artykule przedstawiono zagadnienie modelowania układu drgającego odbierak prądu–sieć 
trakcyjna jako modelu fizycznego z masą skupioną sieci trakcyjnej. Do celów symulacyjnych 
spośród wielu istniejących modeli pantografów wybrano model WBL 85 3 kV, w który m.in. 
wyposażone są lokomotywy EU11 oraz EU43. Zaprezentowano wyniki symulacji dla tego 
modelu odbieraka prądu przy ruchu postępowym wzdłuż sieci jezdnej. Zaprezentowane wy-
niki pochodzą z symulacji wykonanej dla dwóch modeli matematycznych sieci trakcyjnej. 
Modele te różniły się od siebie jednym czynnikiem, który zazwyczaj jest pomijany w bada-
niach nad opisywanym układem. Następnie wyniki te porównano.
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1. Introduction

With an increase in the speed potential of traction vehicles, there is also an increase 
in the quality requirements related to their electrical energy consumption. The energy is 
transferred by a moving contact point between the pantograph and the catenary [1]. It is 
difficult to maintain a constant clamping force of the pantograph to the catenary in order to 
ensure a continuous and uninterrupted supply of energy to the traction vehicle [1].

Modeling of the described system in terms of dynamic properties is a complex task that 
is affected, among other things, by: vehicle speed and parameters of the OCS system (from 
Over Contact System). Other influential factors also include interfering factors related to 
the environment of the OCS system, such as [1]: geometrical characteristics of the track and 
their changes that occur during the operation, atmospheric conditions like air temperature 
and its humidity, icing of traction networks, wind speed and its direction changes, and 
others. As can be seen, because of the multiplicity of various aspects, the optimization of 
the parameters of the pantograph – catenary system – requires comprehensive research and 
analysis. Simulations of the OCS system are presented inter alia in publications: [2–5].

2. Model of the pantograph and catenary 

Figure 1 shows the physical model of interaction in the OCS. The pantograph in this 
model has four degrees of freedom and consists of a lower frame, an upper frame and 
a panhead. The model of the pantograph consists of four effective moving masses, which 
represent the components listed above. They are interconnected by spring and damping 
forces [3]. The effective masses, springs and dampers are matched to the actual behavior of 
the pantograph in dynamic conditions.

Fig. 1. The pantograph model (illustration on the left side from [4])
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The dynamic properties of the pantograph are determined by parameters, such as 
a concentrated mass (reduced to the contact point with the catenary), static force of the 
pantograph on the contact wire, aerodynamic force, electrodynamic force and other factors.

The described model of interaction in the OCS also comprises the model of the catenary 
system, taking into account the instantaneous value of the reduced mass as a function given 
by the relation (3a).

The authors formulated the assumptions for the catenary model in the following way [3]:
 – the system only performs vertical oscillations,
 – the catenary system is symmetric, 
 – the catenary span length is fixed and determined, 
 – the catenary is made of a homogeneous material, 
 – the materials used for the construction of the catenary are isotropic, 
 – the equivalent mechanical parameters of the catenary change periodically and meet the 

conditions of Dirichlet,
 – the catenary affects masses m3 and m4 in the same way, at any time, 
 – the loss of contact between masses m3 and m4 and the catenary element mc(x(t)) is not 

possible, 
 – an equivalent center of gravity was assumed for the elements with masses m3, m4, mc(x(t)), 

whose displacement and velocity coordinates were described by the coordinates of the state 

xc(t) and 
dx

d
c ( )

.
t

t

The following parameters were assumed in the description of the discrete catenary 
model:
mc(x(t))  –  function of the reduced mass of the catenary,
Dc(x(t))  –  function of viscous damping of the catenary,
kc(x(t))  – function of the stiffness of the catenary,
rc(x(t))  –  function of dry damping of the catenary,
Qc(x(t))  –  the sum of the instantaneous value of the weight acting on the panhead of the 

pantograph and the weight of the masses m3, m4,
L  –  span length,
x(t)  –  instantaneous distance measured along the catenary from the nearest pole to the 

pantograph,
v(t)  –  instantaneous velocity of the translational motion of the pantograph, measured in 

the longitudinal direction of the catenary,
a  –  acceleration of the translational motion of the pantograph, measured in the 

longitudinal direction of the catenary,
V0  –  initial velocity of the translational motion of the pantograph, measured in the 

longitudinal direction of the catenary,
x0  –  initial distance measured along the catenary from the nearest pole to the pantograph.

The model takes into account, inter alia, the impact of the aerodynamic force on the 
pantograph, which is usually skipped in less complex models. No information about the 
values of the coefficients of air resistance K31, K32, K2 for the pantograph model caused that 
they were assumed as constants. However, the assumed values may not correspond to the 
actual values of these coefficients.
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At the same time, the model presented in Fig. 1 does not take into account the impact 
of vibration of the traction vehicle on the vibration of the pantograph base frame nor the 
possibility of loss of contact of masses m3 and m4 with the catenary element mc(x(t)). In fact, 
the vibrations of a locomotive body are directly transferred on the pantograph base frame, as 
well as the mentioned loss of contact is possible.

In the description of the system vibrations corresponding to masses m1 and m2 the 
displacement coordinates were assumed relative to their equilibrium positions.

The mathematical model for the model of the pantograph-catenary interaction assumed 
in the article is presented by (1). The coefficients and variables in this equation are explained 
above and in Fig. 1. 
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The mathematical model of the time derivative of the product of the mass of the catenary  

mc(x(t)) and the vertical velocity dx
d
c ( )

.
t

t
 for the model assumed in the article is given by 

equation (2a) or (2b). Equation (2b) includes the impact of the product of the time derivative 

of the mass and the vertical velocity dx
d
c ( )

.
t

t
 on the behavior of the OCS system. In the present 

paper, the model of the OCS interaction, which uses equation (2a) in the system of equations 
(1), is called the model without the mass time derivative term, while the model of the OCS 
interaction, which uses equation (2b) in the system of equations (1), is referred to as the 
model taking into account the time derivative of the mass.
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Forces acting on the catenary:
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3. Simulation results

From among many existing models of pantographs, the type WBL 85 3kV was selected 
as the simulation model. Its parameter values were taken from [3].

This paper presents the analysis of movement for the chosen pantograph type interacting 
with a catenary in which the derivative of the product of catenary mass and vertical velocity 
dx

d
c ( )

.
t

t
 is represented by equation (2a) or (2b). Simulations were carried out under the 

following assumptions [3]:
•  the system performs only vertical oscillations,
•  the damping in kinematic pairs of the pantograph is a dry damping, as well as viscous 

damping,
•  elements connecting the reduced masses of the pantograph arms m1, m2 have linear 

characteristics with constant coefficients k2, D2, r2,
•  elements connecting the lower mass m1 with the pantograph’s base frame have linear 

characteristics with constant coefficients k1, D1, r1,
•  elastic elements connecting the reduced masses of pantoheads m3, m4 with the upper 

pantograph arm m2 have a nonlinear characteristics,
•  the value of the static force F1(t) being the impact of the pantograph lifting system on the 

catenary is the same at any speed and does not depend on the position of the body with 
mass m1,
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•  the velocity v(t) of the moving pantograph is constant,
•  the oscillations of the system for the elements m1 and m2 take place around the static 

equilibrium positions, which result from the action of the force of gravity coming from 
these masses,

•  the simulations were performed with initial conditions assumed as zero.
The following parameters of the pantograph were assumed in calculations of the model 

of the OCS [3]:

Mass [kg]: Stiffness [N/m]: Viscous damping [kg/s]:

m1 = 10.15; k1 = 13 500; D1 = 60;
m2 = 8.73; k2 = 13 500; D2 = 0;
m3 = 7.93;  D31 = 0;
m4 = 7.93;  D32 = 0;

Dry damping [N]: Drag coefficient [kg/m]: 
 

r1 = 2,5; K2 = 0.36 · 0.7/3;  
r2 = 2,5;  K31 = 0.36 · 0.7;
r31 = 2; K32 = 0.36 · 0.7;
r32 = 2;

The value of the static force F1(t) was assumed as [3]:

F1 = 110 N;

Figure 2 shows the nonlinear characteristics of the spring Fk3j = f(y2(t) – xc(t)) (where 
j = 1, 2) [3], corresponding to the magnitudes k31, k32 (Fig. 1) at specified intervals of the 
displacement difference y2(t) – xc(t).

Fig. 2. The nonlinear characteristics Fk3j = f(y2(t) – xc(t)) (where j = 1, 2) of a spring [3] referring  
to the values k31, k32 (Fig. 1) in specific intervals of differences of displacements y2(t) – xc(t)
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The catenary parameters assumed as in [5]. They have the following values:

Mass [kg]: Stiffness [N/m]: Viscous damping [kg/s]:
mc0 = 195;  kc0 = 7000;  Dc0 = 240;
mc1 = 100; kc1 = 3360;  Dc1 = 240;
mc2 = 20;  kc2 = 650;  Dc2 = 50;
mc3 =  5;  kc3 = 160;  Dc3 = 12;

Dry damping [N]: Span length [m]:  

rc = 0; L = 65.52;

It was assumed that the pantograph moved with uniform motion along the catenary:

a = 0 m/s2;
x0 = 0 m;
V0 = 20 m/s.

The value of acceleration due to gravity was taken as g = 9.81 m/s2.
Figure 3 shows the function of the reduced mass depending on time for velocity  

V0 = 10, 20 and 40 m/s and simulation time equal to 6.552 s. This time refers to traveling, 
respectively, once, twice and four times the assumed distance L at given speeds V0. The 
line denoted by  corresponds to the speed V0 = 10 m/s, the solid line corresponds 
to the speed V0 = 20 m/s, and to the line denoted by  corresponds to the speed 
V0 = 40 m/s. The functions in Fig. 3 are drawn for the condition of the initial pantograph 
position x0 = 0 m.

Fig. 3. The function of the reduced mass versus time for velocity V0 = 10, 20 and 40 m/s  
of the pantograph moving with respect to the catenary
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The next part of this paper presents the results corresponding to the speed V0 = 20 m/s 
(72 km/h) for the simulation time from 0 s to 3·6.552 s. The simulation time was increased 
due to the occurrence of an aperiodic component. The simulation was performed for the 
condition of the initial pantograph position x0 = 0 m.

Figure 4 shows the timeline of the vertical displacement xc(t) calculated from the model 
of the system without the time derivative of the mass component. This displacement 
is called xc(t) in the graph. Figure 4 also shows the timeline of the vertical displacement 
xc(t) calculated from the model, taking into account the time derivative of the mass. This 
displacement is called xcpoch(t) in the figure.

Fig. 4. Time courses of vertical displacement xc(t) calculated for the discussed models of the OCS for 
movement of the pantograph along the catenary with speed V0 = 20 m/s. The solid line – denotes the 
model taking into account the time derivative of mass; the dashed line – is for the model without the 

time derivative of the mass

Figure 5 depicts the time course of the instantaneous difference in the vertical 
displacement xc(t) calculated for the compared models of the OCS for movement of the 
pantograph along the catenary with speed V0 = 20 m/s. The difference was calculated as 
the difference between the displacement xc(t) from the model, taking into account the time 
derivative of mass and the displacement xc(t) from the model without the time derivative of 
mass component.

Figure 6 shows time courses of vertical velocity 
dx

d
c ( )

.
t

t
 calculated for the discussed models 

of the OCS for movement of the pantograph along the catenary with speed V0 = 20 m/s.
Figure 7 gives the time course of the instantaneous difference in the vertical velocity 

dx
d
c ( )

.
t

t
 calculated for the compared models of the OCS for movement of the pantograph 

along the catenary with speed V0 = 20 m/s. The difference was calculated as the difference 

between the velocity dx
d
c ( )

.
t

t
 calculated from the model, taking into account the time 

derivative of mass and the displacement dx
d
c ( )

.
t

t
 from the model without the time derivative 

of mass component.
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Fig. 5. Time course of the instantaneous difference in the vertical displacement xc(t) calculated  
for the compared models of the OCS for movement of the pantograph along the catenary  

with speed V0 = 20 m/s

Fig. 6. Time courses of vertical velocity dx
d
c ( )

.
t

t
 calculated for the discussed models of the OCS  

for movement of the pantograph along the catenary with speed V0 = 20 m/s
Vcpoch(t) – velocity calculated for the model including the time derivative of mass; Vc(t) –  

is for the model without the time derivative of the mass component

Fig. 7. Time course of the instantaneous difference in the vertical velocity dx
d
c ( )

.
t

t
 calculated for the 

compared models of the OCS for movement of the pantograph along the catenary with speed V0 = 20 m/s
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4. Conclusions

The presented study takes into account the effect of aerodynamic forces acting on the 
pantograph. Modeling of the pantograph was simplified by omitting the impact of vehicle 
vibrations on the vertical movements of the pantograph. In the model interaction OCS, it was 
assumed that the loss of contact between masses m3 and m4 and the catenary element mc(x(t)) 
is not possible (Fig. 1). 

Simulations were performed in Matlab using method ode23. The simulation results 
indicate that, for the chosen zero initial conditions, the calculated displacements xc(t) and 

velocity dx
d
c ( )

.
t

t
 after certain time reach a steady state for the considered models of the OCS 

for the movement of the pantograph along the catenary with speed V0 = 20 m/s.
Based on the obtained simulation results, it can be concluded that the difference between 

the values of the instantaneous vertical displacements xc(t) calculated for the discussed models 
of the OCS, for movement of the pantograph along the catenary with speed V0 = 20 m/s, with 
given initial conditions, for the time interval without the aperiodic component of the vertical 
displacement xc(t), can reach values larger than 0.002 m.

The simulation results also indicate that the difference between the values of the 

instantaneous vertical velocities dx
d
c ( )

.
t

t
calculated for the discussed models of the OCS, for 

movement of the pantograph along the catenary with speed V0 = 20 m/s, with given initial 
conditions, for the time interval without the aperiodic component of the vertical velocity 
dx

d
c ( )

.
t

t
, can reach values exceeding 0.01 m/s in absolute value.

It should be noted that the simulation results have not been verified in real conditions 
and require further work and analysis. The initial conditions were taken as zero, which 
causes the time courses presented here to have an aperiodic character. Such a state exposes 
the most significant impact of the product of the time derivative of the mass and velocity 

d
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x t

x t
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x t
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 on the OCS interaction. The authors suggest appropriate choice 

of initial conditions for the analysis of the OCS interaction.
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