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A b s t r a c t
The following article presents the application of the Max-Plus Linear System (MPLS) method in the synthesis 
of different IT process control structures, taking place in the systems belonging to the class of Discrete Event 
Systems (DES). Modelling and analysis of these systems are based on the state equations, expressed in MPLS 
categories and classical principles of control theory, adapted for them. MPLS is based on max-plus algebra 
formalism and is supported with graphical representation in the form of Timed Event Graph (TEG), which is the 
special case of Timed Petri Nets (TPN). The article contains an overview of the theoretical work on discrete control 
processes, with a particular focus on the synthesis of control signals in the open control to obtain the desired output 
system. A practical example has been used for distributed computational process and data transmission for the 
system controlling selected technological process. Numerical results are presented.
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S t r e s z c z e n i e
W artykule przedstawiono zastosowanie metod opartych na max-plus liniowym systemie (MPLS) w syntezie 
struktur sterujących różnych procesów IT, zachodzących w systemach należących do klasy systemów zdarzeń dys-
kretnych. Modelowanie i analiza tych systemów bazuje na równaniach stanu, wyrażonych w kategoriach MPLS 
i przystosowanych do nich, klasycznych zasadach teorii sterowania. MPLS opiera się na formalizmie max-plus 
algebry i posiada reprezentację graficzną w postaci czasowego grafu zdarzeń, który jest szczególnym przypadkiem 
czasowych sieci Petriego. Artykuł zawiera przegląd prac teoretycznych dotyczących sterowania procesami zda-
rzeń dyskretnych ze szczególnym przedstawieniem syntezy sygnałów w otwartym układzie sterowania mających 
na celu wymuszenie zadanej odpowiedzi. Praktyczny przykład zastosowano dla rozproszonego procesu oblicze-
niowego z przesyłaniem danych do systemu sterowania wybranego procesu technologicznego oraz przedstawio-
no wyniki obliczeń numerycznych.
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1.  Introduction

The increasing complexity of information processes in distributed computer systems 
and  microprocessor systems increases the probability of faults and disturbances. Hence, 
there  is  the need to include them in the design process. These processes were treated as 
occurring in class of discrete event systems (DES).

The DES class is very wide, covering manufacturing systems (including flexible and 
assembly lines) [5, 6], road, railway and air transport systems [3, 19], as well as computer 
networks [15]. In addition, one can also qualify processes in the field of Human System 
Interaction, e.g. resource and task management, as well as process control technologies. 
The variety of DES systems leads to different models. The MPLS model has been adopted 
in this article, based on the algebra theory (max, +). One of the first scientists, who described 
this theory was R.A. Cuninghame-Green [12] and then it was developed by the INRIA 
team [7]. The authors of the articles showed that the behaviour of certain DES systems can 
be described using linear equations. They have also pointed at many cases of analogies 
to the problems in the systems theory, automation and control. Joint researches led to the 
publication of collective work [2]. In the following article, based on the bibliographic 
data, the theoretical basis of modelling and control in the DES systems are discussed, 
supplemented with the authors’ results from the scope of this problem.

In the area of research, in particular should be mentioned:
–	 Optimal control in the open loop. Structure described by the Cohen [9], in which a well- 

-known system model and time sequence of output signals are assumed, while the optimal 
trajectory of the input signals is calculated,

–	 Preliminary compensator [14, 18]. The time sequence of output signals is not known, but 
the reference model, which imposes the behaviour of the output relative to the input is 
assumed.

–	 Corrector with the feedback. In the control structure the system output is modified by 
the correctors in the feedback [10]. They converge the behaviour of the whole system to 
the behaviour set in the reference model.

–	 R, S, T type correction. Strategy based on the introduction of three correctors into the 
structure, has been inspired by the Åström [1]. This leads to the better results than those 
obtained with the single corrector [20].

–	 Control in the presence of disturbances [16]. System is exposed to the acting of 
uncontrolled inputs. To reduce their impact, the control in the closed-loop is taken into 
account.

–	 Robust control [17]. It is assumed that the system parameters are random, but are in the 
specific range of values. Synthesis of control is based on the feedback.
The main part of the following article concerns the design of the open control structures, 

including control under conditions of uncertainty in the data transmission aspect.
This article is organized as follows. Section 2 introduces the maxplus algebra theory and 

MPLS modelling. In section 3, based on the literature review, the authors’ results related 
to the selected problems of processes control in the DES systems have been presented. 
Also some problems in the disturbances conditions, damages and uncertainty have been 
discussed. In section 4 there is the general theory related with the open control. In section 5 
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control system synthesis has been described and the practical results for the computational 
processes and data transmission in model of IT systems have been presented.

2.  Mathematical fundamentals

This section contains selected basic concepts of max-plus algebra providing the basis to 
formulate a model MPLS. They are widely discussed in the Chapters 3 and 4 of publication 
[2]. Max-plus algebra formalism is based largely on the lattice theory and partially ordered 
sets, and residuation theory. In turn, the theoretical basis, allowing representation of MPLS 
in the categories of the state equations system is presented in Chapters 5 and 6 of [2].

2.1.  Max plus algebra [25]

In recent years, the concept of a max-plus-linear system (MPLS) has been increasingly 
frequently used in the literature. It is based on a mathematical formalism, namely max-plus 
algebra. The basic operations of max-plus algebra are maximization and addition, which 
will be represented, respectively, by ⊕ ⊗ ⊕ = ⊗ = +and and: max( , )x y x y x y x y  for 

x y def, , { }∈ = ∪ −R R Rε ε ¥
The reason for using these symbols is that there is a remarkable analogy between ⊕ 

and conventional addition, and between ⊗ and conventional multiplication: many concepts 
and properties from linear algebra (such as the Cayley-Hamilton theorem, eigenvectors 
and eigenvalues, Cramer’s rule) can be translated to max-plus algebra by replacing + with 
⊕ and × with ⊗. Hence we also call ⊕ the max-plus-algebraic addition, and ⊗ the max- 
-plus-algebraic multiplication. Note, however, that a major difference between conventional 
algebra  and max-plus algebra is that, in general, there are no inverse elements with 
respect to ⊕ in Rε. The zero element for ⊕ is ε = −def ¥  and we have a a a⊕ = = +ε ε  for 
all a ∈Rε . The structure ( , , )Rε ⊕ ⊗  is referred to as max-plus algebra. Let r ∈ R. The rth 
max-plus-algebraic power of x ∈ R is denoted by x⊗r and corresponds to rx in conventional 
algebra. If x ∈ Rε, then x⊗0 = 0 and the inverse element of x w.r.t. ⊗ is x⊗‒1 = ‒x. There is no 
inverse element for ε since ε is absorbing for ⊗. If r > 0, then ε⊗r = ε, and if r < 0, then ε⊗r 
is not defined. In this paper, we have ε⊗0 = 0 by definition.

The implicit equation x = a ⊗ x ⊕ b determines a = a* ⊗ b where the Kleene star operator:

	 a a
i

i∗

=

= ⊕
0

¥
	

The rules for the order of evaluation of max-plus algebraic operators correspond to those 
of conventional algebra. So the max-plus-algebraic power has the highest priority, and max- 
-plus-algebraic multiplication has a higher priority than max-plus-algebraic addition.

The basic max-plus-algebraic operations are extended to matrices as follows.
If A B C, ,∈ ∈× ×R Rε ε

m n m pand then:

	 ( ) max ( , )A B⊕ = ⊕ =ij ij ij ij ija b a b 	
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	 ( ) max ( )
...

A C⊗ = ⊗ = +
=

=⊕ij
k

n

ik kj k n ik kia c a c
1 1

	

for all i, j. Note the analogy with the definitions of the matrix sum and the product in 
conventional linear algebra.

The matrix εm n×  is the m×n max-plus-algebraic zero matrix: ( ) ,ε εm n i j× =  for all i, j; 
and  the matrix En is the n × n max-plus-algebraic identity matrix: (En)ii = 0 for all i and  
E(En)ij = ε i, j with i ≠ j. If the size of the max-plus-algebraic identity matrix or the max- 
-plus-algebraic zero matrix is not specified, it should be clear from the context. The max-plus- 
-algebraic matrix power of A ∈ ×Rε

n n  is defined as follows: A⊗0 = En and A A A⊗ ⊗ −= ⊗k k( )1
 

for k = 1,2, ...
The Kleene star operator can also be applied to matrices:

	 A A A A A A E∗

=

+= = ⊗ =⊕
i

i i i

0

1 0
¥

with and 	 (1)

where:
E	 ‒	 the identity matrix.
Equation (1), which has nilpotent matrix, achieves convergence (all coefficients equal ε).

2.2.  Model of the system

In article [5] Cohen showed that the nonlinear dynamic systems, whose structure and 
behaviour is based on the timed event graph (TEG) may be described using the linear 
equation system The example of a TEG with the determined holding time of 2 units in place 
P1 is given in Fig. 1 [4].

Fig.  1.  Graphical representation of a TEG

State-space descriptions in the max-plus algebra for a certain class of discrete-event-
systems become linear representations which are similar to state-space equations in the 
traditional model control theory. Generally speaking, for any TEG system, one obtains the 
following kind of equations as an MPLS [8]:

	 x A x B u( ( (k k i k i
i

M

i i) ) )= − ⊕ −
=
⊕

0

	 (2.1)

	 y C x( (k k i
i

M

i) )= −
=
⊕

0

	 (2.2)
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where x, u, and y are vectors of dimensions equal to the numbers of internal, input and 
output transitions, respectively. Ai, Bi, and Ci are matrices of the appropriate dimensions 
with entries in the max-plus algebra, and M is the maximal number of tokens in the 
initial marking. The  variables of (2) are time instances and the represented events occur 
at k-times. The coefficients of matrices A, B, C represent parameters associated with the 
places located between these transitions. The classical theory of the continuous and discrete 
systems in  the  time domain, revolutionized the integral transforms (e.g. Laplace, Fourier, 
Z-transform). Similar transformations have become useful in the theory of discrete processes. 
Each transition in the TEG model can be assigned to the appropriate of both, input or output 
vector’s components, as well as to internal state.

In the article [9] is derived model, of the system is represented by 2-dimentional (γ, δ) 
– transform noted as Mmin

max[[ , ]]γ δ  a set of formal power series for two variables γ and 

δ. A finite series of Mmin
max[[ , ]]γ δ  is a polynomial and is used to code a set of information 

concerning the transition of a TEG. The monomial γ 
kδt may be interpreted as the k-th event 

occurring at least at time t.
Using transform by Mmin

max[[ , ]]γ δ  the TEG system (2) has implicit form as

	 x Ax Bu= ⊕ 	 (3.1)
	 y Cx= 	 (3.2)

where A M B M C M∈ ∈ ∈× × ×min
max

min
max

min
max[[ , ]] , [[ , ]] , [[ , ]]γ δ γ δ γ δn n n p m nn ,

System equation (3) by Kleene star (1) transform, gives the explicit form as

	 x A Bu= ∗ 	 (4.1)
	 y Hu= 	 (4.2)

where H CA B M= ∈∗
×min

max[[ , ]]γ δ p m  is input/output transfer matrix relation
System equation (3) and matrix H is modelled as block schema (Fig. 2).

Fig.  2.  Block schema of the system (a), and its substitute (b)

3.  Control systems 

3.1.  Open control

First results concerning the open control, obtained using the (max,+) algebra are included 
in the Cohen [9] and Menguy [21] articles. Control was proposed for developing set 
a priori output trajectory, specified as open control. This control plays a key role in event 
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planning [21] and scheduling of tasks. For example these tasks can be executed by the some 
processes in a distributed computing micro-processors system. This issue will be presented 
in detail with example in sections 5 and 6.

3.2.  Feedback control from the output

Controlled structure consists with the corrector between the system’s output y and 
its input v. Output signals of events are modified by the corrector and put together with 
the input events. This problem is described in details in the work of B. Cottenceau [10] 
and in the articles [15]. Structure of control with output feedback as the block diagram is 
explained in the Fig. 3.

For this system	 u Fy v= ⊕

	 y H Fy v HFy Hv= ⊕ = ⊕( )

and using (1)	 y HF Hv G vF= =∗( )

where	 G HF H GF z= ∗( )  	 (5)

Expression (5) may be used to find F as the best control for applied desired characteristics 
and may be at least as fast as the reference Gz.

3.3.  Feedback control from the state

Structure of control with state feedback is explained in Fig. 4. In this case change of 
control structure consists of the corrector between the system’s output and input. System 
is being controlled using by signal of state system’s events, and changing by the corrector 
F analogically as in previous subsection 3.2 modified input the system. This problem is 
described in details in the work of B. Cottenceau [10] and in the article [15].

For this system	 u Fx v= ⊕
and	 x Ax Bu Ax BKx Bv= ⊕ = ⊕ ⊕

	 x A BF x Bv= ⊕ ⊕( )

and solve using (1)	 x A BF Bv= ⊕ ∗( )

Fig.  3.  Control with of the feedback from the output
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Output	 y C A BF Bv G vF= ⊕ =∗( ) 	 (6)

where	 G CA A BF A B CA B FA BF = =∗ ∗ ∗ ∗ ∗ ∗ ∗( ) ( ) 	 (7)

	 G Gy z 	 (8)

Expressions (7) may be used to find F as the best control for applied desired characteristics 
and may be at least as fast as the reference Gz (8).

3.4.  Control with the observer

The availability of state of the system in the previous point, is an important condition but 
not always possible to fulfil. There is, however, based on a known model of the system can 
calculate the analytical condition which is reconstructed state. On the basis of the analogue, 
a conventional approach Fig. 5 shows the structure of an observer [26].

Fig.  4.  Feedback control from the state

Fig.  5.  Structure of control with the observer



194

Assuming the existence of matrices A, B and C the real system equation (3) in explicit 
form is

	 x A Bu= ∗ 	
and the equation of the observer is

	 ′ = ⊕ ⊗ ′∗x A Bu Fo y y( ) 	 (9)

Our goal is to calculate the matrix FO to ensure that the estimated output y′ is less than 
or equal to the measured output y.

Typically, an observer is used to estimate the conditions necessary for feedback from 
the state and it is possible now to use control as in subsection 3.3 with equation (6)

	 y C A BF Bv= ⊕ ∗( ) 	 (10)

Now expressions (9) and (10) may be used to find F and FO as the best control for applied 
desired characteristics. 

4.  Data processing with control

Let us consider a data process that allows event-driven applications to take advantage 
of multiprocessors by running the code for event handlers in parallel. To achieve high 
performance, servers must overlap computation with the I/O. Programs typically achieve 
this overlap by using threads or events. Threaded programs usually process every request 
in a separate thread; while one thread block is waiting for the I/O, another thread can 
run. Event-based programs are structured as a collection of call-back functions which are 
called by the main loop when I/O events occur. Threads provide an intuitive programming 
model, but require coordinating the access of different threads to the shared state, even on 
a uniprocessor. Event-based programs execute call-backs sequentially so the programmer 
need not worry about concurrency control; however, event-based programs have so far been 
unable to make good use of multiprocessors. Much of the effort required to make existing 
event-driven programs take advantage of multiprocessors is in specifying which events can 
be handled in parallel.

This article presents a simple problem of designing the control of a system in which 
the cost is chosen so that it provides a trade-off between minimizing the delays of the end 
time of computational process operations (the real time to complete all the tasks in a cyclic 
computational process, times of final results of one cycle) and the periodicity of the desired 
output (the time desired or needed) to complete the process.

This problem was presented with no disturbances [22] and it was solved in max-plus 
algebraic functions as dater equation. Now we introduce disturbances and this problem is 
modelled in the 2-dimensional Mmin

max[[ , ]]γ δ  domain.
Simple data processing consists of several tasks linked by the wait for I/O data (Fig. 6). 

To illustrate our approach, let us consider a process that consists of some tasks: T0i which 
runs on microprocessors: µP0i, for i =1, ..., n. Each of these tasks is executed on a dedicated 
microprocessor. In this process, the digital information flows as input/output processing data 
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and a control signal. Input data (i.e. from outer system) is processed as the first task on the 
µP01 and its output data has to be saved to memory while it waits to be processed. The other 
microprocessors operate in the same way, but their input data simultaneously constitutes the 
output result from the previous microprocessor and /or may need extra outer data too.

5.  Control in open structure

In this section, the specified project is considered to obtain open control problem. 
In the context of data processing, this problem is to give final results and at the same time 
minimizing the size of the memory. Specifically, the control problem in open loop resolved 
as follows. It is system (a TEG with p inputs and q outputs) whose transfer matrix is known 

to  transfer H CA B M= ∈∗
×min

max[[ , ]] .γ δ p m  It is desired, using inputs u M∈ min
max[[ , ]]γ δ p  

to ensure that the system outputs follow the best trajectory determined by z M∈ min
max[[ , ]] .γ δ p

In [8], it is shown that this problem has an optimal solution, that there is a greater input 

control u Mopt ∈ min
max[[ , ]]γ δ p  such that the output resulting from that input (yopt = Huopt) is 

less than or equal to the desired output z. The uopt order is optimal from the point of view 
the just-in-time criteria (yopt the output is just-in-time). Here we implement restrictions.
–	 Input reference can be updated. For example, in the context of data processing the final 

results may lead to modifications of outer processes.
–	 Deadlines for the firing of some of the input transition can’t be modified, which may 

provide input data to the actual processes.

Fig.  6.  The structure of the disturbing processes
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Formally, transformation of L u H uH p p: [[ , ]] [[ , ]] , ,min
max

min
maxM Mγ δ γ δ⇒ ⇒ ⊗  defines 

optimal control.

	 { [[ , ]] ( ) }.min
maxu M∈ γ δ p HL u zopt  	

More specifically this is the upper limit (marked uopt), which gives you the greatest 
control satisfying the condition of L u zH ( ) .opt   We can already see that this set is not empty 
since u = ε is the solution, that is L zH ( )ε   and it is inversion problem which the theory 

residuation solves this problem directly.
The optimal command uopt exists and is given by:

	 u u Mopt = ∈ ={ [[ , ]] ( ) } ( ) \min
max γ δ p H HL u z L z H z 	 (11)

The optimal control for TEG corresponds to the order by entering the markers to the 
system as late as possible.

6.  Example

In order to accomplish achieve the results, we’ll look at an example of the system 
processes. Consider the TEG model in Fig. 7. As mentioned in section 4 this model can 
represent i.e. a tasks of a process in a distributed computing system constructed of some 
micro-processors P and memory units T. In this example data results from P1, P2 and P5 
is buffered in T5, T6, T7 and then there are processed by P3 and P4. Note that processors 
P1, … P5 have different cycle times: i.e P1 can handle a task every 2 units while P2 every 4 
units of time etc. For this system, according to Mmin

max[[ , ]]γ δ  representation (3,4) we have

	 A =

ε γ ε ε ε ε ε ε ε ε

δ ε ε ε ε ε ε ε ε ε
ε ε ε γ ε ε ε ε ε ε

ε ε δ ε ε γ ε ε ε ε

ε δ ε ε ε ε ε ε ε ε

ε ε ε

2

4
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εε δ ε ε ε ε ε
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According to (4) and, we can rewrite system transfer

	 H CA B=  =  












∗
∗

∗

δ γδ ε ε

ε δ γδ ε

10 2

12 4

( )

( )
	

We may to determine a desired output i.e.

	 z =  
⊕ ⊕ ⊕









∗ +δ γδ γ δ γδ γ δ
ε

10 22 4 30 6 10( ) ¥

	

 
By convention, the first event is the number 0 and the trajectory of this should be 

interpreted as follows: 0 task should be done no later than 10 time, and the task 1, 2 and 3 
at the latest during the 22. Then there is to be executed task 4, at 32 and then each one next 
task every 6 units of time. The final monomial γ 

9δ+¥ means that the task 8 is the last for this 
process. It also means that the task 9 and the next is not implemented (the term is infinite).

Calculation of optimal control is determined by (11)

	 u =
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ +e γδ γ δ γ δ γ δ γ δ γ δ γ δ γ δ γ δ

ε
ε

8 2 10 3 12 4 20 5 26 6 32 7 38 8 44 9 ¥















	

Fig.  7.  TEG of the system processes
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	 y =  
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕δ γδ γ δ γ δ γ δ γ δ γ δ γ δ γ δ γ δ10 18 2 20 3 22 4 30 5 36 6 42 7 48 8 54 9 ++









¥

ε
	

Results as trajectories z1, y1 and u1 are shown in Fig. 8. We can check that the optimal 
control u well meets the specification, i.e. that the output y is less than or equal to the z

Fig.  8.  Graphical representation of z1, y1 and u1

Fig.  9.  VC++ platform of software tools for MPLS (in the implementation)
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Calculations were performed and graphically presented using own software package 
currently developed on the Visual Studio 2013 platform (Fig. 9) with software library [28] 
and plot application Gnuplot [27].

7.  Conclusions

In this article an overview of selected control structures and particular consideration 
of the control of the open MPLS has been presented. The main purpose is the synthesis of 
the control input, when we know global transfer H and reference (desired) input is updated. 
In  the next step the problem of permissible deviations of real H should be elaborated, 
and the presence of uncontrollable input transitions. The problem formulated in the article 
has the close analogy with the problems encountered in classical control theory. There is not 
only feedback control but also predictive and robust control. There may be a need for effective 
control to use decoupling in multidimensional systems with cross-coupling interaction (like 
in computer control system [24]). Other problems concern different failures – events of data 
loss and damage while transmission. The solutions obtained do not completely eliminate 
the consequences of failures (i.e. delay), but are used for maintenance of the stability 
and elimination of memory overflow [23].

It is important to follow the new solutions and development of theoretical researches, 
concerning the classical theory of the system. It is planned to evolve practical applications 
and to create new or expand existing informatic tools. Further development of this software 
is planned.
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