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In memory of Stanisław Łojasiewicz [1926–2002]

1. Introduction

A convenient interpretation of ZFC which agrees with that of [8] is our basic set-theoretic 
assumption. An evident frequent use of the axiom of countable choice (CC) makes it 
impossible to rewrite in ZF most of the results of this work (cf. [4] and [6]–[8]); however, 
some of the theorems presented below are also theorems of, for instance, ZF+UFT+CC 
(cf [6]).

In what follows, X = (X,τ) is a non-void metrizable space, B(X) is the σ-field of all Borel 
sets in X, and Bs(X ) is the collection of all separable Borel sets in X. Moreover, M is a σ-field 
of subsets of a set E, while µ is an infinite σ-finite measure on M. Let (E, X) be the 
family of all (M,B(X))-measurable functions f : E → X such that µ[f 

‒1(X \ Bf)] = 0 for some 
Bf ∈ Bs(X). Of course, a function f : E → X is (M, B(X))-measurable if and only if f ‒1(V ) ∈ M 
whenever V ∈ τ. If one wants to try to work without CC, since second countability and 
separability are not equivalents in ZF+¬CC, it might be more preferable to define Bs(X) as 
the collection of all these Borel sets of X that are second-countable as topological subspaces 
of X. Clearly, the second definition of Bs(X) is equivalent in ZFC to our previous definition 
of 𝔅s(X) but not equivalent to it in ZF.

Every compactification of X is assumed to be Hausdorff. For a compactification αX of X, 
the collection of all bounded continuous real functions on X that are continuously extendable 
over αX is denoted by Cα(X). As usual, βX stands for the Čech-Stone compactification of 
X. The collection of all bounded continuous real functions on X is Cβ(X). A great role in the 
theory of compactifications is played by the collection (X) of all sets F ⊆ Cβ(X) such that 
the evaluation mapping eF : X → F is a homeomorphic embedding where [eF (x)](f ) = f (x) 
for all f ∈ F and x ∈ X (cf. e.g.[1], [2] and [11]–[13]). If F ∈ (X), then the closure in 
F of the set eF (X) is a compactification of X called generated by F and denoted by eFX. 
In particular, every compactification αX of X is generated by Cα(X). Since, in ZF, the sentence 
that Tikhonov cubes (called Hilbert cubes in [6]) are compact is equivalent with the ultrafilter 
theorem UFT (cf. Theorem 4.70 of [6]), it is true in ZF+UFT that, for every F ∈ (X), the 
compactification eFX of X exists. This is why some theorems on compactifications in ZFC 
are also theorems of ZF+UFT. It is still an open problem to investigate all significant details 
on compactifications in ZF+UFT and show possible differences between the theories of 
compactifications in ZFC and in ZF+UFT. Let us leave this problem for future considerations 
not described in this article and, for simplicity, let us work in ZFC to avoid troublesome 
disasters without AC. All topological and set-theoretic concepts that we use are standard and 
they can be found in [2], [3], [6]–[8] and [10]. Useful facts of measure theory are taken from 
[5] and [9].

The paper is mainly about the following concepts of metric and functional convergence 
in measure:

Definition 1. Let d be a compatible metric on X and let fn, f  be functions from (E, X) 
where n ∈ ω. We say that the sequence fn  is d-convergent in measure µ to f if, for each 
positive real number ε, the sequence



139

 µ ε({ : ( ( ), ( )) })t E d f t f tn∈ ³  

converges to zero in  with the usual topology. For every compatible metric ρ on X, the 
ρ-convergence in µ will be called a metric convergence in µ.

Definition 2. Suppose that ∅ ⊆¹ F C Xβ ( )  and let fn, f  be functions from (E, X) 

where n ∈ ω. We say that the sequence fn  is F-convergent in measure µ to f if, for each 
positive real number ε and for each φ ∈ F, the sequence

 µ φ φ ε({ : ( ( )) ( ( )) })t E f t f tn∈ − ³  

converges to zero, i.e. if  for each φ ∈ F, the sequence φ  fn )  converges in µ to φ  f .  
For each set H ∈ (X), the H-convergence in µ will be called a functional convergence in µ.

Definition 3. Let d, ρ be compatible metrics on X and let F, H be non-void subsets 
of Cβ(X). For i, j ∈ {d, ρ, F, H}, we say that:
1. i-convergence in µ implies j-convergence in µ if every sequence of functions from 
(E, X) which is i-convergent in µ to a function f ∈ (E, X) is also j-convergent  
in µ to f;

2. i-convergence in µ is equivalent with j-convergence in µ if i-convergence in µ implies 
j-convergence in µ and j-convergence in µ implies i-convergence in µ.
In the sequel, the notions of d-convergence and F-convergence in µ are applied 

to a comparison of compactifications of X. Recall that, for compactifications αX and γX 
of X, the inequality αX £ γX holds if and only if Cα(X) ⊆ Cγ(X); moreover, αX and γX 
are equivalent if and only if Cα(X) = Cγ(X). We write αX = γX to say that αX is identified 
with γX, i.e. to denote that αX and γX are equivalent. One of the most interesting theorems 
of this paper asserts that if there exists a metrizable compactification αX of X such that  
Cα(X)-convergence in µ implies Cβ(X)-convergence in µ, then the space X is compact. 
Moreover, among other results, it is shown that if αX and γX are metrizable compactifications 
of X, then αX £ γX if and only if Cγ(X)-convergence in µ implies Cα(X)-convergence in µ. 
Ideas of simple examples relevant to convergence in µ are described.

2. Metric convergence in measure and minimum uniform compactifications

For a compatible metric d on X, R. Grant Woods investigated in [14] the compactification 
udX generated by the collection d X

∗ ( )  of all these bounded real functions on X that 
are uniformly continuous with respect to d and the standard metric induced by the absolute 
value on . If the metric d is not totally bounded, udX is not metrizable (cf. Theorem 3.3 (b) 
of [14]). If the metric d is totally bounded, then udX is the Hausdorff metric completion of 
the metric space (X, d) (cf. Theorem 3.3 (a) of [14] and Problem 4.5.6 of [3]). If one wants 
to consider minimum uniform compactifications in ZF, one should be warned that models 
of ZF in which there are infinite Dedekind-finite dense subsets of  (cf. [6]–[8]) can be used 
to deduce the following:
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Proposition 1. If X is an infinite Dedekindfinite dense subset of the unit interval [0; 1] 
and d x y x y for x y X( , ) , ,= − ∈  then d is a totally bounded complete metric on X such that 
udX = [0; 1], while the Hausdorff metric completion of (X, d) is (up to an obvious isometry) 
(X, d). Therefore, it is unprovable in ZF that, for every totally bounded metric space (X, d), 
the minimum uniform compactification udX is the Hausdorff metric completion of (X, d).

That udX = [0; 1] for each dense in [0; 1] infinite Dedekind-finite set X in the proposition 
above can be shown in ZF by using Lemma 4.3.16 of [3]. Interesting problems on Hausdorff 
metric completions of metric spaces in ZF are described in [4]. To avoid misunderstanding, 
let us recall that ZFC is our basic assumption throughout this paper.

For every metrizable compactification αX of X, there exists a totally bounded metric 
ρ on X such that αX = uρX. To apply metric convergence in measure to minimum uniform 
compactifications, the following notion is useful:

Definition 4. Let d and ρ be compatible metrics on X. We say that d is uniformly smaller 
than ρ if the following condition holds:
 ∀ ∃ ∀ ⇒∈ + ∈ + ∈ε δ ρ δ ε( ; ) ( ; ) , [ ( , ) ( , ) ].0 0∞ ∞ < <x y X x y d x y  

Proposition 2. Let d and ρ be compatible metrics on X such that d is not uniformly 
smaller than ρ. Then there exist functions f f E X where nn , ( , ) ,∈ ∈ ω  such that the 

sequence fn  is ρ-convergent in µ to f but fn  is not d-convergent in µ to f.

Proof. Let us take ε ∈ (0, +¥) such that, for each δ ∈ (0, +¥), there are x, y ∈ X such 
that ρ(x, y) < δ, while d(x, y) ³ ε. Using CC, we find sequences x yn nand  of points 

of X such that lim ( , ) , ( , )n n n n nx y d x y→+ =∞ ≥ρ ε0 while  for each n ∈ ω. Let En  be 

a sequence of sets from M such that n n n nE E E E∈ = ∅ + = +ω µ µ, ( \ ) , ( )< ∞ ∞  and 
E En n+1   for all n ∈ ω. Such a sequence En  exists because the measure µ is infinite and 
σ-finite. Define fn(t) = y0 for t ∈ E \ E0 and, for each t ∈ Ei \ Ei+1, let fn(t) = yi if i £ n, while 
fn(t) = xi if i > n. Moreover, put f (t) = y0 for t ∈ E \ E1 and, for each i ∈ ω, let f (t) = yi when 
t ∈ Ei \ Ei+1. The sequence fn  ρ-converges in µ to f but it does not d-converge in µ to f. □

The proof to Proposition 2 can serve as a scheme of examples of sequences ρ-convergent 
in µ that are not d-convergent in µ.

In much the same way as for the classical convergence in measure, one can prove 
Propositions 3–5.

Proposition 3. Let d be a compatible metric on X and let f, g ∈ (E, X). If a sequence of 
functions from (E, X) is d-convergent in µ to f and to g, then µ({ : ( ) ( )}) .t E f t g t∈ =≠ 0

Definition 5. When d is a compatible metric on X, then we say that a sequence fn  of 

functions from (E, X) converges (d, µ)-uniformly on E to a function f ∈ (E, X) if, for 
each ε ∈ (0, +¥), there exists a set A ∈ M such that µ(E \ A) < ε and the convergence of fn  
to f is uniform with respect to d on A.
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Proposition 4. When d is a compatible metric on X, then a sequence fn  of functions 

from (E, X) is d-convergent in µ to a function f ∈ (E, X) if and only if each subsequence 

of fn  contains a subsequence which converges (d,µ)uniformly on E to f.

Proposition 5. If d is a compatible metric on X, then every sequence of functions 
from (E, X) which is d-convergent in µ to a function f ∈ (E, X) contains a subsequence 
which pointwise converges µalmost everywhere on E to f.

In the light of Proposition 5, for every pair d, ρ of compatible metrics on X and for every 
pair f, g of functions from (E, X), it is true that if there exists a sequence fn  of functions 

from (E, X) such that fn  is both d-convergent in µ to f and ρ-convergent in µ to g, then 
f = g µ-almost everywhere on E, i.e. µ({t ∈ E : f (t) ¹ g(t)}) = 0.Therefore, if for compatible 
metrics d and ρ on X, a sequence hn  of functions from (E, X) is d-convergent in µ to 

a function h ∈ (E, X) and the same sequence hn  is not ρ-convergent in µ to h, then there 

does not exist a function in (E, X) such that hn  is ρ-convergent in µ to it.
Theorem 1. For every pair d, ρ of compatible metrics on X, the following conditions are 

equivalent:
1. d is uniformly smaller than ρ;
2.  d X X∗ ∗⊆( ) ( );ρ

3. u X u Xd £ ρ ;
4. for every pair A, B of subsets of X such that d(A, B) > 0, the inequality ρ(A, B) > 0  

holds;
5. ρ-convergence in µ implies d-convergence in µ.

Proof. It is obvious that implications (i)⇒(ii)⇒(iii) and (i)⇒(v) are true. Suppose that 
(iii) holds and consider an arbitrary pair A, B of subsets of X such that d(A, B) ¹ 0. Then 
cl clu X u Xd d

A B = ∅  by Theorem 2.5 of [14]. Since udX £ uρX, in the light of 4.2(h) of 

[10], we have cl clu X u XA B
ρ ρ

 = ∅.  This, together with Theorem 2.5 of [14], gives that 

ρ(A, B) ¹ 0. Hence (iv) follows from (iii). Now, assume that (i) is not fulfilled. Then, with CC 
in hand, we deduce that, for some ε ∈ (0, +¥), there are sequences x yn nand  of X such 

that lim ( , ) ( , )n n n n nx y d x y→+ =∞ ≥ρ ε0 and  for all n, m ∈ ω (cf. hint to 8.5.19 of [3]). If 
A = {xn : n ∈ ω} and B = {yn : n ∈ ω}, then ρ(A, B) = 0, while d(A, B) ¹ 0. Therefore, (i) is 
a consequence of (iv). That (v) implies (i) follows from Proposition 2. □

Corollary 1. Let d and ρ be compatible metrics on X. If ρ is totally bounded and 
ρ-convergence in µ implies d-convergence in µ, then d is totally bounded.

Proof. It is clear that if d is uniformly smaller than ρ and the metric ρ is totally bounded, 
then d is also totally bounded. To complete the proof, it suffices to use the equivalence of (i) 
and (v) of Theorem 1. □
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Theorem 2. Assume that d is a totally bounded compatible metric on X. Then dconvergence 
in µ is equivalent with d X

∗ ( ) -convergence in µ.

Proof. It is obvious that d-convergence in µ implies d X
∗ ( ) -convergence in µ. Since d 

is totally bounded, udX is a metrizable compactification of X. By, for example, Propositions 
3.4 and 3.5 of [11] or by Theorem 7 of [12], there is a countable collection F Xd⊆ ∗ ( )  
such that eFX = udX and, moreover, φ( ) [ ; ]X ⊆ 0 1  for each φ ∈ F. Let F ii= ∈{ : }φ ω  and 

define ρ φ φ
ω

( , ) ( ) ( )x y x yii i i= −
+∈∑ 1

2 1  for all x, y ∈ X. Then ρ is a totally bounded metric 

on X such that udX = uρX. Hence, in view of Theorem 1, d-convergence in µ is equivalent 
with ρ-convergence in µ. However, one can easily check that F-convergence in µ implies 
ρ-convergence in µ. In consequence, F-convergence in µ implies d-convergence in µ, which 
concludes the proof. □

Question 1. If d is a compatible but not totally bounded metric on X, must d X
∗ ( )

-convergence in µ imply d-convergence in µ?
A familiar theorem of ZFC states that a metrizable space X is compact if and only if 

every compatible metric on X is totally bounded. The standard proof to this theorem 
involves CC. However, one can easily prove in ZF that if X is a metrizable space such that 
every compatible metric on X is totally bounded, then X is closed in every metrizable space 
that contains X as a subspace. Indeed, let (Y, d) be a metric space and let X ⊆ Y be not closed 
in (Y, d). Choose a point x0 ∈ (clYX) \ X and, for x, y ∈ X, define

 ρ( , ) ( , )
( , ) ( , )

x y d x y
d x x d y x

= + −
1 1

0 0
 

to get a compatible but not totally bounded metric ρ on X in ZF (cf. 4.3.E.(c) of [3]). 
Unfortunately, this does not give a satisfactory answer to the following interesting question:

Question 2. Is it consistent with ZF+¬CC that there exists a non-compact metrizable 
space X such that every compatible metric on X is totally bounded?

3. Functional convergence in measure

It has not been explained so far why it is assumed here that, for each function f ∈ (E, X), 
there exists Bf ∈ Bs(X) such that µ[ f ‒1(X \ Bf)] = 0. In fact, this assumption was needless 
in the previous section; however, it is helpful to get the following theorem:

Theorem 3. Let us suppose that F ∈ (X), while fn  is a sequence of functions from 

(E, X) such that fn  is F-convergent in µ to functions f, g ∈ (E, X). Then the following 
conditions hold:
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1. µ({ : ( ) ( )}) ;t E f t g t∈ =¹ 0

2. each subsequence of fn  contains a subsequence that pointwise converges µ-almost 

everywhere on E to f;

3. if G ∈ (X) is such that the sequence fn  is not G-convergent in µ to f, then there does 

not exist a function h ∈ (E, X) such that fn  is G-convergent in µ to h.

Proof. Using CC, we deduce that there is a sequence Bn  of separable Borel 

subsets of X and there are sets Bf, Bg ∈ Bs(X), such that the sets X B B Bf g n n0 = ∪ ∪ ∈ ω   
and E E f X X g X X f X Xn n0

1
0

1
0

1
0= ∪ ∪− −

∈
−\ [ ( \ ) ( \ ) ( \ )] ω  have the properties that 

µ( \ )E E0 0=  and all functions fn, f, g restricted to E0 transform E0 into the separable Borel 
in X set X0. It follows from Theorem 6 of [12] that there exists a countable collection H ⊆ F 
such that the restriction to X0 of the evaluation map eH is a homeomorphic embedding 
of X0 into H. Let H ii= ∈{ : }.φ ω  For each i ∈ ω, choose a positive real number ai such 

that φi ia£  and, for x, y ∈ X, define ρ
φ φ

ω
( , )

( ) ( )
.x y

x y
a

i i

i
ii

=
−

+∈∑ 2 1  Then ρ is a compatible 

metric on X0. It is not difficult to check that the sequence fn E0
 of the restrictions fn E0

 of 

functions fn to E0 is ρ-convergent in µ to f gn E E0 0
and .  Hence, in view of Proposition 3, 

µ({ : ( ) ( )}) .t E f t g t∈ =¹ 0  Now, to conclude that (ii) holds, it suffices to use Proposition 5. 
Condition (iii) follows from (ii). □

Theorem 4. Let αX be a compactification of X and let F ∈ (X) generate αX, i.e. αX = eFX. 
Then F-convergence in µ and Cα(X)-convergence in µ are equivalent.

Proof. Since F ⊆ Cα(X), it is obvious that Cα(X)-convergence in µ implies F-convergence 

in µ. Now, assume that a sequence fn  of functions from (E, X) is F-convergent in µ 
to a function f ∈ (E, X). Consider an arbitrary function φ ∈ Cα(X) and a positive real 
number ε. By Theorem 4 of [13], there exist a non-void finite set H ⊆ F and a positive real 
number δ, such that if

 d x y x y HH ( , ) max{ ( ) ( ) : }= − ∈ψ ψ ψ  

for x, y ∈ X, then φ φ ε( ) ( )x y− <  whenever dH(x, y) < δ. It follows from the F-convergence 

in µ of fn  to f that

 lim ({ : ( ( ), ( )) }) .
n H nt E d f t f t

→+
∈ =

∞
≥µ δ 0  

In addition,

 { : [ ( )] [ ( )] } { : ( ( ), ( )) }t E f t f t t E d f t f tn H n∈ − ⊆ ∈φ φ ε δ³ ³  
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for all n ∈ ω. In consequence,

 lim ({ : [ ( )] [ ( )] }) .
n nt E f t f t

→+
∈ − =

∞
≥µ φ φ ε 0  

This means that fn  is Cα(X)-convergent in µ to f. □
We consider the set Cβ(X) as the metric space (Cβ(X), σ) where the metric σ on Cβ(X) is 

defined as follows: σ β( , ) sup{ ( ) ( ) ; } , ( ).f g f x g x x X f g C X= − ∈ ∈for  In view of, for 
example, Theorem 7 of [12], when F ∈ (X), then the compactification eFX of X is metrizable 
if and only if F is second-countable in (Cβ(X), σ). In what follows, every subset of Cβ(X) 
is equipped with the topology inherited from the topology on Cβ(X) induced by the metric σ.

Theorem 5. Let αX and γX be compactifications of X such that αX is metrizable and  
Cα(X)-convergence in µ implies Cγ(X)-convergence in µ. Then γX is also metrizable 
and γX £ αX.

Proof. Since αX is metrizable, there exists a totally bounded compatible metric ρ on X 
such that uρX = αX. Consider any function φ ∈ Cγ(X) and let F = Cα(X) ∪ {φ}. Of course, 
F ∈ (X). The compactification eFX is metrizable because F is second-countable. There 
is a totally bounded metric d on X such that eFX = udX. It follows from Theorem 2 that 
ρ-convergence in µ implies d-convergence in µ. Therefore, udX £ uρX by Theorem 1. This 
implies that F ⊆ Cα(X) and, in consequence, Cγ(X)  ⊆ Cα(X). Then γX £ αX and Cγ(X) is 
second-countable. Hence γX is metrizable. □

Corollary 2. Let αX and γX be metrizable compactifications of X. Then αX £ γX if 
and only if Cγ(X)-convergence in µ implies Cα(X)-convergence in µ.

From Theorems 4 and 5 we immediately deduce the following:
Corollary 3. Suppose that F, G ∈ (X) are such that F-convergence in µ implies 

G-convergence in µ. If F is secondcountable, then G is secondcountable and eGX £ eFX.
Our final theorem is a nice conclusion from Theorem 5.
Theorem 6. If there exists a metrizable compactification αX of X such that Cα(X)- 

convergence in μ implies Cβ(X)-convergence in µ, then X is compact.
Proof. Let us assume that αX is a metrizable compactification of X such that Cα(X)- 

-convergence in µ implies Cβ(X)-convergence in µ. Since αX £ βX, it follows from 
Theorem 5 that βX is metrizable and βX = αX. If X were non-compact, βX would be non- 
-metrizable (cf. 3.6. G of [3]). □

Corollary 4. A metrizable space X is compact if and only if there exists a totally bounded 
metric d on X such that d-convergence in µ implies Cβ(X)-convergence in µ.
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