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A b s t r a c t

The paper discusses and presents a hyperelastic incompressible material described by Zahorski 
potential. The numerical example comparing effective stresses in a cylinder made of Zahorski 
and Mooney-Rivlin materials was included. The analysis was made in the ADINA software. 
Conclusions summarize numerical calculations and demonstrate the differences that suggest 
the use of Zahorski material for rubber and rubber-like materials subjected to large deformations.
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S t r e s z c z e n i e

W artykule omówiono i przedstawiono hipersprężysty nieściśliwy materiał opisany poten-
cjałem Zahorskiego. Zamieszczono przykład numeryczny, w którym porównano naprężenia 
efektywne w cylindrze wykonanym z materiałów Zahorskiego oraz Mooneya-Rivlina. Ana-
lizę wykonano w programie ADINA. We wnioskach podsumowano obliczenia numeryczne 
i podano różnice, które wskazują na możliwość zastosowania materiału Zahorskiego dla gum 
i materiałów gumopodobnych poddawanych dużym odkształceniom.

Słowa kluczowe: hipersprężysty materiał Zahorskiego, materiał nieściśliwy, cylinder, MES, 
Adina
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1. Introduction

Analysis of non-linear hyperelastic materials can be carried out by means of numerical 
programs based on the finite element method (FEM). There are many softwares that have 
used the popular elastic potentials (e.g. ALGOR, ANSYS, ABAQUS, MARC, NASTRAN, 
ADINA). All of these programs support a group of selected models of materials in their 
libraries, including the models of non-linear hyperelastic materials. Selection of one of the 
models of materials allows for performing numerical analysis of the behaviour of elements 
of construction [1]. However, the above software does not offer possibilities for analysis 
of the hyperelastic Zahorski material which allows for a more precise determination of the 
behaviour of rubber and rubber-like materials at significantly higher deformations compared 
to the commonly used materials such as Mooney-Rivlin or neo-Hookean materials [2]. 
The proposed solution will translate into a reduction of material consumption and will 
contribute to a more effective management of the production of rubber products. It can 
thus reduce the cost of materials, which will have a positive impact on the economics 
of enterprises which implement orders for many industries [3].

2. Hyperelastic materials - constitutive equations

It can be assumed that constitutive equations that describe the relationships between 
deformations and energy or between deformations and stresses for hyperelastic materials 
are obtained based on the equations of mechanical energy balance. In terms of the theory 
of elasticity and in the widely understood mechanical problems, including continuum 
mechanics, elastic bodies are considered as continuum of material with or without internal 
bonds. For the elastic bodies without bonds, the properties of such a medium are given if 
the function W can be defined. Function W is typically defined as a function of deformation 
energy and for any deformation d of medium, it determines the corresponding elastic energy 
W=W(d) accumulated in the unit of volume with respect to the reference configuration BR.

For uniform isotropic elastic bodies, the constitutive equations can be written as:
 W W I I I= ( , , )1 2 3  (1)

where:
I1, I2, I3 – are deformation tensor invariants.
An elastic body with imposed internal bonds cannot be subjected to any deformations. 

The only acceptable deformations with regard to incompressible bodies are deformations 
which do not change its volume (isochoric). A condition for acceptable deformations I3 = 1 
must be met. This is the cause why I3 does not occur as an argument of the deformation 
energy function which, for the incompressible body, represents a function of only two other 
invariants. This can be re-written in an analogous form to the Eq. 1:
 W W I I= ( , )1 2  (2)

The above Eq. 2 define the constitutive relations for incompressible material.
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3. Mooney-Rivlin and Zahorski incompressible materials

Non-linear theory of elasticity causes the necessity to renew the definition of constitutive 
relations so that it matches the problem analysed. With large deformations, each of 
the rubber-like materials behaves in a specific manner. Therefore, for each individual case 
of experimental procedure, it is necessary to determine a model of constitutive equation.

3.1. Mooney-Rivlin and neo-Hookean materials

The Mooney-Rivlin and neo-Hookean models are the only popular models used for the 
description of incompressible rubber and rubber-like materials. It is a peculiar case that 
results from the general form of elastic energy function defined by Rivlin and Saunders 
[4] and the empirical form of deformation function proposed by Mooney [5]. The model 
of Mooney-Rivlin material was defined with the following equation:

 W W I I f I f I= = − + − −( , ) ( ( ) ( )( )1 2 1 22
3 1 3µ  (3)

and represents the most general theoretical model of behaviour of elastic rubber  
materials.

The neo-Hookean material is a particular case of the Mooney-Rivlin material. The model 
of neo-Hookean material is defined by the following energy equation:

 W W I f I= = −( ) ( )1 12
3µ  (4)

According to the literature [6, 7], the neo-Hookean model defines elastic behaviour 
of homogeneous rubbers for small and moderate deformations.

3.2. Zahorski material 

The model of Zahorski material is described by the equation with non-linear dependency 
on the invariants of the deformation tensor [8]:

 W W I I C I C I C I= = − + − + −( , ) ( ) ( ) ( )1 2 1 1 2 2 3 1
23 3 9  (5)

where:
C1, C2, C3 – are material constants. The values of constants for three types of rubber 

were given in a study [6].
The above constitutive equation allows for a more comprehensive analysis of the 

wave phenomena propagating in elastic incompressible materials. A description that suits 
the behaviour of rubber for the main elongation was obtained even for λ = 3, whereas for 
the neo-Hookean and Mooney-Rivlin materials, the acceptable results are observed for 
λ = 1.4 [9].

The Eq. 5 models the effects of the dynamic behaviour of materials and is used for 
the analysis of wave phenomena that concerns propagation of disturbance in the form of 
shock waves, travelling waves and soliton waves ([10‒12] et al.). In the study [13] it was 



134

demonstrated that the constitutive equation with non-linear dependency on the invariants 
of deformation tensor defines more precisely the behaviour of rubber at much higher 
deformations than in the case of Mooney-Rivlin or neo-Hookean materials.

4. Comparison of the Mooney-Rivlin and Zahorski materials

Differences in the stress-strain function between the Mooney-Rivlin and Zahorski 
materials for rubber “A” were shown in the paper [14]. Stress-strain diagrams presented by 
the authors have clear differences in the shape of curves. The diagrams for Zahorski material 
were generated from the ADINA software, after modifications introduced into material 
libraries [2].

Table 1 presents elastic constantsfor rubber “A”. The values presented in the table are 
based on the study [6].

T a b l e  1
Constants C1, C2, C3

Constants C1 C2 C3

Rubber “A” [Pa] 6.278∙104 8.829∙103 6.867∙103

5. Numerical example

For comparative computation, a cylinder of 12 cm in height and 4 cm in diameter was 
adopted. Load in the object was obtained by means of a linear displacement of the upper 
surface of the cylinder applied in the z direction. The size of the displacement was determined 
by displacement λ = 2, according to the study [6], assuming 20 steps of time. On the opposite 
side surface of the cylinder (i.e., on the surface of the base), bonds were added to prevent 
displacement in x, y and z directions (in accordance with the adopted Cartesian coordinate 
system).

The aim of numerical calculations by means of FEM was to compare the distribution 
of stress in the Mooney-Rivlin and Zahorski material at the declared load and boundary 
conditions. This was obtained through a demonstration of differences in the distribution 
of effective stress in both materials. In Fig. 1a the distributions of stress in the Mooney- 
-Rivlin material, whereas in Fig. 1b the distributions for Zahorski material are presented. 
Both materials were obtained for rubber “A”. It can be observed that the deformation assumed 
(including the assumed boundary conditions) yields the expected results.

The comparative analysis of the states of effective stresses for the adopted model revealed 
differences in the distributions of effective stresses obtained in the Mooney-Rivlin and 
Zahorski materials (see also [14]).

Fig. 1 illustrates the distributions of stresses in rubber “A” for the cylinder. Substantial 
difference in the obtained levels of stresses and their distribution on the cylinder can be 
observed. The maximum value of stress in the Mooney-Rivlin material equals ~540 kPa 
(Fig. 1a), whereas this value for the Zahorski material amounts to ~780 kPa (Fig. 1b). 
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Fig. 1. Distribution of stress [Pa], step 20: a) Mooney-Rivlin material, b) Zahorski material

The comparison of obtained distributions provides information about the differences in the 
distribution of effective stress.

6. Summary

The study presented and discussed a hyperelastic incompressible material described by 
Zahorski potential. Distinct differences were obtained for the distribution of effective stresses 
for the geometrical object modeled with two different hyperelastic materials i.e. the Mooney-
Rivlin material and Zahorski material for the 3D model studied. The results obtained from 
model-based studies show clear qualitative and quantitative differences in the distributions 
of stresses between the Mooney-Rivlin and Zahorski materials since small differences occur 
between elastic potentials for both materials.

The method of modification of the material library in order to allow for numerical 
tests in the ADINA software has considerable values that can be used in technological 
applications in many scientific fields. With the popularity of hyperelastic incompressible 
materials (used in different fields of science and technology), the Zahorski potential 
allows for supplementation of the results of calculations obtained previously for the 
Mooney-Rivlin material. The non-linear term C II3

2 9( )−  in the Zahorski potential supports 
a more precise analysis and allows for obtaining other qualitative elements in numerical 
analyses of rubber and rubber-like materials with respect to non-linear and incompressible 
hyperelastic materials [15, 16].
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