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A b s t r a c t  

The paper presents the results of a study involving the impact of sudden change of cross-

sectional area on the flow patterns and local pressure drops for flow of multi-phase mixture. 

The experiment was conducted in the conditions of a horizontal and vertical flow through a 

measuring channel. Pressure drops calculated on the basis Kawahara and Lottes methods are 

compared with experimental data. A system of two interconnected pipes with internal 

diameters of 40 and 22 mm as well as 46 and 16 mm and a total length of 7 m formed the 

measurement channel. The experiments involved air, water and oil. 
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S t r e s z c z e n i e  

W pracy przedstawiono wyniki badań dotyczących wpływu gwałtownej zmiany pola 

przekroju poprzecznego kanału na struktury przepływu oraz miejscowe straty ciśnienia w 

przepływie mieszaniny wielofazowej. Porównano spadki ciśnienia obliczone na podstawie 

metod Kawahary i Lottesa z wartościami eksperymentalnymi. Badania prowadzono w 

warunkach poziomego i pionowego przepływu przez kanał pomiarowy z przeszkodą lokalną. 

Kanał pomiarowy stanowił układ dwóch rur o średnicach wewnętrznych 40 i 22 mm oraz 46 i 

16 mm i całkowitej długości 7 m. Fazę gazową stanowiło powietrze, a fazę ciekłą olej 

maszynowy i  woda.  

Słowa kluczowe:  przepływ wielofazowy, przewężenie, rozszerzenie, struktury przepływu, 

opory przepływu 
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1.  Introduction 

Multi-phase flow of gas-liquid mixtures takes place in a variety of installations in the 

chemical, oil, gas, or food industries, to mention just a few.  The local obstacles, such as 

sudden expansions and contractions of the pipe, are inherent components in a number of 

flow-through systems. As pressure, volume fraction and flow pattern regimes are 

considerably affected by the design of such systems, it is important to understand the 

impact of existing elements on the parameters of multi-phase flow. The knowledge of the 

type of multi-phase flow patterns plays a fundamental role in the calculations of flow 

parameters [1]. However, the ability to forecast the type of flow pattern is very difficult due 

to the very nature of multi-phase flow. An additional difficulty is associated with the 

existence of certain areas of flow pattern disturbance caused by a change in the cross-

section of the pipe. 

Despite the bulk of research into multi-phase flow in straight channels reported to this 

date, there is a scarcity of works concerned with the subject of multi-phase flow in the 

channels including a sudden contraction or expansion of the cross sectional area of a pipe. 

Only a few methods for calculating the local pressure drop of two-phase flow through a 

sudden contraction and expansion are available in the literature. However, even the existing 

methods do not account for all parameters that affect the value of the pressure drop during 

such flow including, in particular, a study of the impact of flow pattern disturbances. For 

this reason, experimental research was carried out and is reported by the authors.  

To complement and expand the description of the phenomena of the gas-liquid flow 

resulting from a sudden change in the diameter of a channel, new experiments and studies 

work were carried out. 

2.  Experiment 

The experimental setup was designed and built according to recommendations available 

in the literature. For clarification purposes, the diagram presents the design of the flow-

through system for the case of horizontal flow in Figure 1. The main element of the 

installation was a measurement channel, which consisted of two interconnected pipes with 

two internal diameters of  D = 40 mm and d = 22 mm in a horizontal layout and a total 

length of  7 m. An experiment involving flow through a sudden expansion or contraction of 

the channel was conducted for this purpose. The pipes were made of transparent PMMA, as 

it enabled the authors to visually assess two-phase flow patterns and their disturbance areas. 

The length of these areas was determined using a millimetre scale placed along the pipes. 

Multi-phase mixture consisted of a mixture of water or low viscosity oil and air. The 

volumetric flow rates of phases were measured by flowmeters of oil, water and air 

(Voil = 5.0÷20.0 dm
3
/min, Vwater = 2.0÷20.0 dm

3
/min and Vair = 1.6÷509.0 dm

3
/min). The 

observations of the flow patterns were performed on a 1 m test section, which was located 

at a distance of 50 diameters from the inlet to the test section. This made it certain that the 

flow structure is fully developed and it is not affected by the installation of a local obstacle. 

In addition, the flow patterns were also observed directly before and after the local obstacle. 

A series of pressure transducers were installed behind the control section, used for the 
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measurement of the pressure drops due to the existence of a sudden pipe contraction or 

expansion. The system of pressure transducers locations used for the measurement along 

the pipe is the same before and after a local obstacle. The data regarding the local pressure 

drops was collected by a measurement card, coupled with a computer, which recorded data 

at a high frequency (i.e. 100 measurements per 1 second) followed by averaging  the 

measured values over time. 

 

Fig. 1. Experimental set-up 

1 – measurement channel with sudden expansion, 2 – separator, 3 – oil tank, 4 – water tank, 

5 – shut-off valves, 6 – flowmeter of oil, water, air, 7 – one-way valves, 8 – pressure regulation valve, 

9 – air control valve, 10 – agitator, 11 – oil pump, 12 – water pump, 13 – pressure transducers, 

14 – measurement card coupled with a computer 

3.  Results 

During the next stage of research, flow conditions corresponding to the two-phase flow 

patterns identified during the experiment were subsequently compared with the areas of 

these patterns found in the flow pattern map created by Ulbrich and Troniewski [1] (Fig. 2). 

Figure A shows the flow pattern map for a pipe before the local obstacle (D = 40 mm) 

where the types of flow patterns were marked. In Figure B, the type of flow pattern was 

marked for the smaller pipe diameter (d = 22 mm). 

The figures show that in both cases the observed flow patterns were approximately in 

conformity with the corresponding areas shown in the Troniewski and Ulbrich map. 
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However, it was observed that the decrease of the pipe diameter during the flow of gas – 

liquid results in a change in the flow pattern. 

For demonstration purposes, figure 3 shows several photographs taken during the 

experiment involving oil-air and air-water flow through a sudden expansion. Figure 4 

shows several photographs taken during the experiment involving oil-air and air-water flow 

through a sudden contraction. As can be seen, the presence of a local obstacle always leads 

to a change in the flow patterns both before and after the pipe contraction. The photographs 

found above indicate the changes in the flow patterns caused by a sudden increase in pipe 

diameter. The distances where the flow pattern was not fully developed can be clearly 

discerned there. Such a length, also known as the length of the disturbance area, is defined 

here as the distance from an obstacle to the location where a uniform flow pattern is formed 

again. Beyond this area, the mean square root of the deviation of the local void fraction 

profile is constant and less than 5%, as reported by the authors of the study in [2]. 

 

 
 

 

Fig. 2. The flow patterns observed in a pipe before the contraction (A) and after the contraction (B): 

B – bubble flow, P – plug flow, S – slug flow, SS – stratified flow, SW – stratified-wavy flow, 

A – annular flow, M – mist flow. 
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Figure 5 shows one example of the measured change of pressure in two-phase oil-air 

and water-air flow along the measuring channel. Pressure profiles in the case of flow 

through a sudden expansion of the channel may vary significantly due to the length of the 

disturbance zone of flow patterns followed by the area in which the system can recover 

pressure to its initial value. The pressure recovery due to the sudden expansion is defined as 

the difference in the pressure when the fully developed pressure gradient lines upstream and 

downstream of the expansion are extrapolated to a point where a change in the area 

occurs[3]. 

 

OIL-AIR FLOW 

 
Voil = 5.0 dm3/min and Vair = 35.0 dm3/min 

 
Voil = 15.0 dm3/min and Vair = 208.1 dm3/min 

 
Voil = 17.6 dm3/min and Vair = 15.8 dm3/min 

 
Voil = 20.0 dm3/min and Vair = 25.4 dm3/min 

WATER-AIR FLOW 

 
Vwater =  15.0 m3/min and Vair = 122.7 dm3/min 

 
Vwater =  20.0 m3/min and Vair = 83.5 dm3/min 

Fig. 3. Flow pattern development during flow of oil-air and water-air mixtures through a sudden 

expansion 

The graphs above (Fig. 6) show the flow patterns developing along the pipe after its 

sudden expansion. The analysis of the resulting images clearly indicates that the 

correlations used for calculating the disturbance zones should take into account both the 

parameters of the liquid phase and the gas phase. If the impact of any of them is 

disregarded, an adequate assessment of the length of these zones for the sudden expansion 

will not be possible [4]. 
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On the other hand, during the two-phase flow through sudden contraction of the pipe 

immediately before this obstacle, the local static pressure decreases due to a sudden 

acceleration of the flow. After the sudden contraction, the pressure in the pipe gains its 

minimum value and then increases slightly to the point where a fully developed gradient 

line of the pressure is achieved. The pressure drop during flow through a sudden 

contraction is defined as the difference in the pressure in the local obstacle, based on the 

fully developed pressure gradients upstream and downstream of the contraction.  

Figure 7 contains several photographs derived from the research of the characteristics of 

two-phase oil-air flow through a sudden contraction. Figure 8 is meant to show the areas of 

flow pattern disturbance in the channel before the contraction. 

By analogy to two-phase flows, the pressure drop noted during the three-phase flow is 

relative to the relations between the volume rates of the components in the flow. On the 

basis of the data shown in Fig. 9, we can see that an increase in pressure drop occurs for a 

constant volumetric flow rate of the air accompanied by an increase in volume flow rate of 

liquid.  
OIL-AIR FLOW 

 

Voil = 7.5 dm3/min and Vair = 55.0 dm3/min 

 

Voil = 9.5 dm3/min and Vair = 280.0 dm3/min 

 

Voil = 17.6 dm3/min and Vair = 172.5 dm3/min 

WATER-AIR FLOW 

 

Vwater = 9.5 dm3/min and Vair = 475.1 dm3/min 

 

Vwater = 17.5 dm3/min and Vair = 314.9 dm3/min 

 

Vwater = 20.0 dm3/min and Vair = 122.7 dm3/min 

Fig. 4. Changes of flow patterns of oil-air and water-air flow through a sudden contraction 
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Fig. 5. Pressure drop profiles during the two-phase gas-liquid flow through a sudden expansion 

 

 

 

 

 

Fig. 6. Developing lengths of flow patterns in the pipe after a sudden expansion 
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Fig.7. Pressure profiles during the two-phase gas-liquid flow across the channel with a sudden 

contraction 

 

 

 

Fig. 8. Developing lengths of flow patterns in the pipe before a sudden contraction 
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Fig. 9. Pressure drop profiles during gas-liquid-liquid three-phase flow through a sudden contraction  

4. Calculation of pressure drops in air-water-oil three-phase flow 

The results of statistical tests indicate that the pressure drops for the sudden contraction 

should be calculated by the use of the Kawahara [5] method, to be equal to: 
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where: 

ΔPT – total pressure drop, Pa 

gT – total mass flux density, kg/(m
2
s) 

ρliquid – liquid density, kg/m
3
 

ρair – gas density, kg/m
3 

x  – mass quality, - 

αwater – water volume fraction, - 

αoil  – oil volume fraction, - 

σA  – area ratio, - 

ρwater – water density, kg/m
3
 

ρoil  – oil density, kg/m
3
 

d, D – internal diameter (contraction, expansion), m.
 

For gas-liquid flow conditions through expansion, the highest accuracy ensured by 

application of the Lottes [6] method:  
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where: 

αair  – mean real void fraction, - 

εair  – inlet void fraction, - 

εwater – inlet water volume fraction, - 

εoil – inlet oil volume fraction, -. 

 

The values obtained on the basis of calculations were compared with data obtained in 

experimental studies, as shown in Figures 10 and 11. The result of less than ±40% of 

relative error was obtained for both correlations. 
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Fig. 10. Comparison of measured pressure drop ΔPT,exp of three-phase flow with the calculated value 

ΔPT,cal on the basis of the Kawahara method (1) 

 

    

Fig. 11. Comparison of measured pressure drop ΔPT,exp of three-phase flow with the ones calculated 

ΔPT,cal on the basis of the Lottes method (4) 
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5. Conclusions 

The following general conclusions could be derived from the analysis of the results and 

review of the literature: 

1. Flow pattern disturbances of a multi-phase mixture occur during flow through a sudden 

change in the cross-section of the pipe. 

2. The disturbances of flow pattern form the reason for the local change in the void 

fraction of the phases, and consequently, properties of the mixture are affected by them. 

3. Due to the presence of local disturbances caused by the change in the cross-section of 

pipe, local pressure drop, it is difficult to calculate the local pressure drop. 

4. The current methods of calculating the developing lengths in the two-phase flow of gas-

liquid mixture through sudden expansion of the channel are not always effective as they 

do not enable all flow parameters to be taken into account. 

5. Further analysis of the results should be aimed at the development of a mathematical 

equation used to describe the impact of the length of disturbance of flow pattern on the 

pressure drop in the multi-phase flow in a channel with a sudden change in the cross 

sectional area. 
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