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A b s t r a c t   

This paper presents a micropolar fluid model that direct applies Cosserat’s continuum to 

hydrodynamics. The corresponding system of equations describing isotropic micropolar fluid 

is obtained by assuming lack of symmetry of the Cauchy stress tensor and taking into account 

the conservation of angular momentum. This turns out to be an extension of the Navier-

Stokes fluid but containing turbulent effect built in.  
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S t r e s z c z e n i e   

W artykule przedstawiono mikropolarny model cieczy stanowiący bezpośrednie zastosowanie 

kontinuum Cosseratów w hydromechanice. Zakładając brak symetrii tensora naprężenia 

Cauchy’ego oraz uwzględniając zasadę zachowania momentu pędu otrzymano układ równań 

opisujący izotropową ciecz mikropolarną. Układ równań jest uogólnieniem równań Naviera-

Stokesa poprzez uwzględnienie efektu turbulentnego. 

Słowa kluczowe:  ciecz mikropolarna, efekt turbulentny  

DOI:  

                                                      
 MSc. Damian Szubartowski, Prof. PhD. DSc. Eng. Artur Ganczarski, Institute of Applied 

Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology. 



224 

 

1.  Introduction  

Over one hundred years ago, the Cosserat brothers published fundamental work 

containing a new version of continuum mechanics [8]. This was based on the idea of 

considering rotational degrees of freedom of material particles to be independent variables 

and corresponding couple stresses. This material model was later named the Cosserat or 

micropolar continuum. The basic ideas of this approach were first presented in [7].  

The general nonlinear theory of the micropolar continuum was developed by Truesdell 

[44, 45]. The problem of finite deformation was considered by Grioli [19, 20], Toupin [43], 

Green & Rivlin [18], Eringen & Kafadar [14, 24], Stojanovic [39, 40, 41], Besdo [5] and 

Reissner [33, 34, 35]. The linear Cosserat theory is presented in the original papers, by inter 

alia Günther [21], Aero & Kuvshinskii [3, 4], Toupin [42], Mindlin & Tiersten [28], Koiter 

[25], Palmov [32], Eringen [15, 16], Schaefer [38], and Ieşan [23].  

In the case of micropolar fluids, the review of achievements starts with pioneering 

papers by Aero et al. [2] and Eringen [17] as well as monographs by Migoun & 

Prokhorenko [27], Łukaszewicz [26], Eremeyev & Zubov [9], the micropolar continuum is 

applied to model magnetic liquids, polymer suspension, liquid crystals, and other types of 

fluids with a microstructure. In particular, Rosensweig uses magnetic fluids [36], named 

also ferrofluids, developing the micropolar hydromechanics where a magnetic field induces 

voluminous couples. Compared to micropolar elasticity, micropolar hydrodynamics is a 

more extensive part of mechanics with well-established experimentally constitutive 

equations. Some generalizations of the viscous micropolar constitutive model are presented 

by Eremeyev & Zubov [10, 47] and also Eringen [11, 12, 13]. 

The Cosserat brothers considered a simplified version of the micropolar continuum 

called quasi micropolar theory. This is based on the assumption that the rotation of local 

particles is equal to the average rotation of displacement field. The quasi micropolar 

continuum is well developed and comprises several general theorems, methods of 

integration and solutions of fundamental problems, see Hamel [22], Koiter [25], Mindlin 

and Tiersten [28], Muki & Sternberg [29], Bogy & Sternberg [6], Sawin [37].   

2.  Micropolar fluid model 

Classical hydromechanics is based on an idealised model of a continuum in which the 

transmission of transitions between both sides of a surface element is only described by the 

Cauchy stress 𝑡𝑖 = σ𝑗𝑖𝑛𝑗. This approach leads to symmetrical states of stress and strain 

which properly describe majority of solid and fluid materials. However, essential 

differences between the model and experimental evidence arise in the case of high stress 

gradients, vibrations excited by high frequencies, granular media and polymers. The above 

discrepancies between the theory of symmetric continuum and experimental data were the 

subject of investigations by Voigt [46] who first introduced additional transmission by a 

couple traction 𝑚𝑖 = μ𝑗𝑖𝑛𝑗. Such an assumption leads to the existence of the couple stress 

tensor μ𝑖𝑗  as well as a lack of symmetry of Cauchy’s stress tensor σ𝑖𝑗 . The general theory of 

non-symmetrical continuum was developed by the Cosserat brothers [8]. According to their 

concept, the kinematics of the continuum point is described by the displacement vector 𝑢𝑖 
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and the micropolar rotation vector φ𝑖. Since the present section deals with the micropolar 

fluid model let us adapt Cosserat’s formalism to our purpose as was done by Ostoja-

Starzewski [31]. First of all, both vectors 𝑢𝑖 and φ𝑖 are replaced by their respective time 

rates v𝑖 = �̇�𝑖 and ω𝑖 = φ̇𝑖. Additionally, the microinertia tensor of angular momentum per 

unit mass 𝐽𝑖𝑗 is introduced. The system of balance equations is as follows: 

the conservation of mass  

 
𝐷ρ

𝐷𝑡
+ ρv𝑖,𝑖 = 0 (1) 

the balance of linear momentum 

 ρ
𝐷v𝑖

𝐷𝑡
= σ𝑗𝑖,𝑗 + ρ𝑋𝑖 (2) 

the balance of angular momentum 

 ρ
𝐷(𝐽𝑖𝑗ω𝑗)

𝐷𝑡
= μ𝑗𝑖,𝑗 + ρ𝑌𝑖 +∈𝑖𝑗𝑘 σ𝑗𝑘  (3) 

In the case of an isotropic micropolar fluid, 𝐽𝑖𝑗 = 𝐽δ𝑖𝑗, where 𝐽 is the microinertia of a 

continuum fluid particle. The above assumption comprises the isotropy of the geometric 

shape of fluid particles and has nothing to do with the isotropy of constitutive equations − 

these will be discussed separately. 

Taking advantage of kinematic equations 

 
γ̇𝑗𝑖 = v𝑖,𝑗−∈𝑘𝑗𝑖 ω𝑘

κ̇𝑗𝑖 = ω𝑖,𝑗
 (4) 

one can perform constitutive equations of the linear micropolar, isotropic and 

centrosymmetric fluid 

 
σ𝑗𝑖 = (μ + μ𝑟)γ̇𝑗𝑖 + (μ − μ𝑟)γ̇𝑖𝑗 + (−𝑝 + λγ̇𝑘,𝑘)δ𝑖𝑗

μ𝑗𝑖 = (𝑐𝑑 + 𝑐𝑎)κ̇𝑗𝑖 + (𝑐𝑑 − 𝑐𝑎)κ̇𝑖𝑗 + 𝑐0κ̇𝑘,𝑘δ𝑖𝑗

 (5) 

in the format proposed by Łukaszewicz [26] 

 
σ𝑗𝑖 = (−𝑝 + λv𝑘,𝑘)δ𝑖𝑗 + μ(v𝑗,𝑖 + v𝑖,𝑗) + μr(v𝑖,𝑗 − v𝑗,𝑖)−2μr ∈𝑚𝑖𝑗 ω𝑚

μ𝑗𝑖 = 𝑐0ω𝑘,𝑘δ𝑖𝑗 + 𝑐𝑑(ω𝑗,𝑖 + ω𝑖,𝑗) + 𝑐𝑎(ω𝑖,𝑗 − ω𝑗,𝑖)
 (6) 

It is worth noting here that the term centrosymmetry plays an analogous role to the term 

isotropy in case of classical continuum. Therefore, the governing equations (2-3) become 

 
ρ

𝐷v𝑖

𝐷𝑡
= ρ𝑋𝑖 − 𝑝,𝑖 + (λ + μ − μr)v𝑗,𝑗𝑖 + (μ + μr)v𝑖,𝑘𝑘 + 2μr ∈𝑖𝑗𝑘 ω𝑘,𝑗

ρ𝐽
𝐷ω𝑖

𝐷𝑡
= ρ𝑌𝑖 + 2μr(∈𝑖𝑗𝑘 v𝑗,𝑘 − 2ω𝑖) + (𝑐0 + 𝑐𝑑 − 𝑐𝑎)ω𝑗,𝑗𝑖 + (𝑐𝑑 + 𝑐𝑎)ω𝑖,𝑘𝑘

 (7) 
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If there are no body forces and couples, the governing equations (1, 7) may be rewritten 

in absolute notation to the format  

 

𝐷ρ

𝐷𝑡
+ ρdiv𝐯 = 0

ρ 𝐷𝐯
𝐷𝑡⁄ = −grad𝑝 + (μ + μr)∇2𝐯 + (λ + μ − μr)grad(div𝐯) + 2μrrot𝛚

ρ𝐽 𝐷𝛚
𝐷𝑡⁄ = (𝑐𝑑 + 𝑐𝑎)∇2𝛚 + (𝑐0 + 𝑐𝑑 − 𝑐𝑎)grad(div𝛚) + 2μrrot𝐯 − 4μ𝑟𝛚

 (8) 

in which the viscosity coefficients assuring the positive definiteness of the entropy growth 

are 

 

μ ⩾ 0 3λ + 2μ ⩾ 0
𝑐𝑑 + 𝑐𝑎 ⩾ 0 3𝑐0 + 2𝑐𝑑 ⩾ 0

−(𝑐𝑑 + 𝑐𝑎) ⩽ 𝑐𝑑 − 𝑐𝑎 ⩽ (𝑐𝑑 + 𝑐𝑎) μ𝑟 ⩾ 0
 (9) 

According to Eq. (8), the motion of micropolar fluid can be treated as turbulent. However, 

when the micropolar effects tend to vanish, the fluid becomes classical Newtonian and in 

the special case of vanishing bulk viscosity λ + 2/3μ ⟶ 0 it simplifies to a Navier-Stokes 

fluid.  

3.  Quasi-micropolar fluid model 

Apart from the general micropolar theory, the Cosserat brothers also considered a 

simplified theory, according to which, couple inertia terms vanish 𝐷𝛚/𝐷𝑡 = 0 in Eq. (83) 

and the rotation of a local particle is equal to the average rotation of the displacement field, 

see Nowacki [30]. It is assumed that Eq. (41) reduces to 

 �̇�𝐴 =
1

2
rot 𝐯 − 𝛚 = 0 (10) 

nevertheless, the transmission of tractions and couple transitions through an arbitrary 

surface is done by stress tensor 𝛔 and couple stress tensor 𝛍, and obviously, both tensors 

are still unsymmetrical.  

Introducing 𝛚 calculated from Eq. (10) into Eqs (82-3) we obtain 

 
ρ 𝐷𝐯

𝐷𝑡⁄ = −grad𝑝 + ℒ(𝐯) − 2μrrot�̇�𝐴

(𝑐𝑑 + 𝑐𝑎)∇2�̇�A + (𝑐0 + 𝑐𝑑 − 𝑐𝑎)grad div�̇�A + 4μr�̇�𝐴 −
1

2
(𝑐𝑑 + 𝑐𝑎)∇2rot𝐯 = 0

 (11) 

in which the differential operator 

 ℒ(. . ) = (μ + μr)∇2(. . ) + (λ + μ − μr)grad div(. . ) + μrrot rot(. . ) (12) 

may be simplified to the format 

 ℒ(. . ) = λ∇2(. . ) + (λ + μ)grad div(. . ) (13) 
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The above reduction yields of known relation ∇2(. . ) − grad div(. . ) + rot rot(. . ) = 0.  

Unsymmetrical stress tensor defined as 

 𝛔A = 2μr�̇�A (14) 

serves for the reduction of  �̇�A in Eq. (11) yielding 

 
ρ 𝐷𝐯

𝐷𝑡⁄ = −grad𝑝 + ℒ(𝐯) − rot𝛔A

𝛔A = −
1

4
(𝑐𝑑 + 𝑐𝑎)∇2rot𝐯

 (15) 

Finally, applying differential operator (13) and introducing (152) into Eq. (151) we find 

 

𝐷ρ

𝐷𝑡
+ ρdiv𝐯 = 0

ρ 𝐷𝐯
𝐷𝑡⁄ = −grad𝑝 + μ∇2𝐯 + (λ + μ)grad div 𝐯 −

1

4
(𝑐𝑑 + 𝑐𝑎)∇2rot rot 𝐯

 (16) 

In the case of vanishing bulk viscosity λ + 2/3μ ⟶ 0, we get the system of equations 

 

𝐷ρ

𝐷𝑡
+ ρdiv𝐯 = 0

ρ(𝜕𝐯
𝜕𝑡⁄ + 𝐯 ∙ ∇𝐯) = −grad𝑝 + μ (∇2𝐯 +

1

3
grad div 𝐯) − (𝑐𝑑 + 𝑐𝑎)∇2rot rot 𝐯

 (17) 

which is the generalisation of the Navier-Stokes equations by the underlined term. Eq. (172) 

include not only the conventional coefficient of dynamic viscosity μ but also the sum of 

two micropolar viscosity coefficients 𝑐𝑑 + 𝑐𝑎. All above coefficients of viscosity are 

constants according to the assumption of isotropy and linearity of constitutive equations (5) 

or (6). It is also worth to noting that the underlined term can be treated as a specific integral 

of the Navier-Stokes equations. Moreover, since according to Eq. (172) the turbulent effect 

is activated from the very beginning, we suggest that it be preceded by a specific 

continuous switch function dependent on Reynold’s number 

 𝑓(𝑅𝑒) =
𝑅𝑒−𝑅𝑒𝑚𝑖𝑛

𝑅𝑒𝑚𝑎𝑥−𝑅𝑒𝑚𝑖𝑛
 (18) 

as is shown in Fig. 1. Reynold’s number includes only the conventional coefficient of  

 

Fig. 1. Switch function f(Re) preceding turbulent effect term in Eqs (17) 
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dynamic viscosity μ, hence the sum of two micropolar viscosity coefficients 𝑐𝑑 + 𝑐𝑎 serves 

as the length scale. 

Example of application of the above quasi-micropolar fluid model will be a subject of 

separate paper. 

 

N o m e n c l a t u r e  

𝑐0, 𝑐𝑑 , 𝑐𝑎 – micropolar viscosity coefficients 

D /Dt – absolute differential with respect to time 

𝐽𝑖𝑗 – microinertia tensor of a fluid particle 

𝑛𝑖 – outer normal unit vector 

𝑚𝑖 – couple traction vector 

𝑝 – pressure 

Re – Reynold’s number 

𝑡 – time 

𝑡𝑖 – traction vector 

𝑢𝑖 , 𝒖 – displacement vector 

v𝑖 , 𝐯 – time differential of displacement vector 

ω𝑖 – time differential of microrotation vector 

𝑋𝑖 , 𝑌𝑖 – body force per unit mass and body torque per unit mass 

∂ /∂t or · over a symbol – partial differential with respect to time 

δij – Kronecker’s symbol 

∈𝑖𝑗𝑘 – Levi-Civita’s symbol 

γ̇𝑖𝑗 , κ̇𝑖𝑗  – strain rate tensor and couple strain rate tensor 

�̇�A – unsymmetrical part of strain rate tensor 

λ, μ – conventional viscosity coefficients 

μ𝑟  – dynamic microrotation viscosity 

ρ – mass density 

σ𝑖𝑗 , μ𝑖𝑗  – Cauchy’s stress tensor and couple stress tensor 

𝛔A – unsymmetrical part of Cauchy’s stress tensor 

φ𝑖 , 𝛗 – micropolar rotation vector 

ω𝑖 , 𝛚 – time differential of micropolar rotation vector 
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