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Morphology and Molecular Phylogeny of the Soil Ciliate Anteholosticha
rectangula sp. nov. from King George Island, Maritime Antarctica
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Abstract. The soil ciliate Anteholosticha rectangula nov. spec. was discovered on King George Island in maritime Antarctica. Morphology
and the nuclear SSU rDNA sequence were used to describe and infer the phylogenetic position of the new species. Anteholosticha rectan-
gula is morphologically similar to A. bergeri and A. verrucosa, differing primarily by the morphology of the nuclear apparatus and dorsal
kineties, respectively. The morphological features of related species are compared and discussed to confirm the validity of the new species.
Molecular phylogenetic tree supports the previously reported polyphyly of the genus Anteholosticha.
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INTRODUCTION

Extreme environmental constraints in Antarctica al-
low only microrganisms such as bacteria and protists,
and the smallest animals like nematodes, rotifers, and
tardigrades to survive as dominant organisms on land.
Terrestrial protozoa in maritime Antarctica are sug-
gested to be important soil organisms due to their high
biomass and respiration (Davis 1981). Ciliates are one
of the most species-rich groups within Protozoa, and
live in a variety of habitats such as soil, freshwater,
and seawater (Small and Lynn 1985). However, few
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studies of ciliates in Antarctic terrestrial habitats have
been performed (Foissner 1996). Moreover, the disper-
sal of ciliates in such ecosystems by human activity has
been ignored (Foissner 2011).

About 70 ciliate species have been recorded from
Antarctic soils to date (Foissner 1998). Among these,
five species belonging to the genus Anteholosticha have
been recorded (Hada 1964, 1967; Sudzuki 1979; Foiss-
ner 1996). Anteholosticha is one of the most species-
rich groups within urostylids and consists of 39 spe-
cies (Berger 2008, Li et al. 2011, Xu et al. 2011, Park
et al. 2013, Huang et al. 2014). Over half of the species
have terrestrial or freshwater habitats. All Anteholos-
ticha species recorded in Antarctica were found in grass
or moss. Species richness and abundance of terrestrial
ciliates are influenced by habitat conditions such as soil
type (e.g., fellfield, moss, ornithogenic soil) or moss
species (Petz 1997, Mieczan and Tarkowska-Kukuryk
2014).
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In this study we discovered new ciliate from a sur-
face soil layer partially covered by moss on King George
Island in maritime Antarctica. Based on comparative
morphology, we describe the new species Anteholos-
ticha rectangula. Its phylogenetic position is inferred
from analyses of the SSU rDNA sequence.

MATERIALS AND METHODS

Sample collection and identification

Anteholosticha rectangula nov. spec. was discovered from
a surface layer soil sample taken on King George Island, Antarctica
(S62°14°28.56” W58°44°52.88”) in January 2013. Daily records of
temperature were measured by the Automatic Meteorological Ob-
servation System (AMOS) at King Sejong Station on King George
Island. The sample was transported to a laboratory at King Sejong
Station on King George Island within few hours, dried at 60°C for
24 hours, and then stored at 4°C. After transferring the sample to the
laboratory in South Korea, ciliates were reactivated at 4°C using the
non-flooded Petri dish method (Foissner et al. 2002a, b).

Living specimens were observed first under a stereomicroscope
(Leica M205 C, Leica Microsystems, Wetzlar, Germany) and an
inverted microscope (Zeiss Axio Vert.Al, Carl Zeiss, Oberkochen,
Germany), and then under brightfield and differential interference
contrast (DIC) at magnifications of 50 x to 1000 x using a light mi-
croscope Zeiss Axio Imager2 (Carl Zeiss, Oberkochen, Germany).
Protargol-impregnation following ‘Procedure A’ in Foissner (2014)
was used to reveal details of the ciliature and nuclear apparatus.
For the staining, the protargol powder was manually synthesized
according to the method described by Pan et al. (2013).

General terminology follows Lynn (2008), and specific terms
for Anteholosticha and urostylids follow Berger (2006).

SSU rRNA gene sequencing

A single cell was isolated after individuals of A. rectangula were
picked from the culture samples and transferred to distilled water
several times using microcapillary. Genomic DNA was extracted
using a RED-Extract-N-Amp Tissue PCR Kit (Sigma, St. Louis,
MO, USA) in accordance with the manufacturer’s instructions. The
conditions for PCR were as follows: denaturation at 94°C for 3 min,
followed by 40 cycles of denaturation at 95°C for 15 s, annealing
at 58°C for 30 s, extension at 68°C for 4 min, and a final extension
step at 72°C for 7 min. A nearly complete SSU rRNA gene was
amplified using two primers: slightly modified New EukA (5'-CTG
GTT GAT YCT GCC AGT-3') and LSUrev3 (5'-GCA TAG TTC
ACCATCTTT CG-3') (Sonnenberg et al. 2007). The PCR products
were purified using a QIAquick® PCR Purification Kit (Qiagen,
Hilden, Germany). Two internal primers were used for sequencing:
18S+810 and 18S—-300 (Jung ez al. 2011). DNA sequencing was per-
formed using an ABI 3700 sequencer (Applied Biosystems, Foster
City, CA, USA).

Molecular analyses

SSU rRNA gene sequences of 54 species were obtained from
the NCBI database to analyze the phylogenetic position of 4. rect-

angula (see Suppl. Table 1). Diophrys appendiculata was selected
as the outgroup. GenBank accession numbers are shown after the
species name in the phylogenetic tree. The sequences were aligned
using ClustalX 1.81 (Jeanmougin et al. 1998) and manually trimmed
at both ends in BioEdit 7.1.11 (Hall 1999). The alignment was then
further refined by visual assessment. A best-fit substitution model
for the phylogenetic analyses was chosen using the jModelTest 2.1.7
(Darriba et al. 2012). We selected the model GTR + 1 (0.5400) + G
(0.5190) under the Akaike information criterion (AIC). The Bayes-
ian inference tree was built using MrBayes 3.2.5 (Ronquist ez al.
2012) with the Markov chain Monte Carlo (MCMC) for 1,000,000
generations with a burn-in of 300,000. PhyML version 20131022
(Guindon et al. 2010) in Bio-Linux 8 (Field et al. 2006) was used
to infer maximum likelihood trees with 1,000 bootstrap replicates.
Pairwise distances were calculated using Mega 5.2.2 (Tamura et al.
2011).

The approximately unbiased, weighted Shimodaira-Hasegawa,
and weighted Kishino-Kasegawa tests was conducted to assess sta-
tistical significance of topological constraint, the monophyly of the
genus Anteholosticha, using CONSEL ver. 0.20 (Shimodaira and
Hasegawa 2001). The unconstrained (i.e., best) and the topologi-
cally constrained trees were inferred using the maximum likelihood
criterion and a heuristic search with TBR branch swapping and 10
random sequence addition replicates in PAUP* v4.0b10 (Swofford
2003). The per-site log likelihoods of the unconstrained and con-
strained ML trees under the best-fit model (see above) were calcu-
lated using PAUP*. The monophyly of Anteholosticha as the con-
strained topology consisted of ten species of the genus: A. gracilis,
A. intermedia, A. manca, A. marimonilata, A. monilata, A. multicir-
rata, A. paramanca, A. pseudomonilata, A. pulchra, and A. rectan-
gula sp. nov.

RESULTS

Description of Anteholosticha rectangula (Figs 1-3;
Table 1)

Diagnosis: Size in vivo 70-140 x 20-30 um. Body
rectangular, colorless, flexible, and slightly contractile.
Four to eight macronuclear nodules; two or three mi-
cronuclei. Contractile vacuole in left mid-body. Color-
less cortical granules arranged along dorsal bristles and
cirri; spherical to slightly ellipsoidal, 0.5-1.0 pm in di-
ameter in vivo. On average 21 adoral membranelles, 24
right marginal, 25 left marginal, 18 midventral which
terminates at about mid-body, and 7 transverse cirri. In-
variably three frontal, one buccal, two frontoterminal,
and one pretransverse cirri. Three bipolar dorsal kine-
ties with two dikinetids in front of the right marginal
cirral row. Caudal cirri lacking.

Type locality: Surface soil layer partially covered
by moss, King George Island, maritime Antarctica
(S62°14°28.56” W58°44°52.88”). Daily records of tem-
perature showed a range of 2.4-6.5°C in January 2013.
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Figs 1A-1. Drawings of Anteholosticha rectangula in vivo (A, D-G, I) and after protargol impregnation (B, C, H). A — ventral view of
a representative specimen; B and C — ventral and dorsal views of holotype, arrows show two dikinetids; D-G — cortical granules on dorsal
(D, G) and ventral sides (E, F); H — nuclear apparatus, showing variation in number and morphology; I — contractile vacuole. CG — corti-
cal granules, CV — contractile vacuole, DB — dorsal bristles, DK1-3 — dorsal kineties 1-3, FTC — frontoterminal cirri, Ma — macronuclear

nodules, Mi — micronuclei, TC — transverse cirri. Scale bars: 50 pm.
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Figs 2A-J. Photomicrographs of Anteholosticha rectangula in vivo. A—C — representative individuals showing contractile vacuole (arrows)
and ciliatures; D — nuclear apparatus, E-G — cortical granules in ventral (E) and dorsal (F, G) views; H-J — ventral views showing oral
apparatus; arrows in I and J show buccal lip and buccal seal, respectively. CG — cortical granules, DB — dorsal bristles, Ma — macronuclear
nodules, Mi — micronuclei, RMC — right marginal cirri, TC — transverse cirri. Scale bars: 100 um (A, C, D), 5 um (G), 10 um (H, I).

Type material: One holotype slide (NIBR- gol-stained specimens have been deposited in the Na-
PR0000106624) and two paratype slides (NIBR- tional Institute of Biological Resources (NIBR), South
PR0000106625, NIBRPR0000106626) including protar-  Korea. Two additional paratype slides (ACNS000273,
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Figs 3A—H. Photomicrographs of Anteholosticha rectangula after protargol impregnation. A and B — holotype specimen, ventral (A) and
dorsal (B) view, arrow denotes pretransverse cirrus; C — dorsal view showing dorsal kineties, arrows denote two dikinetids anterior of right
marginal cirral row; D and E — ventral views of anterior body showing buccal, frontal, frontoterminal, and midventral cirri; F-H — ventral
views showing variation of the nuclear apparatus. DK1-3 — dorsal kineties 1-3, FC — frontal cirri, FTC — frontoterminal cirri, Ma — macro-

nuclear nodules, Mi — micronuclei. Scale bars: 50 um.

ACNS000274) of the protargol-stained specimens
have been deposited in the Korea Polar Research In-
stitute (KOPRI). Circles marked on the bottom of the
slides indicate the relevant specimens. The SSU rDNA
sequence of type population has been deposited in the
GenBank under the accession number KU175624.

Etymology: The species-group name rectangula re-
fers to the rectangular body shape in vivo.

Description: Size in vivo 70-140 x 20-30 um (Figs
1A; 2A-C); 67-95 x 9—19 um after protargol impreg-
nation (Figs 1B, C; 3A—C). Rectangular body outline
in vivo, left and right cell margins almost parallel (Figs
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Table 1. Morphometric data for Anteholosticha rectangula

Characteristic (stained) N Mean SD SE Ccv Min M Max
Body length, pm 23 75.5 6.2 1.3 83 67.1 74.0 94.5
Body width, pm 22 16.3 22 0.5 13.8 9.4 16.6 19.4
Adoral zone length, um 22 20.0 1.9 0.4 9.4 17.4 19.7 24.5
AM, number 22 20.7 0.9 0.2 43 19 21 22
Width of largest AM, pm 22 5.0 0.4 0.1 7.3 4.1 5.1 5.6
BC, number 21 1 0 0 0 1 1 1
FC, number 19 3 0 0 0 3 3 3
FTC, number 19 2 0 0 0 2 2 2
MC, number 14 18.5 23 0.6 12.3 15 18 23
PTC, number 20 1 0 0 0 1 1 1
TC, number 20 7.1 1.0 0.2 14.2 6 7 9
Posterior TC to body end, length, um 22 2.6 0.6 0.1 23.6 1.5 2.7 4.1
LMC, number 19 24.9 2.0 0.5 8.0 22 25 30
RMC, number 19 242 2.8 0.6 11.6 21 24 31
DK, number 20 3 0 0 0 3 3 3
DB in DK 1, number 11 12.7 1.6 0.5 12.2 11 13 16
DB in DK2, number 14 11.2 1.0 0.3 8.7 10 11 13
DB in DK3, number 15 13 1.1 0.3 8.7 11 13 15
DB ahead of anterior RMC, number 20 2 0 0 0 2 2 2
Ma length, anteriormost, pum 22 8.5 1.8 0.4 21.0 5.5 9.1 10.9
Ma width, anteriormost, pm 22 4.2 0.7 0.1 15.7 32 4.1 5.5
Ma, number 20 5.8 1.7 0.4 29.3 4 6 8
Mi length, anteriormost, pm 23 23 0.2 0.0 10.0 1.9 2.3 2.9
Mi width, anteriormost, pm 23 2.1 0.2 0.0 9.7 1.6 2.1 2.5
Mi, number 22 2.1 0.4 0.1 16.4 2 2 3

AM — adoral membranelles; BC — buccal cirrus; CV — coefficient of variation in %; DB — dorsal bristles; DK — dorsal kineties; FC — frontal cirri; FTC — fron-
toterminal cirri; LMC — left marginal cirri; M — median; Ma — macronuclear nodules; Max — maximum; MC — midventral cirri; Mi — micronuclei; Min —
minimum; N — number of specimens examined; PTC — pretransverse cirrus; RMC — right marginal cirri; SD — standard deviation; SE — standard error of the

arithmetic mean; TC — transverse cirri.

2A, B). Cell colorless to grayish at low magnification
< 100 x. Nuclear apparatus invariably on left cell mar-
gin arranged in a longitudinal row (Figs 1B; 2D; 3A,
F—H); four to eight, 6-11 x 3—6 um, ellipsoidal to ob-
long, macronuclear nodules; two or three, 2-3 x 2-3
um, roughly spherical, micronuclei; nuclear apparatus
sometimes split into two parts because of the presence
of a food vacuole (Figs 1B; 3A). Contractile vacuole
10 pm in diameter when fully extended; located at
left mid-body with collecting canals (Figs 11; 2A, C).
Colorless cortical granules roughly spherical, 0.5-1.0
um in cross section; arranged around based of dorsal
bristles (Figs 1D, G; 2F, G) and near cirri (Figs 1E, F;
2E). Cytoplasm colorless, with 5-10 um-sized food

vacuoles usually located in posterior half of cell. Feeds
on bacteria and small protists (e.g., diatoms).

Adoral zone of membranelles occupies approxi-
mately 25% of the body length (Fig. 3A); base of the
largest membranelles about 5 pum long; cilia of the
membranelles 15 um long. Paroral and endoral mem-
brane in parallel arrangement; endoral membrane com-
mences at level of buccal cirrus (Figs 1B; 3A).

All cirri are relatively fine, generally 10-15 um long
in vivo (Figs 1A; 2B, H). Invariably three frontal, two
frontoterminal, one buccal, and one pretransverse cirri.
Midventral cirral pairs commence near frontoterminal
cirri and terminate at nearly half of cell length; fifteen
to twenty three cirri arranged in a zigzag pattern. Six
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Table 3. Tree topology tests of the genus Anteholosticha with log likelihoods and p-values from approximately unbiased (AU), weighted
Shimodaira-Hasegawa (WSH), and weighted Kishino-Hasegawa (WKH) tests on phylogenetic trees.

Topology Log likelihood Difference to best tree AU (p) WSH (p) WKH (p) Conclusion
(-InL) (-InL)

Best maximum likelihood tree 9,663.456 1.000 1.000 1.000

(unconstrained)

Monophyly of Anteholosticha 10,054.531 391.075 6e-05 0.000 0.000 rejected

to nine transverse cirri which protrude beyond poste-
rior end of body (Figs 1A; 2B; 3F-H). Right marginal
row, composed of 24 cirri on average, commences near
proximal end of endoral and terminates near pretrans-
verse cirrus. Left marginal row, composed of 25 cirri on
average, commences near proximal end of adoral zone
of membranelles, and terminates near posterior end of
right marginal row. Invariably three bipolar dorsal kine-
ties with two dikinetids in front of right marginal cirral
row (Fig. 1C, arrows), without any fragmentation; dor-
sal bristles 3 pm in vivo; dorsal kineties 1-3 composed
of 11-16, 10-13, and 11-15 bristles, respectively. Cau-
dal cirri lacking.

Occurrence and ecology: To date only at the type
locality, King George Island. Moss-covered surface
layer of soil.

Phylogenetic analyses: The SSU rDNA sequence
of A. rectangula was 1,587 bp in length and, in the gene
tree (Fig. 4), was nested within urostylids, clustering
with some of its congeners (Holostichidae) and other
two families, Pseudokeronopsidae and Pseudouro-
stylidae. The 10 Anteholosticha species analyzed here
were highly polyphyletic (see Table 3), and only 4 spe-
cies showed a relatively close relationship to the new
species (pairwise distances: 4. marimonilata — 4.2%,
A. monilata — 4.1%, A. pseudomonilata — 4.1%, A. pul-
chra — 5.4%). However, these five species (including
A. rectangula) were not monophyletic.

DISCUSSION

Anteholosticha species reported in Antarctica:
Five species of Anteholosticha have been reported
to date: 1) A. bergeri (Foissner, 1987) Berger, 2003
by Foissner (1996) from grass sward, Signy Island;
2) A. intermedia (Bergh, 1889) Berger, 2006 by Hada
(1964) from moss, Langhovde, and Hada (1967) from
ice blocks containing mosses and algae in pools and

wet beaches, Syowa station (Japan) and Mirny station
(Russia); 3) 4. monilata (Kahl, 1928) Berger, 2003
by Sudzuki (1979) from soil; 4) A. multistilata (Kahl,
1928) Berger, 2003 by Foissner (1996) from grass
sward, Signy Island; and 5) 4. sigmoidea (Foissner,
1982) Berger, 2003 by Foissner (1996) from moss and
grass sward, Signy Island. Despite the infrequent study
of Antarctic ciliates, the five Antarctic species of Ante-
holosticha were collected mainly from moss or grass
implying that these environments provide a shelter for
these species. In addition, the new species A. rectan-
gula was discovered in the surface layer of soil partial-
ly covered by moss. Petz (1997) reported that a higher
abundance and diversity of ciliates were recorded from
moss samples than fellfield or ornithogenic soils. More-
over, different species richness of ciliates was recorded
depending on the investigated moss species (Mieczan
and Tarkowska-Kukuryk 2014). Although the genus
Anteholosticha is one of the most species-rich hypot-
rich groups and more than half of the species occur in
freshwater or terrestrial habitats (Berger 2006), few
species are known to inhabit Antarctica. Further study
is necessary to understand their ecological attributes
and the limited occurrence in Antarctica.
Morphological comparison of A. rectangula and
related species: The genus Anteholosticha is a species-
rich group within urostylids, with 38 species listed in
the Monograph of the Amphisiellidae and Trachelostyli-
dae (Ciliophora, Hypotricha) (Berger 2008). Following
the publication of Berger’s monograph, three species
were combined into new genera (e.g., Arcuseries Huang
et al. 2014, Nothoholosticha Li et al. 2008), and four
new species were assigned to Anteholosticha (e.g.,
A. angida Kumar, Kamra & Sapra, 2010, A. mari-
monilata Xu et al., 2011, A. multicirrata Park, Jung
& Min, 2013, A. pseudomonilata Li et al.,2011). Conse-
quently, 39 species are currently assigned to this genus.
The polyphyly of Anteholosticha is well known from
SSU rDNA sequences (Park et al. 2013; Lv et al. 2015).
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Fig. 4. Majority consensus tree from Bayesian inference using nuclear SSU rDNA sequences. Anteholosticha rectangula is indicated in
bold in the tree. Posterior probabilities of Bayesian inference (BI) and bootstrap values of maximum likelihood (ML) are presented on each
interior branch. Dashes denote a value showing less than half of the full posterior probability or bootstrap value. Scale bar indicates two base

substitutions per one hundred nucleotides.

Mature cells of the congeners commonly have the fol-
lowing morphological attributes: three frontal cirri; buc-
cal cirrus/cirri; midventral complex composed of cirral
pairs only; one left and one right marginal cirral row;
and transverse cirri (Berger 2006). The morphogenesis
of Anteholosticha has been studied to attempt to resolve

the systematic problems and to be able to position new
taxa appropriately (Li et al. 2008, Shao et al. 2011, Xu
etal 2011, Park et al. 2013). Park et al. (2013) analyzed
11 Anteholosticha species based on morphogenesis and
the SSU rRNA gene, and split these species into seven
types (I-VII). Of these, type VII, consisting of 4. petzi,
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A. scutellum, and A. warreni, was transferred to the new
genus Arcuseries (Huang et al. 2014).

The new species A. rectangula matches the diagno-
sis of the genus Anteholosticha (Berger 2006). Of the
39 species in the genus, five are morphologically similar
to A. rectangula in terms of body shape, size, and nuclear
apparatus (i.e., more than 2 macronuclear nodules) (Ta-
ble 2). In particular, A. bergeri (Foissner, 1987) Berger,
2003 and A. verrucosa (Foissner & Schade in Foissner,
2000) Berger, 2008 show greater morphological similar-
ity of the cortical granulation than other species. How-
ever, A. bergeri differs from A. rectangula based on the
macronuclear nodules (13-34 vs. 4-8 in number; scat-
tered in the cytoplasm vs. arranged in a longitudinal
row on the left side), adoral membranelles (12—17 vs.
19-22), transverse cirri (3—5 vs. 6-9), and cortical gran-
ules (shiny pink vs. colorless). Anteholosticha verrucosa
can be distinguished from the new species by the adoral
membranelles (14—17 vs. 19-22), transverse cirri includ-
ing pretransverse cirri (2—4 vs. 7-10), and dorsal kine-
ties (4 vs. 3). Anteholosticha verrucosa has fewer dorsal
bristles in the dorsal kineties (DK) in each row (DK1 — 4
or 5, DK2 — 6-8, DK3 — 6-8, DK4 — 6 vs. DK1 — 11-16,
DK2 — 10-13, DK3 — 11-15; bristle numbers in A. ver-
rucosa counted from Foissner, 2000: Figs 87, 89).

Molecular phylogeny of Anteholosticha rectan-
gula: The polyphyletic genus Anteholosticha consists
of 40 species when the new taxon A. rectangula is in-
cluded. However, the taxonomic descriptions of many
species are incomplete, particularly regarding cortical
granulation and dorsal kineties (Berger 2006). Moreo-
ver, the convergence (or plesiomorphy) of morphologi-
cal attributes in mature cells hampers their systematic
positioning within urostylids. As mentioned previously,
Park ef al. (2013) categorized the 11 species of Ante-
holosticha into seven types. However, the new species
A. rectangula did not cluster with any of these types,
and any other urostylids that showed a basal position
in the clade consisted of type IV (4. marimonilata,
A. pseudomonilata), type V (A. pulchra), and Pseudo-
keronopsidae. Although 4. bergeri and A. verrucosa are
morphologically similar to the new species, their SSU
rDNA sequences are not available. Although the genus
Anteholosticha is polyphyletic based on the SSU rDNA
sequences, caution is required when interpreting phylo-
genetic trees because of misidentification of specimens
in public databases. In addition, more genetic material
of morphologically well-defined Anteholosticha speci-
mens is required to accurately infer their phylogeny, es-
pecially for the terrestrial ciliates.
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Suppl. Table 1. List of ciliate species analyzed using phylogenetic inference.

Species Accession number Species Accession number
Anteholosticha gracilis FJ775713 Hemicycliostyla franzi AM412765
Anteholosticha intermedia AJ277876 Heterokeronopsis pulchra JQ083600
Anteholosticha manca DQ503578 Holosticha bradburyae EF123706
Anteholosticha marimonilata FJ870075 Holosticha diademata DQO059583
Anteholosticha monilata GU942567 Holosticha heterofoissneri DQ059582
Anteholosticha multicirrata KC307773 Metaurostylopsis antarctica JF906730
Anteholosticha paramanca KF806443 Metaurostylopsis cheni GU170204
Anteholosticha pseudomonilata HMS568416 Metaurostylopsis salina EU220229
Anteholosticha pulchra JN880476 Metaurostylopsis struederkypkeae EU220228
Anteholosticha rectangular nov. spec. KU175624 Monocoronella carnea F1775726
Apobakuella fusca JN008942 Neobakuella flava GU967698
Apokeronopsis bergeri JF718644 Neourostylopsis flavicana HM623917
Apokeronopsis crassa DQ359728 Nothoholosticha fasciola FI377548
Apokeronopsis ovalis EU930048 Parabirojimia multinucleata FJ156104
Apokeronopsis sinica Fl461474 Parabirojimia similis DQ503584
Apokeronopsis wrighti EU417963 Psammomitra retractilis EF486865
Apourostylopsis sinica EU220227 Pseudokeronopsis carnea AY881633
Arcuseries petzi EF123707 Pseudokeronopsis erythrina FJ775723
Arcuseries scutellum FJ156105 Pseudokeronopsis flava DQ227798
Arcuseries warreni HQ605948 Pseudokeronopsis rubra DQ640314
Bakuella granulifera KJ958489 Pseudourostyla cristata FJ598608
Bakuella subtropica KC631826 Pseudourostyla cristatoides IN887467
Bergeriella ovata FI754026 Thigmokeronopsis stoecki EU220226
Diaxonella pseudorubra GU942564 Tunicothrix brachysticha GU574811
Diaxonella pseudorubra polystylata AF508760 Tunicothrix wilberti GU437210
Diaxonella trimarginata DQ190950 Uroleptopsis citrina F1870094
Diophrys appendiculata AY 004773 Urostyla grandis AF164129




