Schedae Informaticae Vol. 24 (2015): 221-237
doi: 10.4467/2083847651.16.019.4360

On State-Synchronized Automata Systems

ALEXANDER MEDUNA, JIRf KUCERA
Formal Language Research Group, Department of Information Systems
Faculty of Information Technology, Brno University of Technology
Bozetéchova 2, 61266 Brno, Czech Republic

e-mail: {meduna, tkucera} @fit.vutbr.cz

Abstract. In this paper, we introduce a new kind of automata systems, called
state-synchronized automata systems of degree n. In general, they consists of
n pushdown automata, referred to as their components. These systems can
perform a computation step provided that the concatenation of the current
states of all their components belongs to a prescribed control language. As its
main result, the paper demonstrates that these systems characterize the family of
recursively enumerable languages. In fact, this characterization is demostrated
in both deterministic and nondeterministic versions of these systems. Restricting
their components, these systems provides less computational power.

Keywords: state-synchronized automata systems, automata systems, push-
down automata, determinism, recursively enumerable languages.

1. Introduction

At present, processing information in a largely discontinuous and concurrent way
represents a common computational phenomenon. Indeed, consider a process p that
deals with information i. During a single computational step, p can simultaneously
perform several concurrent subprocesses, each of which works with a different piece of
information in ¢. As obvious, computation like this necessitates a highly sophisticated
communication and synchronization between the subprocesses. As a result, to explore
computation of this kind systematically and rigorously, computer science needs formal
models that adequately reflect this way of computation.

222

Traditionally, formal language theory has always provided computer science with
language-defining models to explore various information processors mathematically,
so it should do so for the purpose sketched above as well. However, the classical ver-
sions of these models, such as automata and grammars, work in a completely single
and isolated way, so they can hardly serve as appropriate models of the computation
sketched above. Therefore, a proper formalization of processors that work in the
way described above necessitates an adaptation of classical automata and grammars
so they work on words in a multiple and synchronised way. At the same time, any
adaptation of this kind should conceptually maintain the original structure of these
models as much as possible so computer science can quite naturally base its investiga-
tion upon these newly adapted models by analogy with the standard approach based
upon their classical versions. Simply put, these new models should work on words in
a communicating and synchronized way while keeping their structural conceptualiza-
tion unchanged. That is why, over the past two decades or so, formal language theory
has introduced several versions of these models that work in the above-mentioned
way to some extend. More specifically, this theory has conceptualized systems whose
components consist of several grammars or automata, whose communication is based
on some prespecified strategy, usually referred to as communication protocols. Let us
give a broad overview of the most important systems of this kind.

The early work on grammar systems, inspired by problem solving theory, was
focused to model an agent systems, where agents use for cooperation so called ‘black-
board model’. Such a systems, called cooperating distributed grammar systems [3],
consist of finite number of Chomsky grammars [2] (‘agents’). The ‘blackboard’ here
is represented by a sentential form shared by all grammars. The communication in
these systems is performed in the way that when some grammar ends its derivation on
the shared sentential form, another grammar continues. This task switching between
grammars is driven by derivation modes (see [3]).

The parallel communicating grammar systems [3] use a different strategy. Each
grammar works independently on its own sentential form. When some grammar gen-
erates a query symbol, all derivations are paused and this query symbol is substituted
by corresponding sentential form from requested grammar. After that, the derivation
process may continue. A similar strategy is used in parallel communicating finite au-
tomata systems [7], where the communication between finite automata components is
realized by query states. If some finite automaton performs a move to a query state,
then this state is replaced by the current state of corresponding requested component.
The parallel communicating pushdown automata systems [4] use the query symbols
in the same manner as in parallel communicating grammar systems, except that all
operations are performed on pushdowns.

Another ways of communication between components can be found in [1] and
[10]. In multigenerative grammar systems [10], the cooperation between components
is synchronized either by rules or by nonterminal symbols. In these systems, all
components work simultaneously on their own sentecial forms. If some component is
unable to do its derivation, remaining components are blocked. The direct derivation
in these systems is performed if and only if all components can perform their direct
derivations and the rules used during these derivations form a tuple from a prescribed
control set (for nonterminal symbols, the situation is similar).

223

In n-accepting state-restricted pushdown automata systems [1], the states of the
components determine which components can do their moves and which components
leave their configurations unchanged. This activity of components is changed during
each computation step depending on the fact if an n-tuple formed from states is the
left-hand side of some switch rule from the prescribed control set.

The present paper contributes to this vivid trend of formal langauge theory by
introducing new automata systems whose behavior is elegantly synchronized by state-
based restrictions. More specifically, these systems, called state-synchronized au-
tomata systems of degree n, have pushdown automata as their components. The syn-
chronization is performed by finite control language containing words formed from
states of particular components. In these systems, only first component can read
from input tape. A computation step is performed if and only if all components can
simultaneously do their moves and their states form a word from the control language.

The organization of this paper is as follows. After the next section with pre-
liminary definitions, we give the definitions of state-synchronized automata systems,
deterministic and nondeterministic. In the section with theoretical results, we study
the accepting power of these systems with various types of components. We show
that state-synchronized automata systems are able to accept every recursively enu-
merable language. It remains an open problem whether or not a deterministic state-
synchronized automata systems with two or more one-turn pushdown automata can
describe the whole family of recursively enumerable languages.

2. Preliminaries

We assume that the reader is familiar with the basic notions of formal language theory
(see [5] and [8]). Let S be a set. Then, the cardinality of S is denoted by card(S).
Let ¥ be an alphabet. Then, ¥* represents the free monoid generated by ¥ under
the operation of concatenation, with e as the unit of £*. Let g be a (binary) relation.
Then, o* denotes the reflexive and transitive closure of g, and o' denotes the ith power
of o, 1 > 0. Let w be a word over ¥.. Then, the length of w is denoted by |w|, and
the set of all subwords contained in w is denoted by subword(w). LIN, CF, and RE
denotes the family of linear languages, the family of context-free languages, and the
family of recursively enumerable languages, respectively.

A finite automaton (FA) is a quintuple M = (Q, %, R, s, F'), where Q is a finite
set of states, 3 is an input alphabet, QNYX =0, R C Q x (XU {e}) x Q is a finite
set of rules, s € @ is the initial state, and F C @ is a set of final states. Instead of
(p,a,q) € R, we write pa — g € R throughout. A configuration of M is a word from
QX*. The relation of direct move Fj;C QX* x QX* is defined as follows: if w € ¥*
and pa — ¢q € R, then paw by qw. The language accepted by M, L(M), is defined as
LM)={weX*|swk} f,f € F}.

A pushdown automaton (PDA), is a septuple M = (Q,%,T,R,s,S, F), where
Q@ is a finite set of states, ¥ is an input alphabet, I' is a pushdown alphabet, Q,
%, and T' are pairwise disjoint, R C T' x Q x (X U {e}) x I'* x @ is a finite set

224

of rules, s € @ is the initial state, S € T' is the initial symbol on pushdown, and
F C @ is a set of final states. Instead of (A,p,a,x,q) € R, we write Apa — zq € R
throughout. A configuration of M is a word from I'@QX*. The relation of direct move
FrC THFQRY* x T*QX* is defined as follows: if w € I'*, w € ¥*, and Apa — zq € R,
then uApaw Fyr uzqw. The language accepted by M by final state, L(M)y, is defined
as L(M)y = {w € ¥* | Ssw 3, vf,v € T*, f € F}. The language accepted by M
by empty pushdown, L(M),, is defined as L(M). = {w € * | Ssw F3; ¢,¢ € Q}.
The language accepted by M by final state and empty pushdown, L(M) ., is defined
as L(M) e = {w € ¥* | Ssw k3, f, f € F}. A pushdown automaton M is said to be
deterministic (APDA) if for every rule Apa — xq € R it holds card{a« =y € R | a €
subword(Apa)}) = 1.

The family of languages accepted by X by final state, empty pushdown, and final
state and empty pushdown, where X is PDA or dPDA, is denoted by 2 (X)s, £ (X).,
and Z(X) ., respectively.

Let M = (Q,%,T,R,s,S,F) be a pushdown automaton, and let xoabw Fps
ypbw Fpr zqw, where z,y,z € T, o,p,q € Q, a,b € ¥ U {e}, and w € ¥*. If
ly| > |z| and |y| > |z|, then during the move ypbw Fps zqw, M makes a turn in its
pushdown. We say that M is a one-turn pushdown automaton (one-turn PDA) if it
makes no more than one turn in its pushdown during any computation.

A two-pushdown automaton is an 8-tuple M = (Q,X,T', R, s, 51, 52, F'), where Q,
>, ', s, and F are defined as in PDA, @, X, and I" are pairwise disjoint, S; € T’
is the initial symbol on pushdown 1, Sy € T' is the initial symbol on pushdown 2,
and R C T xI'x Q x (BU{e}) x ' x I'* x @ is a finite set of rules. Instead
of (A,B,p,a,x,y,q) € R, we write A#Bpa — x#yq € R throughout, where # ¢
SUTUQ. A configuration of M is a word from T'*{#}I*@QX*. The relation of
direct move by C TH{# QX" x T*{#}*QX* is defined as follows: if u,v € I'*,
w € X*, and A#Bpa — z#yq € R, then uA#vBpaw Fjp; ur#vyqw. The language
accepted by M by final state, L(M)y, is defined as L(M) s = {w € X* | S1#Sasw
n#Yf, 11,72 € T*, f € F}. The language accepted by M by empty pushdown,
L(M)., is defined as L(M). = {w € &* | S1#S2sw B3, #4¢,q € Q}. The language
accepted by M by final state and empty pushdown, L(M) ., is defined as L(M)s. =
{w e ¥* | S1#S2sw Fi, #f,f € F}. A two-pushdown automaton M is said to be
deterministic if for every rule A#Bpa — x#yq € R it holds card({a - v € R| a €
subword(A#Bpa)}) = 1.

Let M = (Q,%, T, R, s, 51,52, F) be a two-pushdown automaton. Let

T1FT20abw Fpp y1HYopbw by z1 #zoqw

in M, where 0,p,q € Q, a,b € ZU{e}, w € ¥*, and 1, 29,y1, Yo, 21, 22 € T*. If |y;| >
|¢;] and |y;| > |2;| for some i € {1,2}, then during the move y1 #yopbw Far 21 #22qw,
M makes o turn in pushdown . If |y;| > |x;| and |y;| > |z;] for both i = 1,2,
then during move y;#yapbw by z1#22qw, M makes a simultaneous turn in both
pushdowns. We say that M is one-turn if it makes no more than one turn in either
of its pushdowns during any computation. We say that M is simultaneously one-turn
if it makes either no turn or one simultaneous turn in both pushdowns during any
computation.

225

3. Definitions and Examples

This section recalls the definition of state-synchronized automata system from [6].

Definition 1 Let n be a positive integer. A state-synchronized automata system of
degree n (SCAS,, for short) is an (n+ 1)-tuple T' = (M1, Ms, ..., M,, V), where M;
is an FA or a PDA, and it is referred to as the ith component of I, for all 1 <i <mn.
U C Q1Q2...Q, is a control language of I', where Q; is the set of states in M;,
1 < i < n. Furthermore, &, I';, s;, S;, and F; denote the input alphabet of T, the
pushdown alphabet of M;, the initial state of M;, the initial symbol on M;’s pushdown,
and the set of final states in M;, respectively, for all 1 < i < n. If M; is an FA, we
setT; =0 and S; = ¢, for all1 <i < n.

A configuration of T is an n-tuple (x1,X2,-- -, Xn), wWhere x; is a configuration of
M;, forall1 <i<mn.

Let m; be the mapping from I'7Q;X* to Q; such that m;(z;quw) = qi, x; € '},
g € Qi, w € X*, for all 1 < i < n. Furthermore, let « = (X1,X2,---sXn)
and & = (X1, X5, -+, X,) be two configurations of T'. The relation of direct move
in T, Fr, is defined as follows: if for every 1 < i < m it holds x; Fm; X}, and
m1(x1)m2(x2) .- - Tn(xn) € ¥, then abr o/,

Analogously to PDA, define three types of languages accepted by I' as follows:

L(F)f = {’LU S | (Slslw’SQ‘S?v' . '7Sn5n) Fl*“ (71f1772f27' .. 7'7nfn)a
vi €y, fi€ Fi,1 <i<n};

LT). = {weX*|(S151w,5282,...,8n) Ff (q1,492,---,¢n),
qi € Qi,qi € F; if M; is an FA,1 <i <n};
L(F)fE = {w e X" | (SlSl’LU,SQSQ,...7SnSn) l—i: (f17f2;-~-7fn>7

fiEFi,lgiS’n}.

The following example demonstrates the capability of SCAS,, to accept a language
which is not context-free.

Example 1 Let ' = (M, M’,¥) be an SCASy, where M, M’ are PDAs defined as
o M= ({saqaaQb7qC7f}7 {a,b,c}, {57 AaBaC}aR7S757 {f});
L M/ = ({S/aq:zaqllyaQQafl}7 {a,b,c}, {SaAaB7C}aR/aS/7S7 {fl});

e R={Ssa — SAq., Agaa = AAqa, Aqeb — Aqp, Agyb — Agp, Agre — ¢,
chc — Ge, ch — f}7

o R ={Ss' — Sq,,Sq, — Sq,,5q, — SBq,, Bq;, - BBq,, Bq; — q..,
Bq,, — q.,Sq. — f'}.

Finally, U is a control language of I' defined as ¥ = {ss’, qaql,, @4}, qcq.}- The word

226

aaabbbeee is accepted by I' in this way

(Ssaaabbbece, Ss') bFr (S Agg.aabbbece, Sql)

(
Fr (SAAq,abbbeee, Sql,)
Fr (SAAAgq,bbbece, Sq.,)
Fr (SAAAgybbeee, SBqy)
Fr (SAAAgbeee, SBBgj)
Fr (SAAAgycce, SBBByq;)
Fr (SAAq.cc, SBBq.)
Fr (SchC SBqC)
l_F (cha ch)
Feo (f,F)

Clearly, L(I") = L(T"). = L(T") g = {a™b"c" | n > 1}.

Observe that SCAS,, I, n > 1, to make a successful final computation step, do not
need to contain a word in ¥ which is formed from states from a final configuration. On
the other hand, as will be shown later in Definition 2, it would be useful to introduce
Uy as

U;=0 U {qi¢2...qn | (71¢1,7292,...,7nqn) is a final configuration of T',
v €T5,q € Qi1 <i <n}.

Let T" be an SCAS,,, for some n > 1. By Rr, we denote the Cartesian product
Rr = Ry X Ry X --- X R, where R; is the set of rules of the ith component of I, for
all 1 <i<n. If @« € Rr, then by «(i), we denote the ith element of «, and clearly
a(i) € Ry, for all 1 < ¢ < n. For a rule r = v — v, we use lhs(r) and rhs(r) as an
abbrevation for the left-hand side and right-hand side of r, respectively, so lhs(r) = u
and rhs(r) = v.

Define the mapping m; from Rrp to Q1Qx ... Q,, as follows:

m(a) = my (ths(a(1)))m2(lhs(a(2))) . . . mp (Ihs(a(n))),

that is 7m; maps an n-tuple of rules

(Alplfh — z1q1, Aopa = x2qa, ..., Anpn — Inqn)

to the word pips...p,. The mapping 7, from Rr to Q1Q>...Q, is defined analo-
gously as 7. (a) = w1 (rhs(a(1)))me(rhs(a(2))) . . . m, (rhs(a(n))).

We are now at position to introduce the definition of determinism in SCAS,,, which
is given formally in Definition 2.

Definition 2 Let I" be an SCAS,,, for somen > 1. Then I is said to be deterministic
(dSCAS,,) if for every o € Rr, such that m(ce) € ¥ and m,(a) € Uy, it holds

card({a/ € Rr | m(a') € Uy, lhs(a/(i)) € subword(lhs(a(i))),1 <i < n}) =1.

Clearly, the SCAS, from Example 1 is deterministic. The following example shows
the difference between deterministic and nondeterministic SCAS,, according to Defi-
nition 2.

227

Example 2 Consider we have SCASy T' = (M, My, ¥), where My, My are PDAs
defined as

o Ml - ({SaQ17QQaf}7{a7b}7{S7A7B}a{T17r27r37r4}a8a5a {f}) a’nd
o My = ({5/7(111,(]/2,fl},{a,b},{S,A,B},{7’/1,’1"/2,7":/3,7“2},8/,5, {fl}); where

ri = Ssa— Sqp; ry = S — Sqi;
rg = Ssb— Sqo; rh, = Ss’— Sqb;
r3 = Squ—Sf; ry = Sqp — SAf';
ry = Sq— Sf; ry = S¢hb— SBf'.

Let U = {ss',q14], 9205 }. This SCASs, depending on its input, modify either its first
or second pushdown. According to Definition 2, the allowed combinations of rules are:

(ri,rh): card({(r1,7)}) = 1;
(ro,rh): card({(re,75)}) = 1;
(rg,r5): card({(rs,r5)}) = 1;
(ra,ry): card({(rq,74)}) = 1;

so I'" is a dSCAS,. Observe that condition m,(a/) € Wy is necessary because its
omission leads to

(r1,77): card({(r1,71), (r1,75)}) = 2;
(er T/Q): Cal"d({(T’Q, T/Q)a (7"2, Tll)}) = 2’
(rg,rg): card({(rs,r5)}) = 1;
(rag,ry): card({(rq,7))}) = 1;

which is in contradiction with the fact that T is deterministic.

4. Theoretical results

Since deterministic SCAS,;s are special cases of ordinary SCAS,s, we show firstly
that every recursively enumerable language can be accepted by some deterministic
SCAS,,.

Theorem 1 For every recursively enumerable language L over an alphabet 32, there
exists a deterministic SCASa, I' = (M7, M, V), where

M; = (Qi, 2,1y, Ry, 54, 5, F)
is a PDA, 1 <i <2, such that L(I")y = L.

PROOF. Let L be a recursively enumerable language over an alphabet 3. Then
there exists a deterministic two-pushdown automaton, M, such that L = L(M)¢ (see
Theorem 8.2.3.3 in [8]). Let M = (Q,E,f‘,R,s,Sl,SQ,F) be a deterministic two-
pushdown automaton such that L = L(M);. From M, we construct a dSCAS, I' in
the following way.

228

L. Set Q1 =0, Q2 =0, and ¥ = 0.
2. Set Fl = Fg = f‘
3. For every rule r = A# Bpa — x#yq from R:

e add states p, (7_">, and q to Q;

e add states p, (7:>, and § to Qa;

e add rules Apa — A(r) and A(r) — zq to Ry;
e add rules Bp — B(?A“> and B(r) — yg to Ry;
e add words pp, 3, and (r) <7:> to W.

4. Set Fy ={f|feF}and F, ={f| feF}.

From the construction above follows that if M is deterministic, then I" must be also
deterministic. Next, we prove that L(M); = L(T);.

Claim 2 If ug#voqowo HM w; F#v;q;w;, then
(uoGowo, vodo) F&* (uiGiws, viGi),
where u; € 'Y, v; €15, ¢, € Q, §; € Q1, §i € Q2, and w; € X*, for all i > 0.
PRrROOF. The proof is established by induction on ¢ > 0.
Basis: For i = 0, ug#voqowo l—?w U #FVoqowo implies that
(uogowo, vodo) F (uogowo, vodo)-

Thus, the basis holds.

Induction Hypothesis: Suppose that the claim holds for all 0 < ¢ < k, for some
k>0.

Induction Step: If

woFvogowo Fhy uHVRGWE Far Ukt 1 HVR41 Q1 W1
then there exists a rule r = A#Bqra — x#yqr+1 in R such that ug = yA, v, = 6B,
Uk41 = YT, Vpt1 = Oy, and wg = awgy1, where v € I'f, § € I';. Then, there
also exist rules Agra — A(r) € Ry, Alr) = zqp+1 € Ri, Bdry — B{r) € Ra,
B{r) = ygr+1 € Ro, and words Gxdr, Gx+1Gr+1, (r){r) € ¥, which implies that

(uoGowo, vogo) FE (Uk(jljwk, V) R
e (uk(r) Wi, vk (r))
Fro (W1 @t 1 Wht 15 Vk41k41),5

and the claim holds for k£ + 1, too. Therefore, Claim 2 holds. O

Claim 3 If A
(uoGowo, vodo) FE* (wigiws, vidi),

then ug#voqowo Hiy wi#vigiw;, where u; € Ty, v; €T3, ¢; € Q, §; € Q1, i € Q2,
and w; € ¥*, for alli > 0.

229

PROOF. The proof is established by induction on ¢ > 0. Observe that only even
number of computation steps are possible in I' (see the construction of I' from M
above).

Basis: For i = 0,

(uoGowo, vodo) FP (uoGowo, vodo)

implies that uo#Hvogowo l—%/[ugHvoqowo. Thus, the basis holds.

Induction Hypothesis: Suppose that the claim holds for all 0 < ¢ < k, for some
k>0.

Induction Step: If

(woGowo, vodo) FE (ur@rwr, vidr)

b (ur(r)wpas, vk(r))
Fro (W1 @a+1Wet1, Vk+1Gk+1),

then there exist rules Agpa — A<7:> € Ry, A<;'> — Tqr+1 € Ry, By — B<;"> € Ro,
B(r) — yGr+1 € Rz, and words GrGk, Gr+1qk+1,(r)(r) € ¥, such that u; = vA,
Vg = 5Ba Uk+1 = VL, Vg1 = 59; Y€ FTa d€ F;a WE = GWk+41, and r = A#qua —
T#Yqr+1 € R. This immediately implies that
UoFHV0qowo Hhy WeFVRGWE FAr W1 FEVR1 Qo1 Wt 1,
which proves that the claim holds for k + 1, too. Therefore, Claim 3 holds. O
From Claim 2 and Claim 3, it immediately follows that for every w € ¥*,
Si#Sasw by m#yef P (Sis1w, S2s2) Fr (11f1,72.f2),

where v, € I'j, 72 € I's. Therefore, L(M); = L(T') s, and Theorem 1 holds. O

Theorem 4 For every recursively enumerable language L over an alphabet 3, there
exists a deterministic SCASy, T' = (M, M,), where

M'L = (Qi727riaRi78ivs’i7Fi)
is a PDA, 1 <1i <2, such that L(T'). = L.

PROOF. Let L be a recursively enumerable language over an alphabet . Then
there exists a deterministic two-pushdown automaton, M, such that L = L(M). (see
Chapter 8 in [8]). The rest of proof is analogous as in Theorem 1. O

Theorem 5 For every recursively enumerable language L over an alphabet 3, there
exists a deterministic SCASy, T' = (My, My, V), where

Mi = (Qi727riaRi78iasi7Fi)
is a PDA, 1 <i <2, such that L(T"). = L.

PROOF. The proof is analogous to the proof of Theorem 4. O

230

Theorem 6 Letk > 3. For every recursively enumerable language L over an alphabet
3, there exists a deterministic SCASy,

r= (M15M27"'7Mka\1/)7
where M; is a PDA, for all 1 <i <k, such that L = L(T');.

PROOF. Let L be a recursively enumerable language over an alphabet ¥. Then,
by Theorem 1, there exists a deterministic SCASs, I, such that all its components
are PDAs and L = L(I")y. Let I'' = (M{, M3, ¥’) be a deterministic SCAS,, where
M is a PDA, 1 < i < 2, such that L = L(I")y. Let k > 3. From I, we construct
a deterministic SCASy,

I'=(My, Ms,..., Mg, V),

where M; is a PDA, for all 1 <14 <k, in the following way.

1. My = M], My = M};

2. M; = ({5}, 2,{S:},{Sis; = Sisi}, 8i,5i,{si}), for all 3 < i < k;
3. U =U"{s384...5}

It is obvious that components Mz to M, are redudant in I'. Therefore, L(I'); =
L(I'")#, and Theorem 6 holds. O

Theorem 7 Letk > 3. For every recursively enumerable language L over an alphabet
Y, there exists a deterministic SCASy,

I'= (M, Ms,..., M, V),
where M; is a PDA, for all 1 <i <k, such that L = L(T')..

PROOF. Let L be a recursively enumerable language over an alphabet ¥. Then,
by Theorem 4, there exists a deterministic SCAS,, I, such that all its components
are PDAs and L = L(I').. Let I = (M7, M5, ¥’) be a deterministic SCAS,, where
M/ is a PDA, 1 <4 < 2, such that L = L(I").. Let k& > 3. From I, we construct
a deterministic SCAS,

= (M, Ms,..., M, V),

where M; is a PDA, for all 1 < i < k, in the following way.

1. Let M| = (@}, %, T, Ry, s}, 51, F}). Then My = (Q1,%,T'1, Ry, 1,51, F}), where
e Q1=Q1U{s1,q1}, where s1,¢1 ¢ Q1;
e I'y =T4 U{S1}, where Sy ¢ T'};
o Ry =R, U{S1s1 = 5151s],Sp = a1 |peQi}

2. Analogously, we construct My from M,.

3. For all 3 <i <k, set M; = ({si,pi,q}, 2, {S:}, {Sisi = Sips, Sipi = Sipi, Sipi —
Qi}asiasi7®)'

231

4. Set U =U'{psps...pptU{s182...8k,q1q2 - - Qi }-
I" works in this way:

1. During its move from s; to s}, M; pushes S! on its pushdown, 1 < i < 2. Simulta-
neously, M; moves from s; to p;, for all 3 < j < k.

2. T accepts (or rejects) its input word. During this phase, M; and My perform their
moves by using the same sequences of rules like M| and MJ, respectively. M3
through M}, do loops over states ps through py, respectively.

3. When M| and M} in TV empty their pushdowns, the pushdowns of M; and My
in T" have S; and Sy on their tops, respectively. At this point, M; through My
deterministically empty their pushdowns by moving to states g; through g, re-
spectively.

Thus, I" accepts its input word if and only if I accepts its input word, which completes
the proof of Theorem 7. O

Theorem 8 Letk > 3. For every recursively enumerable language L over an alphabet
3, there exists a deterministic SCASy,

I'= (M17M25-~'aMka\I’)7
where M; is a PDA, for all 1 <i <k, such that L = L(T') ..

PROOF. Prove this by analogy with Theorem 7 except that states ¢; through ¢
are final. O

Corollary 9 Let n > 2. For every recursively enumerable language L, there exists
a deterministic SCAS,,, I', such that all its components are PDAs and L = L(I'")y.

PRrROOF. This follows from Theorem 1 and Theorem 6. O

Corollary 10 Let n > 2. For every recursively enumerable language L, there exists
a deterministic SCAS,,, T', such that all its components are PDAs and L = L(T)..

PROOF. This follows from Theorem 4 and Theorem 7. O

Corollary 11 Let n > 2. For every recursively enumerable language L, there exists
a deterministic SCAS,,, T, such that all its components are PDAs and L = L(T) ..

PRrROOF. This follows from Theorem 5 and Theorem 8. O

The family of recursively enumerable languages can be also characterized by
SCAS,,, where n > 2, such that all its components are one-turn PDAs.

232

Theorem 12 Let x € {f,e, fe}. For every recursively enumerable language L over
an alphabet X, there exists an SCASy, ' = (M, My, V), where both My and My are
one-turn pushdown automata, such that L = L(T'),.

PRrOOF. Let = € {f,¢, fe}. Let L be a recursively enumerable language over an
alphabet ¥. In [9], it was shown that there exists a simultaneously one-turn two-
pushdown automaton, M, such that L = L(M),. We can construct I' from M in the
exactly same way as demonstrated in Theorem 1, and we can use the same proof to
show the accepted language identity of I' and M. From the construction of I and
from the definition of one-turn two pushdown automaton follows that M; and Ms are
both one-turn pushdown automata. O

Theorem 13 Let x € {f,e, fe} and k > 3. For every recursively enumerable lan-
guage L over an alphabet 3, there exists an SCASy,

= (M, Ms,..., My, V),
where M; is a one-turn PDA, for all 1 <1i <k, such that L = L(T"),.

PROOF. Let x € {f, e, fe} and k > 3. Let L be a recursively enumerable language
over an alphabet ¥.. Then, by Theorem 12, there exists an SCAS,, IV = (M, M5, '),
where M/ and M} are both one-turn PDAs, such that L = L(I"”),. From I", we can
construct I', and then proof the identity of languages accepted by IV and T, in the
same way as demonstrated in proofs of Theorem 6, Theorem 7, and Theorem 8.
Observe that components M3 through M) of ' are all one-turn PDAs. O

Corollary 14 Let x € {f,e, fe} and n > 2. For every recursively enumerable lan-
guage L, there exists an SCAS,,, I, such that all its components are one-turn PDAs
and L = L(T),.

PRrROOF. This follows from Theorem 12 and Theorem 13. O

The previous results are summarized in the following theorem.

Theorem 15 For every L € RE, there are

a) an SCAS,, T such that all its components are PDAs and L = L(T"),, where n > 2
and @ € {f,<, fe};

b) an dSCAS,, T such that all its components are PDAs and L = L(T"),, where n > 2
and x € {f, ¢, fe};

¢) an SCAS,, T' such that all its components are one-turn PDAs and L = L(I'),,
where n > 2 and x € {f,¢, fe}.

PRrROOF. This theorem follows from Corollary 9, Corollary 10, Corollary 11, Corol-
lary 14, and from the obvious observation that deterministic SCAS,,s are no more
powerful than nondeterministic SCAS,;s. O

Next, we study the case when no more than one pushdown component is permitted

in SCAS,,.

233

Lemma 16 Let x € {f,e, fe} and n > 1. For every SCAS,,
r= (M17M2a"'aMn7‘Il)a

where for some 1 <i <n, M; is a PDA, and for all 1 < j <mn, i # j, M; is an FA,
there exists a PDA, M, such that L(M), = L(I"),.

PRrROOF. Let z € {f,¢, fe}. For n = 1, T has only one component, which is a PDA,
and therefore Lemma 16 holds immediately. Further is shown that the lemma holds
also for n > 2, where the case that the only first component of I' can be a PDA is
considered (the other situations can be proved analogously).

Let n > 2 and T = (My, Ma, ..., M,,¥) be an SCAS,,, where M; is a PDA, and
Ms trough M,, are FAs. From T, we construct a PDA, M, such that L(M), = L(T"),,
in the following way.

1. Let My = (Q1,%,T, Ry, 81,51, F1) be a PDA from T, and let
M; = (Qi, %, Ry, 84, F)
be an FA from T, for all 2 < i < n.
2. Set M = (Q,%,T1,R,(s182...8,),51, F), where

e Q={(w) |w e VURF,...F};
e B = {Alwi)a— z{ws) |
Apia — xq1 € Ri1,p2 > q2 € Ra,....Dn = qn € Ry,
W1 =Ppip2---Pn,W2 = G142 - - - qn

(W), {wa) € Q
o ['= {<OJ> |w GFlFQ...Fn}.
To proof that L(T"), = L(M),, we first establish the following two claims.
Claim 17 If ‘
(uprw, p2, ..., pn) Fr (W', qo, .., qn),
then u(pips ... pp)w Fiy W {qiqa ... qu)w', where u,u’ € T, w,w’ € X%, pi,q; € Q;,
1<i<n, and (p1p2---Pn), (Q1G2---qn) € Q.

PROOF. The proof is made by induction on 7 > 0.
Bastis: For i = 0, we have

(uplwaPQa cee apn) F(I)1 (uplwap27 o 7pn)

implies u(p1pa . .. pn)w 8, u(p1p2 . .. pn)w, so the claim holds for i = 0.

Induction Hypothesis: Suppose that the claim holds for all 0 < ¢ < k, for some
k> 0.

Induction Step: If

(uAplaw,pg, e 7pTL) l_F (Ul‘O]_’LU, 02, ..., 071) l_lli (ulqlw/7 qz, ... 7Q’n)7

234

then there exist rules Apia — 2zo1 € Ri, pj = 0; € Rj, 2 < j < n, and words
P1P2 ... Pn, 0102 ...0, € WU F1 F5 ... F,. According to the construction of M from I'
above, this implies that there also exists a rule A{p1ps...pn)a — x(0102...0,) € R,
SO

wA(p1p2 . .. pp)aw Fap uz {0105 ... o))w X/ (qigs . . . g)w,
and the claim holds for k + 1, too. Therefore, Claim 17 holds. O

Claim 18 If

u{p1pa . .. po)w Fiy v (q1go - . . gu)0,
then (uprw,pa,...,pn) Fo (W@’ g, ..., qn), where u,u’ € T, w,w' € X%, pi,q; €
Qi, 1 <i<n, and (prp2-..pn), (0162 - - - qn) € Q.

PROOF. The proof is made by induction on 7 > 0.
Basis: For i = 0, we have that

u(p1ps - .. payw FSy u(pips . .. pa)w

implies (upiw,pa, ..., pn) FS (up1w,pa, ..., pn), so the claim holds for i = 0.
Induction Hypothesis: Suppose that the claim holds for all 0 < ¢ < k, for some
k>0.
Induction Step: If

uwA(p1ps . .. pp)aw b ux{0102 . .. 0p)w F’X/I u{qiqs - . . qu)W’

then there exists a rule A{(p1ps...pn)a — (0102 ...0,) € R, which implies that there
must exist words p1ps . .. Pn, 0102 ...0, € VUE Fy ... F,, and rules Ap1a — zo; € Ry,
p; —~0; €ER;,2<j<n,inT, so

(UAp]_G/LU,pQ, e apn) }_F (ux01w7 02,..., On) }_I]_S‘ (u/qlwl7 q2, ... aqn)a

and the claim holds for k + 1, too. Therefore, Claim 18 holds. O

From Claim 17 and Claim 18, it immediately follows that for every w € ¥*,

(Slslw,SQ,...,sn) l_lx: (’}/fl,fg,fn) lff Sl<51323n>w "7\/[’)/<f1f2fn>,
(S1s10,82, ... ,8n) 1 (q1,G2, -5 qn) HE Sifsis2...sp)w iy (@102 - - qn);
(Slslw,SQ,...,sn) "F (fl,fg,...,fn) lﬁ Sl<5152...sn>w "7\/[<.f1.f2--~fn>;

where v € TS, ¢; € Q;, fi € F;, 1 <i < n. Therefore, L(M), = L(T"),, and Lemma
16 holds. O

Lemma 19 Letx € {f,e, fe} andn > 1. For every PDA, M, there exists an SCAS,,,
' = (My,Ms,...,M,, V), where My is a PDA, and My through M, are FAs, such
that L(T), = L(M),.

PROOF. Let z € {f,¢, fe}. Let M = (Q,X,Tp, R, s, S, F) be a PDA. For n = 1,
' = (M,Q), and the lemma holds immediately. For some n > 2, we construct an
SCAS,,,
I'= (M, Ms,...,M,,),
where M; is a PDA, and M; is an FA, for all 2 < i < n, such that L(T"), = L(M),,
in the following way.

235

1. Set M; = M.

2. For every 2 < i <m, set M; = ({s:}, 2, {si = si},si, {s:}).
3. Set ¥ = Q{s253...5,}

Thus, for every w € ¥*,

(Ssw, sa2,...,80) F5 (vf,82,...,8n) iff Sswti, +f;
(Ssw, s2,...,8n) FF (q,82,...,8n) iff Ssw '_7»1 q;
(Ssw, s2,...,8n) FE (f,82,-..,8n) it Sswhi, f;

where v €'y, ¢ € Q, f € F. Therefore, L(I'), = L(M),, and Lemma 19 holds. O

Theorem 20 For every L € CF, there is an SCAS,, T' containing a PDA and n — 1
FAs as its components such that L = L(T),, where n > 1 and x € {f, ¢, fe}.

PRrROOF. This theorem follows from Lemma 16 and Lemma 19. O

Theorem 21 For every L € LIN, there is an SCAS,, I containing a one-turn PDA
and n—1 FAs as its components such that L = L(T"),, wheren > 1 and x € {f, ¢, fe}.

PRrROOF. Let L € LIN and n > 1. Let € {f,¢, fe}. Then, there exists a one-turn
PDA, M, such that L is accepted by M. From M, as is demonstrated in Lemma 19,
construct an SCAS,,, I, such that L(M), = L(T"),. Thus, I' has only one PDA as its
component, which must be a one-turn PDA.

Conversely, let I' be an SCAS,, with at most one one-turn PDA and arbitrary
number of FAs as its components. Let z € {f,e, fe}. By Lemma 16, there exists
a PDA, M, such that L(T"), = L(M),. By Definition 1, if only one turn is possible
to perform in some PDA component of I, then no more than one turn is possible to
perform in I'. Therefore, from the construction of M from I' in Lemma 16, it follows
that M must be a one-turn PDA, which implies that L(M), € LIN. O

Corollary 22 For every L € Z(dPDA),, where x € {f,¢, fe}, there is an dSCAS,,
I' containing a PDA and n — 1 FAs as its components such that L = L(T'),, where
n>1andy € {f e, fe}.

PROOF. Observe that both Lemma 16 and Lemma 19 also hold for deterministic
variants of SCAS,,;s and PDAs (see their proofs). O

5. Concluding remarks

The result stating that state-synchronized automata systems are computational com-
plete is expectable, because Theorem 1 says that they can be simply transformed
into well-known computational complete model. Theorem 12 demonstrates that even

236

nondeterministic state-synchronized automata systems with one-turn pushdown au-
tomata are computational complete. For the deterministic case, we state the following
conjecture, which we have not been able to verify rigorously, however.

Conjecture 1 Let n > 2. Then, there exists a recursively enumerable language
that cannot be accepted by any dSCAS,, such that all its components are one-turn
PDAs. O

Acknowledgements

This work was supported by the European Regional Development Fund in thq IT4Inno-
vations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), the TACR grant
TE01020415, and the BUT grant FIT-S-14-2299.

6. References

1] Cermdk M., Meduna A., n-Accepting restricted pushdown automata systems.
In: 18th International Conference on Automata and Formal Languages. Com-
puter and Automation Research Institute, Hungarian Academy of Sciences,
Nyiregyhéza, 2011, pp. 168-183.

[2] Chomsky N., Three models for the description of language. IRE Transactions on
Information Theory, 1956, 2(3), pp. 113—-124.

[3] Csuhaj-Varji E., Dassow J., Kelemen J., Pdun Gh., Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London,
1994.

[4] Csuhaj-Varji E., Martin-Vide C., Mitrana V., Vaszil G., Parallel communicating
pushdown automata systems. International Journal of Foundations of Computer
Science, 2000, 11(4), pp. 631-650.

[6] Harrison M.A., Introduction to Formal Language Theory. Addison-Wesley,
Boston, 1978.

[6] Kucera J., On state-synchronized automata systems. In: Drahansky M., Orsdg F.
(eds.), Proceedings of the 19th Conference STUDENT EEICT 2013, Faculty of
Information Technology Brno University of Technology, Brno, 2013, pp. 216-218.

[7] Martin-Vide C., Mateescu A., Mitrana V., Parallel finite automata systems
communicating by states. International Journal of Foundations of Computer
Science, 2002, 13(5), pp. 733-749.

237

[8] Meduna A., Automata and Languages: Theory and Applications. Springer,
London, 2000.

[9] Meduna A., Simultaneously one-turn two-pushdown automnata. International

Journal of Computer Mathematics, 2003(80), 2003, pp. 679-687.

[10] Meduna A., Lukas R., Multigenerative grammar systems. Schedae Informaticae,
2006, pp. 175-188.

