
Schedae Informaticae Vol. 24 (2015): 211–220
doi: 10.4467/20838476SI.16.018.4359

An Optimal Strategy of Resource Sharing
in a Case of State-toggling Agents

Tomasz Wójtowicz
Institute of Computer Science and Computing Mathematics, Jagiellonian University

ul. Lojasiewicza 6, Kraków 30-348, Poland
e-mail:tomasz.wojtowicz@ii.uj.edu.pl

Abstract. This paper presents an optimal scheduling solution for a case of

agents sharing a resource. The amount of resource can not satisfy all agents at

once and in case of runout there is a penalty. Each agent randomly toggle its

state between requiring and not requiring the resource. Using the knowledge

of previous state and probability of change, the scheduling algorithm is able to

calculate optimal number of concuring agents for one turn, that minimizes possi-

bility of collision yet provides as much throughput as possible. Several different

scheduling strategies are tested. The optimal solution adapts automatically to

the value of probability of change. Further experiments show that optimality is

retained if only the average probability of a set of agents is known. A case of

practical application is provided.

Keywords: hard real-time systems, scheduling, shared resource, optimization,

round-robin.

1. Introduction

Resource sharing is one of the most popular topic in computer science regarding
economical usage of available resources. This topic has been covered in a number of
books and resarch reports beginning with E. Dijkstra’s famous Dining philosophers
problem.

The problem presented in this paper regards agents requiring access to a common
resource pool. The number of available resource items per one turn is obviously lower
than the number of agents. The agents are unable to coordinate their requirements

212

nor there is no prior knownledge whether a given agent would require a resource item
during upcomming turn. A situation where agents’ requirement exceeds available
resource creates a failure which induces waste in other resources as for instance time
or energy. This type of problems is being researched at least since Kendall’s paper
[9]. The approach presented in that and following works assumes that a resource
item is produced/consumed with a frequency derived from a distrubition. It means
that at given point an agent consumes with a probabilty of x or abstains with a
probabilty of 1 − x. In this paper we are presenting a different approach. An agent
has a state property. It indicates whether in the previous turn the agent was or was
not in the state of consuming. The state can toggle in each turn with the probability
of p (or remain the same with probability 1 − p). This approach radically changes
the meaning of probability in this class of problems, but also introduces the ability
to forecast the behaviour of an agent based on its state from the previous turn.

This class of problems is important for distributed real-time systems [6, 2]. The
resource that is essential is the available processing throughput per a segment of time.
If the system operates in transactional mode, then either all requests are served or
none. In case the requests overload the system causing failure, that segment of time
is wasted for all of them. In this paper, a state-aware scheduling algorithm reduces
the frequency of failures while keeping the running time at possible minimum.

There are several known papers regarding hard real-time scheduling, such as [7, 4,
3, 5, 2, 1]. In this paper the main concern is not exactly about processor throughput.
Memory usage is the resource that responds to the concept of resource tokens in most
cases, although occasionally processor time may be that resource as well.

Section 1.1. presents the model of state-toggling set of agents. Theoretical prop-
erties of this model are outlined in 2. Section 3. presents results of simulation which
is followed by contruction of optimal scheduling solution in 3.3. then extended to
chaotically behaving agents in 3.4. Section 4. presents a real-life application of this
solution.

1.1. The model

Given is a set of N agents which independently perform their tasks. Each agent
must complete T tasks in a possibly shortest time. Each task takes one round to
complete. The shared resource is a set of tokens which agents may require to complete
a particular task. In the discussed system the number of tokens is L = N

2 , so only
a half of the agents can use a token in each round. If the number L is exceeded,
collision occurs and the round is wasted for all agents.

Each agent has a property which keeps information whether the agent was in state
of using a token in the previous round. In each round the state can be changed with
the probability of p. This specific behaviour is an original approach to the resource
sharing problem, because solutions discussed in the common literature usually assume
that p is a probability that an agent will be using the resource, whereas here it means
that an agent will toggle it state. An algorithm may be introduced to govern agents

213

in order to minimize the number of collisions and time wasted therein. The algorithm
operates by deactivating a certain agent. For a deactivated agent time still is running,
only the agent does not operate, therefore a possible request for a token does not
happen. This paper investigates several algorithms which allow a certain fraction of
agents to operate at once, thereby reducing the number of possible collisions. Then
an optimal algorithm is constructed upon gathered experience. The agents which
completed their tasks also are deactivated, only the time is no longer running.

The oblivious algorithm allows all agents to operate simultaineously, therefore
providing no protection against resource collision. Because no agent is put to inactive
state, then for all agents equally the round will end as a success or failure. This is the
unique property of the oblivious algorithm, that the average execution time is equal
to maximal execution time. This so just solution is however slow – the average of
1000 runs of simulation shows that execution time is as high as 1.85T , which means
that almost every secound round ends in failure. On the other hand this algorithm
can be noted for its efectiveness – in rounds that end successfully the average usage
of tokens is 91.6%.

The opposite approach is called the play-safe algorithm. Because the number of
available tokens is L = N

2 , then the algorithm first disactivates half of the agents,
allowing the active half to finish its job in T time, then it activates the other half
what results in maximum execution time of 2T . By diving the agents into priviliged
and non-priviliged class, the execution can be done without any collisions, at the cost
of twice larger execution time for the half of all. In such approach the argument that
the average execution time has been lowered to 1.5T is about as usefull as conclusion
that a human and a horse have on average three legs.

Studying the properties of the play-safe algorithm we learn that the average usage
of tokens is 49.8%. This gives a clue of possible optimalisation, allowing a certain
fraction of non-priviledged class to run along the priviledged class. Because the tog-
gling process is stochastic, we can not guarantee that even just one supernumerary
agent would not cause resource collision. We can though make that the collisions
would not happen too often. If we denote by K the number of priviledged agents
which requested token in the previous round, we can activate following number of
non-priviledged agents:

A = r · (L−K) (1)

Note the importance of the coefficient r. If r = 0 then we have the ordinary
play-safe algorithm. Because roughly half of tokens is used by the priviledged class,
then r ≈ 3 should provide an oblivious-like mode. The search for the most optimal
value of r is a topic of Section 3. in this paper.

It is however important to note, that all non-priviledged agents must be run in
a round-robin scheduling strategy. Otherwise, if just one agent is inactive during
the first T rounds, then maximum execution time will be at least 2T , invalidating
any effort. Round-robin is the simpliest strategy that provides each agent with an
equal opportunity to advance. The specific constraint L = N

2 is based on real-world

214

application of the model (see Section 4. for details). Proportion like L = N
3 would

duplicate the problem (dividing agents into first priviledged class, second priviledged
class and the rest), complicating the problem in a way that is actually irrelevant to
the main matter.

2. Theoretical considerations

The state of the system can be expressed as a number of agents which require a token
during given round. The system has therefore N + 1 states, which we will denote as
a0 . . . aN . It is desired that states aL+1 or higher are entered as rarely as possible. If
x < y then we can calculate probability of the system changing state from ax to ay
as:

Py|x =
x∑

i=0

(
x

i

)
pi(1− p)x−i

(
N − x
y − x+ i

)
py−x+i(1− p)N−y−i

=

x∑

i=0

(
x

i

)(
N − x
y − x+ i

)
py−x+2i(1− p)N+x−y−2i.

(2)

The formula is very complicated, besides it only provides a probability of state
change. Also it is assumed that all agents have the same toggle probability of p.
Would p be different for each agent, the complication becomes unsupportable. The
point of this chapter is to show that this system has no usefull analytical solution.
Simulation is the only practical way to determine the system’s properties.

3. Simulation and results

3.1. Setup

The simulation was written in C language. Mersenne Twister library was used as
the random number generator, because stdlib is untrustworthy in this matter. Each
agent is represented as a structure containing: activation flag, state flag (whether
was using token in the previous round), progress counter, all the necessary activity
measurement variables and individual state-change probability if used in the given
simulation.

In each round, at first it was decided which agents are requiring the token. The
decision for an agent was based on the input of its state flag, global or individual

215

probability and a random number. The obtained number of agents which require the
token was the decision point whether the round will end in success or failure. Then
for each agent its variables were updated according to the occured set of events. The
simulation ended when all agents have switched to the inactive state due to reaching
the preset value of progress counter.

The main experiment was run with the following properties: agents N = 100,
tokens L = 50, tasks to be completed T = 100. Each simulation was run 1000 times
to ensure repetitiveness and the average was taken as the result.

3.2. Common toggle probability

In the first experiment, the toggle probability p was set the same for all agents and
tested on values [0.1, 0.9] step 0.1. The goal was to find the optimal value of r
in the formula A = r(L − K). First, the algorithms oblivious and play-safe were
simulated, then a devised algorithm, which runs half the agents as the priviledged
class and supplements the number of active agents from unpriviledged class in amount
of formula, running them in a round-robin strategy. The value of r tested from 0.25
to 3.00 with the densiest increment of 0.05 between 0.9 and 1.75 where the most
interesting results belong.

Figure 1 presents the average running time for the entire simulation. As the
simulation was repeated 1000 times, the numbers presented here and in the following
plots are the average of 1000 runs. There are 9 plots for p ∈ [0.1, 0.9], only 3 are
shown for better readability. As seen in this figure, the plots have a minimum point
between 1.0 and 1.5 depending on the value of p. These points are the target points
for the optimalisation discussed in this paper. Note that target points are well below
the oblivious and play-safe results, therefore there is a profit out of this effort.

play-safe 0.5 1.0 1.5 2.0 2.5 oblivious

120

140

160

180

Value of r

N
u

m
b

er
of

ro
u

n
d

s

p = 0.1
p = 0.5
p = 0.9

Figure 1. Average running time in relation to p and r.

Figure 2 presents the maximum running time, i.e. the time at which the last
agent completed its tasks. The minimum points are shifted a little to the right in

216

comparison to the average time plots in Figure 1. Luckily they are not too far, so
there is no need for trade-off. Again the minimum points are well below the results
of the oblivious and play-safe algorithms, proving usefullness of this optimalization.

play-safe 0.5 1.0 1.5 2.0 2.5 oblivious

140

160

180

200

Value of r

N
u

m
b

er
of

ro
u

n
d

s

p = 0.1
p = 0.5
p = 0.9

Figure 2. Maximum running time in relation to p and r.

Figure 3 presents the averaged number of collisions per simulation. All plots
exhibit similar properties. At first they rise slow, in the middle the rise fast, perhaps
exponentially, then again rise slow. The optimal points should remain in the first
sector, before the exponential rise part. Interestingly, the target points for each value
of p lay just at the end of the first sector.

play-safe 0.5 1.0 1.5 2.0 2.5 oblivious

0

20

40

60

80

Value of r

N
u

m
b

er
of

fa
il
s

p = 0.1
p = 0.5
p = 0.9

Figure 3. Number of fails for entire simulation in relation to p and r.

Figure 4 presents an averaged percentage of tokens used in each round. These
plots do not take part in the optimization. Although we would like the utilization
rate to be as high as possible, we are constrained with time as the prime factor.
Interestingly these plots show that the more efficient usage of resources, the higher
risk of failure, punished by the longer running time. The plot for p = 0.9 exhibits
an unobvious behaviour around r = 2.0. Similar aberration is observed in plots for

217

p = 0.8 and p = 0.7 (not shown here). This otherwise interesting behaviour was not
explained because it is not in scope of this paper.

play-safe 0.5 1.0 1.5 2.0 2.5 oblivious

60

80

Value of r

T
ok

en
u

ti
li

za
ti

on
p

er
ce

n
ta

ge

p = 0.1
p = 0.5
p = 0.9

Figure 4. Percentage of token utilization in relation to p and r.

3.3. Optimal solution

The goals for optimization are: minimum average time, minimum maximal time,
minimum number of fails, maximal utilization. As seen in the Fig. 1–4; the first
three synergize while the last one does not. For this reason, utilization does not take
part in optimization. The minimum number of fails is zero for play-safe algorithm and
this not a satisfactory solution. Because of that, number of fails plays secondary role
in optimization, only to ensure that the number is not too high. The intrinsic decision
is whether average or maximum time should be the leading factor in optimization.
Either of these can be used depending on needs. According to paper [6], in real-time
systems the maximum time should be the leading factor. However, because in this
problem maximum and average time correlate at over 85% (play-safe and oblivious
excluded), the average time has been chosen as optimization factor. Additional benefit
of this is that it lowers the number of fails, because its minimum points in the Fig. 1
correspond with smaller values in the Fig. 3.

As seen in the Fig. 1, the minimum average time depends on the value of p. The
minimum points of all 9 plots were found. A linear function r = 1.4375 − 0.375 ∗ p
has been found as the one which passes the minimum points with sufficient proximity,
giving the ultimate version of Eq. (1):

A = (1.4375− 0.375 ∗ p)(L−K) (3)

The above equation was simulated in the same conditions as previous simulation.
The experiment has shown that it matches the best value of fixed r algorithms by
±0.3%. It is assumed that this small discrepancy is a result that the minimum

218

points does not lay on a straight line but on a curve of some sort. It would require
to interpolate a 9th deegree polynomial to follow that curve, yet it is absolutely
unnecessary with such small slippage, therefore the Eq. (3) provides best practical
solution to the problem where all agents share the same toggle probability.

3.4. Independent toggle probability

The previous simulations assumed that the value of p is identical for all agents
throughout the entire simulation. That approach provided an important insight into
the behaviour of the system and allowed to devise a optimal equation (3), which
adapts to different values of p. However in real life cases each agent would have its
own independent value of p which also would change in time. It is a hypothesis that
the algorithm would retain its optimality if the average of all agents’ property p is
assigned as p in the Eq. (3).

The following experiment tested the proposed hypothesis. The value of p was
randomized for every agent before each round. To make even more difficult and life-
like, the random numbers were taken from uniform, not normal distribution. This
way, due to σ = ∞ the entropy was maximalized. The experiment showed that the
hypothesis is correct. The obtained results indicated that the average running time
is only 0.22% worse than the previous experiment with fixed p = 0.5. The maximum
execution time was only 0.67% worse, the number of fails increased by 2.9% and
average utilization of tokens increased by 1.4%. With the uniform distribution the
average value remained around 0.5. To ensure correctness over greater range of p,
subsequent experiments tested distributions averaging on other values between 0.25
and 0.75 and they all came with coherent results.

This experiment proved that the proposed solution, only with knowing the aver-
age of p, can impose an optimal scheduling for agents behaving accordingly to their
independent toggle probability.

4. Discussion

The presented algorithm has been successfully implemented in one of scientific labo-
ratories in Poland. The laboratory is using a unique data aggregation engine, which
probably conforms with the relational model of database, yet it works unlike any
popular SQL-based database engine. The engine is able to provide a certain number
of orthogonal locks both for reading and writing operations which guarantee a correct
concurrency management. However if the number of locks is exceeded, all following
operations are done in non-locking mode, what with 99% chance means data corrup-
tion. In this state all pending operations are cancelled, and the database is rolled
back to the last coherent state, thus wasting all recent effort. It doesn’t mean data

219

loss, because unsaved data remains with the client applications, but it does mean
a substantial time waste.

At first, the database engine was operating like the oblivious algorithm. Once the
growing number of clients exceeded the number of available orthogonal locks, the users
begun to experience annoying data corruption breaks.The number of available locks
could not have been easily increased because it would require more memory and faster
processor to merge that more input in the same time. Because the database engine
was specifically written for that operating system and hardware, nothing could have
been replaced without enormous investment in a total recomputerisation including
new client software. For this reason the management pursued the option of solving
the problem in software. The number of clients never exceeded twice the number of
locks (L < N < 2L), hence the assumption in the model that L = N

2 .
The first attempt made by company’s administrator implemented the play-safe

algorithm. While it remedied the data corruption problem, the user’s annoyance even
grew for those whose client program was unluckly assigned to the unpriviledged group.
The author has then devised an optimal scheduling algorithm using the same method-
ology as presented in this paper. As in the simulation, the average and maximum
running time are decreased in comparison to both oblivious and play-safe strategies,
while the rate of data corruption breaks is being kept at manageable level. With the
achieved optimalisation, the system’s performance apparently is within the tollerance
threshold of a human user.

The author was not authorized to publish the name of the company nor any
actual information regarding the real system for which the optimalisation algorithm
was developed.

5. References

[1] Andersson B., Raravi G., Real-time scheduling with resource sharing on hetero-
geneous multiprocessors, Real-Time Systems, 2014, 50(2), pp. 270–314.

[2] Buttazzo G.C., Bertogna M., Yao G., Limited Preemptive Scheduling for Real-
Time Systems. A Survey, IEEE Transactions on Industrial Informatics, 2013,
9(1), pp. 3–15, doi:10.1109/TII.2012.2188805.

[3] Saifullah A., Li J., Agrawal K., Lu C., Gill C., Multi-core real-time scheduling
for generalized parallel task models, Real-Time Systems, 2013, 49, pp. 404–435.

[4] Shekhar M., Sarkar A., Ramaprasad H., Mueller F., Semi-Partitioned Hard-
Real-Time Scheduling under Locked Cache Migration in Multicore Systems, 24th
Euromicro Conference on Real-Time Systems (ECRTS), 2012, pp. 331–340,
doi:10.1109/ECRTS.2012.27.

[5] Davis R.I., Burns A., A survey of hard real-time scheduling for mul-
tiprocessor systems, ACM Computing Surveys (CSUR), 2011, 43(4),
doi:10.1145/1978802.1978814.

220

[6] Martyna J., Distributed Hard Real-Time Systems: Notions and Performance
Measures, Zeszyty Naukowe UJ, Prace Informatyczne, 1998, 8, pp. 29–44.

[7] Tindell K., Clark J., Holistic schedulability analysis for distributed hard real-time
systems, Microprocessing and Microprogramming, 1994, 40(2–3), pp. 117–134,
doi:10.1016/0165-6074(94)90080-9.

[8] Silberschatz A., Peterson J.L., Operating Systems Concepts, Addison-Wesley,
1988, ISBN 0-201-18760-4.

[9] Kendall D.G., Stochastic Processes Occurring in the Theory of Queues and their
Analysis by the Method of the Imbedded Markov Chain, The Annals of Mathe-
matical Statistics, 1953, 24(3), pp. 338–354.

