
Schedae Informaticae Vol. 24 (2015): 179–195
doi: 10.4467/20838476SI.16.016.4357

Java Based Transistor Level CPU Simulation
Speedup Techniques

Tomasz Wojtowicz
Department of Computer Sciences and Computer Methods, Pedagogical University

ul. Podchor ↪ażych 2, 30-084 Kraków, Poland

e-mail: tomaswoj@gmail.com

Abstract. Transistor level simulation of the CPU, while very accurate, brings

also the performance challenge. MOS6502 CPU simulation algorithm is analysed

with several optimisation techniques proposed. Application of these techniques

improved the transistor level simulation speed by a factor of 3–4, bringing it to

the levels on par with fastest RTL-level simulations so far.

Keywords: CPU, microarchitecture, simulation, registers, pipeline, activity,

6502.

1. Introduction

With a software industry reaching a certain maturity level and the growing amount
of legacy software (and computer system platforms needed to execute it) there is
a movement recently for software preservation [1, 2]. These efforts often involve cre-
ation of execution platforms for the old software that could emulate or even simulate
with high fidelity the hardware that is no longer available [3]. While Instruction
Set Architecture (ISA) level emulation provides high emulation speeds (often able
to execute the code much faster than the original platform) it still lacks the high
fidelity aspect. Very often, for the software that exploited undocumented platform
capabilities or that relied on specific timing characteristics, a special handling in the
emulation code needs to be provided to make it run. That result in long development
time and high effort required to create a reliable emulation at ISA level. Therefore
just recently there are research activities emerging in leveraging low level simulation
as the emulation platform [4, 5]. As long as there is a way to reverse engineer the

180

actual physical design of the chip, either through access to its original design docu-
mentation or through decapping of the actual physical chip - it shall be possible to
turn this information into a working simulator of that chip, capable of running the
software originally written for the platform. On the more forward looking side there
is a brand new world of the Internet Of Things (IoT) emerging, with microchips being
embedded into everything, wearable computing, small IP stacks, microcontrollers in
everything, etc. Many of the solutions here involve dedicated chips, or a bespoke
product combined of multiple small Commercial Off The Shelf (COTS) chips and
a dedicated set of software written at the very low level due to the resource con-
straints on these platforms [6, 7]. An effective emulation platform is needed here to
enable early software creation in parallel with hardware development, to bring down
the time to market as much as possible. In both areas there is an opportunity to
leverage low level simulation, instead of ISA level emulation, or some mixed approach
that involves low level simulation for more complex or custom subsystems, while ISA
or other relatively high level emulation is used for generic subsystems and compo-
nents. The challenge however with low level simulation is usually on the speed side.
Transistor level simulators tend to be slow and of limited usability if near real-time
software execution is required. A faster alternative can be Register Transfer Level
(RTL) simulation, but that on the other hand requires an integrated circuit design
documentation to be available, and that is often not the case for legacy platforms.
In this work a single-threaded, transistor level simulator of a classic 8-bit CPU is
presented, implemented in Java, originally running at a speed of approx. 0.9 kHz on
a desktop PC. The original algorithm is then refined and initial Java implementation
refactored, taking performance into account what eventually enables the simulator to
run at the speed of 3.2–3.5 kHz. This improved speed is comparable with the 4 kHz
speed of the RTL simulator of the same processor [8].

The paper is organised as follows: first previous works and research in this area are
presented, with a focus on the original works on reverse engineering and simulation of
the MOS6502 CPU; then the original model and transistor level simulation algorithm
is presented and its execution is analysed. In the next section some improvements are
proposed both at the algorithmic level and at the Java programming language imple-
mentation level with focus on the simulation speed. In the last section improvement
results are presented and future work is discussed. Note that while the paper focuses
on the specific CPU, the simulator itself can be easily extended to cover other CPUs,
like Motorola 6500, Zilog Z80, Intel 8086 or dedicated chipsets found in the legacy
microcomputer platforms.

1.1. Previous works

In the recent years at least several research efforts have started to use high fidelity
simulation of integrated circuits or microprocessors for emulation purposes. There
is a DICE project (Discrete Integrated Circuits Emulator) [4] that targets old 1960s
and 70s game consoles. The simulation there is implemented at the level of individual
Transistor-Transistor Logic (TTL) components. On a modern PC with a 3GHz CPU

181

this simulator is capable of running a relatively simple Pong or Breakout game console
at near real-time. On the other hand there are Field Programmable Gate Array
(FPGA) based prototypes that try to simulate the circuits via a properly programmed
FPGA board. These projects like Amiga Minimig [9] or Atari ColdFire [10] are
capable of running the emulated platform even faster than the originals, keeping
all the nuances of the original hardware. The down side here is that they require
dedicated hardware, FPGA boards like Xilinx Spartan or Altera Cyclone. One of the
most impressive efforts recently was reverse engineering of the MOS6502 CPU, via
decapping and digitalization of high resolution photographs of the different layers of
this CPU [5]. This resulted in an accurate CPU model created at the transistor level.
Part of that project was also to develop a working simulator of that CPU, capable of
executing an original binary code with a reasonable (but not even close to real-time)
speed. The original simulator implementation in JavaScript was capable of running
the CPU at 1Hz level in a web browser. Further advancements in browser technologies
allowed the model to run at approx. 250Hz speed (assuming all the visualisation was
disabled). Several ports of the simulator followed, with low-level C implementation
capable of reaching around 1-1.5 kHz. The fastest reported software implementation
involved a translation of the transistor level netlist into an RTL level design of the
CPU, and running such a model in a Verilator. Moving the level of abstraction up
allowed that RTL model to reach the speed of approx 4 kHz on the modern PC [8].

1.2. Proposed approach

In this paper authors Java based implementation of the 6502 simulator described
above is taken as a starting point [11]. This implementation runs on a modern desktop
PC (Intel i5, 2.6GHz, 8GB RAM, Windows7 64bit) at a speed of approx 0.9 kHz (on
JRE 1.7, 64bit). Runtime characteristics of the simulator are gathered and analysed.
The improvement recommendations are given in two main aspects:

� Java language and platform: as Java is a managed runtime environment, that
involves for example translation and compilation (JIT) of the byte code into the
native code in runtime, garbage collection, use of specific platform libraries (e.g.
Java collections) – there are some recommendations given at the programming
language level that improve the performance of the simulator [10]. These rec-
ommendations can be helpful for any other low level simulator written in Java,
they are by no means this simulator or the particular CPU model specific.

� Simulation algorithm: these are the recommendations and improvements based
on the analysis of this particular simulation algorithm applied to the particular
CPU (6502). It means that while they may be beneficial to other CPU models, it
shall be carefully measured for other CPUs. Most likely comparable CPUs (like
Motorola 6500 or Intel 8086) as they share in general a similar architecture will
exhibit a similar behaviour and thus will react to the same set of improvements.

To ensure the improvements are systemic and not just for corner cases, several
factors were taken into account:

182

� Java JVMs, due to JIT are known for so called ramp-up times. That means that
first phases of code execution can be a bit slower, but once the JIT compiler
settles, and has a relatively long trace of code execution, it will optimise it
resulting in a higher execution speeds later on. The ramp-up time varies between
applications. It depends on the application type - it can be much longer for web
server based applications (even in range of tens of minutes), but it also depends
on whether a particular part of the application code was executed already or not.
In case of the CPU simulator the ramp-up time is relatively low, and is in range
of 10–15s at most. Also, by the nature of the simulator, vast majority of its code
is executed straight from the first cycles of the simulated CPU. Therefore while
the reliable measurements of the speed need not to be taken on early cycles; it
is expect the speed will stabilise after several thousands of cycles.

� Related to the above is the impact of Garbage Collector (GC) on the simulator
speed. In implementations leveraging a dynamic creation of objects in runtime
that may become a serious factor and may result in periodic speed drops during
the simulation, when the GC ’kicks in’. That at some point later could result
in speed ’hiccups’ visible to the user, especially if the simulated speed reaches
the interactive, real-time levels.

� To ensure that model analysis and improvements are not exploiting character-
istics of certain binary code that is run through the simulator - at least several
6502 benchmark programs are used during the speed measurements.

� To ensure that improved implementation is not introducing errors to the simu-
lation core – it is tested against the initial, reference core implementation. For
at least several thousands of cycles all the key registers, address buses and data
buses are checked with the reference implementation.

2. Original algorithm and its analysis

MOS6502 is an 8-bit little endian general purpose processor with an 8-bit data bus
and 16-bit address bus. Therefore it can directly access 65535 bytes of RAM memory,
but higher amounts of memory are also supported via the bank switching. It was
originally running with speeds range of 1–2MHz. It was usually delivered in a 40-pin
DIP package. At the integrated circuit level it consists of approx. 3500 depletion-
mode MOSFET transistors, resulting in approximately 1400 logic gates.

2.1. Simulator overview

Decapping the 6502 and taking high resolution transistor level imagery of CPU layers
gave the community an access to the complete CPU netlist [5] that can be loaded to
the simulator software and enable the simulation at the single transistor level.

183

Figure 1. Excerpt of CPU schematics with transistor netlist.

The diagram above (Figure 1) shows a small excerpt of CPU schematics with
transistors interconnected by a set of segments (dark grey parts of transistors denote
gates, other connections are C1 and C2). The corresponding netlist is specified in
2 datasets of form (excerpt):

[364,’-’,1,1593,2562,1525,2562,1525,2591,1593,2591],

[365,’+’,1,8232,6988,8152,6988,8152,7011,8198,7011,8198],

[365,’+’,1,8461,7038,8484,7038,8484,6990,8440,6990,8440],

for segments (connections between transistors, and special segments like VCC, VSS
or CLK). The first parameter is for segment ID, the second stands for default segment
state, the third is for layer where the segment is in the layout (relevant for visualisation
only), followed by the polyline defining the physical layout of the segment on the
board. Multiple definitions for the same segment indicate more complex physical
implementation (multiple polygons on the board).

The second dataset of form (excerpt):

[’t24’, 710, 1495, 348, [7373, 7394, 5351, 5380]],

[’t25’, 1096, 1100, 558, [1373, 1434, 3928, 4213]],

[’t26’, 1096, 558, 1660, [1267, 1285, 4048, 4139]],

[’t27’, 1096, 855, 657, [1197, 1241, 3940, 3957]],

[’t28’, 1503, 558, 744, [6928, 6974, 4477, 4570]],

184

is for the actual transistors. The first value in the line denote transistor ID (name),
second is it’s gate segment, third and fourth are its corresponding C1 and C2 segments.
The lists that follow are transistor bounding boxes (for visualisation purposes only).
Both datasets are loaded into the simulator at start up and dynamically wired in
software. That means any alternative CPU could be loaded and simulated if only the
complete netlist is available.

Figure 2. Visualization of CPU internals.

As part of [11], based on the original JavaScript code [12], a Java based imple-
mentation of this CPU model was built. Original algorithm was implemented using
Java collections, with the focus being on the visualisation of the CPU internals (see
Figure 2). Focus of the current paper is on the simulation performance.

185

2.2. Simulation algorithm overview

The best way to understand the simulation algorithm to be optimized is to present
it in a top-down approach. MOS6502, as most of traditional CPUs, is a sequential,
synchronous integrated circuit being driven by the clock (CLK) and the current state
of its inputs (with data bus and address bus being the most important from the
functional perspective). Therefore the top level loop pseudocode looks as follows:

halfStep()

{

if (CLK==HIGH)

{

CLK=LOW;

recalcSegmentList(CLK);

if (CPUstate.allowsDataBusWrite)

{

writeDataBus(memory[readAddressBus()]);

recalcSegmentList(DATA_BUS);

}

}

else

{

CLK=HIGH;

recalcSegmentList(CLK);

if (!CPUstate.allowsDataBusWrite)

{

writeMemory(readDataBus(), readAddressBus());

}

}

}

Key next level procedure is recalculating the state of the CPU based on modified
inputs (like CLK – clock or the data bus – that is populated with data fetched into
the CPU pads from a proper place in memory). Its high level pseudocode is shown
below:

recalcSegmentList(listOfSegments)

{

nextIterationList = new List();

while (listOfSegments.size>0)

{

foreach (segment in listOfSegments)

{

recalcSegment(segment);

//that involves populating nextIterationList

}

listOfSegments = nextIterationList;

186

nextIterationList = new List();

}

}

The above pseudocode highlights the iterative nature of the algorithm. Usually
it takes more than a couple of iterations each half cycle (on each switch of the CLK
value) to stabilise the whole CPU state – and then listOfSegments becomes empty.
From the measurements the number of iterations required to reach the stable CPU
state (stable state of all its segments and transistors) is between 10 and 18 and depends
on the size of the CPU itself (the amount of segments and transistors). Within each
of the iterations a list of segments possibly switching the state is evaluated. This is
performed by the following function:

recalcSegment(segment)

{

//there is no point to evaluate

//ground (VSS) or power (VCC)

if (segment == GND or PWR) return;

segmentGroup = new List();

addSegmentToGroup(segment);

newState = getGroupValue(segmentGroup);

foreach (segment in segmentGroup)

{

if (segment.state!=newState)

{

Segment.state = newState;

foreach (tr where tr.gate=segment)

{

if (tr changes to on)

{

addToNextIterationList(tr.c1);

}

if (tr changes to off)

{

addToNextIterationList(tr.c1);

addToNextIterationList(tr.c2);

}

}

}

}

}

The above pseudocode first creates a group of segments (segmentGroup) inter-
connected via enabled transistors with the examined segment. Then based on the
members of that group calculates the new value of the group. When the value is
established, all segments in the group that have a different value are checked whether
they are gates for any transistor (that in turn would mean the transistor state needs

187

to change). Segments that are impacted by transistor state changes are added to the
recalculation list for the next iteration. When the recalculation list is empty – the
CPU reaches a stable state. The segment group creation is implemented as follows:

addSegmentToGroup(segment)

{

if (segmentGroup.has(segment)) return;

if (segment==VSS or VCC)

{

segmentGroup.add(segment);

return;

}

foreach (transistor in segment.c1c2List)

{

if (transistor.state=on)

{

if (tr.c1=segment) addSegmentToGroup(tr.c2);

//note the recursion!

if (tr.c2=segment) addSegmentToGroup(tr.c1);

}

}

}

Note that in the original algorithm this is a recursive function (as highlighted
above). Finally a pseudocode to evaluate value of the group:

getGroupValue(segmentGroup)

{

if (group.contains(GND)) return false;

if (group.contains(PWR)) return true;

if (group.contains(segment.state=pullup))

return true;

return false;

}

The algorithm every CLK cycle iterates through the integrated circuit, taking
the changes on the CPU pads and evaluating the new state of the segments and
transistors. To some extent it resembles event based simulation methods that works
on the logic gate level, but in this case the ’events’ are happening at transistor and
segment level.

2.3. Internal algorithm statistics and observations

Profiling of the original implementation code exposed the following CPU usage.
Large part of the simulation is spent in addSegmentToGroup() method. Another

significant contributor is a method that encapsulates the addSegmentToGroup – re-
calcSegment(). That means these methods are the hotspots of the simulation, and
optimising these shall give some speed ups.

188

Table 1. CPU time spent in various methods of the simulation (JProfiler, sampling
profiling method)

Method CPU[%]

halfStep() 99.6

-recalSegmentList()(CLK to low) −44.2

–recalcSegment() −41.2

—addSegmentToGroup() −26.2

-recalcSegmentList()(CLK to high) −37.4

–recalcSegment() −34.8

—addSegmentToGroup() −22.6

Looking at addSegmentToGroup() it is worth to analyse how the recursion scheme
is used. It turn out that the size of the groups created is extremely small (comparing
to the size of the whole chip), and tends to be shifted into a low single digit values.

Figure 3. Group size distribution.

The chart (Figure 3) shows the amount of groups of certain size (from 1 to 7
segments, no groups of 8+ segments were spotted), as captured over time, in 3 differ-
ent series (where 46000 groups series corresponds to approximately 80–90 full CPU
cycles). This highlights the fact that majority of groups created (vs. all groups) is of
1–3 size. That means there is a relatively high overhead in recursive call of addSeg-
mentToGroup() method comparing to the size of the group. Another observation
is that there are a relatively high number of groups created per cycle (on average
around 260 groups). That means there is a massive amount of calls to that method
per cycle, multiplied by recursive calls. As each recursive call involves performing
some additional operations on the stack – flattening this function, and replacing the
recursive calls with iterative approach should yield some performance benefits.

Another observation is that the actual implementation of many of the highlighted

189

methods either relies on Java collections (like ArrayList or Hashmap), that are dy-
namically created on each iteration, or assuming the basic static (in size) lookup
arrays are used – requires proper cleaning of these lookups between the iterations:

� In the creation case, while the code looks clean there is obviously an overhead of
collection implementation and creation of the new collection objects. Moreover
occasionally GC kicks in, trying to retain the memory from objects that are no
longer referenced and used.

� Even if the Java collections are used only for static collections (e.g. global list
of segments or transistors – that are referenced by name or by identifier from
inside the algorithm) – fetching them using Collection.get(key) is an additional
overhead to the simulator.

� In the second case, when flay arrays are used instead of collections, all the
performance gains can be lost, if these arrays needs to be cleaned up every
iteration (especially inside the addSegmentToGroup() method) in a brute force
way (or re-allocated). Algorithm analysis shows there are at least several places,
where some information can be reused between iterations (memoization), to
avoid the need of whole array reinitialisation or creation of new object.

Another observation is that more than 50% of all the groups created as part
of recalcNode() contains the VCC segment (power) or VSS segment (ground). That
observation can be leveraged in at least several places, structuring the checks vs. these
segments properly, and pushing them up in the method body whenever possible. That
allows cutting method code execution as early as possible. Based on these observations
some improvements are proposed that as a result increased the simulation speed by
a factor of 3–4.

In practise what works best is a combination of functional bounding boxes and
data paths between these functional areas. Therefore in our visualisation framework
this is all configurable by the user.

3. Proposed improvements

3.1. Optimisations specific for Java language and runtime environment

3.1.1. Refactoring of addSegmentToGroup() method

As noted above, this particular method takes almost 50% of the whole simulation
CPU time. Therefore this method is considered as a hotspot and refactored to use
iteration instead of recursion. Moreover group list implemented with ArrayList is
replaced with standard integer array – groupArray. Also for each new group the old

190

groupArray is reused, without any cleanup, thanks to use of proper indexes. The
refactored method will become of form:

addSegmentToGroup(segment)

{

//leverage previous group information

//to clean the groupContains lookup

for (int i=0;i<groupArrayMax;i++) groupContains[i]=false;

// proper play with indexes allows to reuse groupArray

// without a need to clean it for every new group

groupArrayMax=0;

addedPos=0;

tabletoAdd[0]=segment;

maxPos=1;

//flags for ahead of time group value calculation

groupTrue=false;

groupFalse=false;

//this allows to eliminate recursive calls

while (addedPos<maxPos)

{

segmentId=tableToAdd[addedPos];

if (groupContains[segmentId]

{

addedPos++;

//no need to do anything for this segment, move on

continue;

}

groupContains[segmentId]=true;

groupArray[groupArrayMax++]=segmentId;

if (segmentId==VSS) { groupFalse=true; continue; }

if (segmentId==VCC) { groupTrue=true; continue; }

foreach (transistor in segment.c1c2s)

{

if (transistor.on)

{

if (transistor.c1==segment) tableToAdd[maxPos++]=transistor.c2

if (transistor.c2==segment) tableToAdd[maxPos++]=transistor.c1

}

}

}

}

By these changes all recursive calls are eliminated as well as dealing with all
dynamic collections. As this method is called hundreds of thousands of times per

191

second, any saving on either allocation of new object or additional method call will
yield large performance benefits.

3.1.2. Introducing flat arrays on top of collections

Most of dynamic lists were replaced with static arrays. This applies for groupList in
the original code replaced with groupArray. Also all static lists and hashmaps (for
global transistors list, global segment list, gates list for a given segment, C1C2 list for
a given segment, etc.) were augmented with static arrays. That helped eliminating
any overhead on referencing to these lists in the critical parts of the simulation (like
in addSegmentToGroup()). Most of the costly internal Collection.get() and valueOf()
calls were removed.

3.2. Optimizations in the algorithm itself

Below are several recommendations for the algorithm itself.

3.2.1. Ahead of time group value calculation

One of improvements is based on the observation that as the group gets created (as
part of the addSegmentToGroup() recursive method, or its refactored flat, iterative
based version) – all the information that is needed to calculate the group value is
already present. Therefore instead of performing a full iteration through the group as
part of the getGroupValue() the value of the group can be set every time the segment
is added to the group and memoized. Two additional boolean fields in the class are
used for that:

boolean isGroupTrue

boolean isGroupFalse

At group creation they are both set to FALSE. Then whenever a segment is added
in addSegmentToGroup() to the group, it’s checked against GND and PWR and the
above flags are set accordingly. Finally the getGroupValue takes a form like below:

getGroupValue(segmentGroup)

{

if (isGroupFalse) return false;

if (isGroupTrue) return true;

if (group.contains(segment.state=pullup)) return true;

return false;

}

192

It was observed that more than 50% of groups contain either GND or PWR.
The above change allows then much faster group value evaluation in all these cases,
without a need of iterating through the group.

3.2.2. Leveraging information from previous iteration

Part of the refactored, flat and iterative addSegmentToGroup() is a lookup boolean
array groupContains[]. Every time new group is created, all positions in this lookup
array shall be set to false. A naive, brute force approach would be to either iterate
through the array for each group or to create the array from scratch. With the
first approach there is obviously an overhead on iterating over MAX TRANSISTORS
elements (where in 6502 MAX TRANSISTORS count reaches 3500). With the latter
approach there is an overhead related to memory allocation for a brand new array
and also CPU time consumed by the GC. What can be used alternatively is the
groupArray and its groupArrayMax index. As groups are relatively small, iterating
over previous group up to the previous groupArrayMax and setting the corresponding
groupContains[id] entries to false will effectively prepare it for the next group.

3.2.3. Cutting method execution as early as possible

In several places of the original algorithm it was observed, that parts of the code shall
not be executed at all. This is especially relevant for sections of the code that do not
make any sense to execute for special segments, like VCC (power) or VSS (ground).
While execution of the code does not have any impact on the actual simulation (pro-
grams run just fine), cutting the execution early helps in performance improvements.
One of such places is highlighted below – with additional check added:

recalcSegment(segment)

{

//there is no point to evaluate

//ground (VSS) or power (VCC)

if (segment == GND or PWR) return;

segmentGroup = new List();

addSegmentToGroup(segment);

newState = getGroupValue(segmentGroup);

foreach (segment in segmentGroup)

{

if (segment==VCC or segment==VSS) continue;

if (segment.state!=newState)

{

Segment.state = newState;

193

foreach (transistor where transistor.gate=segment)

{

if (transistor changes to on)

{

addToNextIterationList(tr.c1);

}

if (transistor changes to off)

{

addToNextIterationList(tr.c1);

addToNextIterationList(tr.c2);

}

}

}

}

}

4. Improved implementation results

Once the above improvements are applied – significant speed gains are observed (see
Figure 4).

Figure 4. Simulation speed improvements.

194

The chart above shows a series of speed measurements taken on initial imple-
mentation (reaching 0.9 kHz), then once the algorithmic improvements are applied
(1.6 kHz) and finally once the Java/JVM refactoring is implemented (∼3.2 kHz). The
measurements were taken every full 1000 CPU cycles (so were measured over 20 000
CPU cycles). Final implementation (with all optimisations) was tested against 3 dif-
ferent 6502 benchmark programs (Disco [13], Test6502 – as originally showcased in
[5] and Starfield [13]), to avoid optimising for particular sequence of machine code
commands. The results of these tests show consistent improvements in speed. That
puts this transistor level simulator implementation in range of higher, RTL level sim-
ulators.

5. Further work discussion

It was presented, that applying some point optimisations on the implementation lan-
guage level and optimising the algorithm in some carefully selected hotspots allowed
increasing significantly the simulation speed. It shall be noted however that there is
still potential for further speed improvements by exploiting the memoization especially
in the area of group creation. Groups (‘splats’ of locally interconnected segments, see
Figure 5) are small in size. The reach of the group depends on the on/off state of
transistors close to the group.

Figure 5. Independent group splats of interconnected transistors.

On the figure above several subsequent evaluated groups are highlighted (segments
in white, yellow bounding box for highlight purposes only). It is worth to explore the
option of group creation lookup tables (where groups for a given segment would be
memoized, and fetched from the lookup table based on the state combination of nearby
transistors). Another area of improvement may be in enabling the parallelism of the
algorithm. Currently it is strongly sequential, single threaded, but visualising and
observing how subsequent groups are evaluated often in far, independent areas of the
chip, indicates there is a feasible option to levelize the transistors, and make some
calculations in parallel.

195

6. References

[1] Matthews B., Shaon A., Bicarregui J., Jones C., A framework for software preser-
vation. The International Journal of Digital Curation, 2010, 5(1), pp. 91–105.

[2] Trevor O., Preserving.exe: Towards a National Strategy for Software
Preservation. NDIIPP. http://www.digitalpreservation.gov/multimedia/docum
ents/PreservingEXE report final101813.pdf, 2013 [Accessed 7-July-2014].

[3] van der Hoeven J., van Wijngaarden H., Verdegem
R., Slats J., Emulation – a viable preservation strategy.
http://dioscuri.sourceforge.net/docs/Emulation report KBNA 2005 en.pdf,
2005 [Accessed 5-March-2015].

[4] Adam, DICE - Digital Integrated Circuit Emulator. http://adamulation.
blogspot.com/, 2012 [Accessed 5-July-2014].

[5] James G., Silverman B., Silverman B., Visualizing a classic cpu in action: the
6502. In: SIGGRAPH Talks, ACM, 2010.

[6] Dunkels A., Contiki Project. http://www.contiki-os.org/, [Accessed 10-March-
2015].

[7] Dunkels A., Gronvall B., Voigt T., Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (Emnets-I), IEEE, 2004.

[8] S. E., 6502 Simulating in Real Time on FPGA. http://visual6502.org/wiki/
index.php?title=6502 - simulating in real time on an FPGA, 2011 [Accessed 5-
March-2014].

[9] Van Weeren D., Amiga Minimig OpenSource Project. https://code.google.com/
p/minimig/, 2010 [Accessed 8-March-2015].

[10] Alles M., Amsdon L., Aschwanden F., Atari ColdFire Project. http://acp.atari.
org, 2009 [Accessed 8-March-2015].

[11] Wojtowicz T., Visualizing cpu microarchitecture. Schedae Informaticae, 2015,
23.

[12] James G., Silverman B., Silverman B., Visual 6502 CPU simulator.
http://www.visual6502.com/, 2011 [Accessed 5-July-2014].

[13] Soreng S., 6502 Compiler and Emulator in Javascript. http://www.6502asm.
com/, 2009 [Accessed 28-March-2015].

