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Abstract. In this paper, a novel probabilistic tracking method is proposed. It

combines two competing models: (i) a discriminative one for background clas-

sification; and (ii) a generative one as a track model. The model competition,

along with a combinatorial data association, shows good signal and background

noise separation. Furthermore, a stochastic and derivative-free method is used

for parameter optimization by means of the Covariance Matrix Adaptation Evo-

lutionary Strategy (CMA-ES). Finally, the applicability and performance of the

particle trajectories reconstruction are shown. The algorithm is developed for

NA61/SHINE data reconstruction purpose and therefore the method was tested

on simulation data of the NA61/SHINE experiment.
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1. Introduction

In the field of High Energy Physics (HEP), reconstruction of charged particle trajec-
tories is a challenging task in terms of efficiency and computational complexity. The
first commonly used techniques were histogramming and Hough transformation [1].
Unfortunately, histogramming shows poor efficiency, when dealing with high density
of tracks and relatively high measurement uncertainty, whereas the Hough Transfor-
mation is characterized by high computational complexity compared to its efficiency.
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The flaws of employed methods became more visible during the quest for scientific
discoveries which lead to higher energies, implying higher multiplicity of particles. In
late 90’s the Kalman filter was introduced to event1 reconstruction in HEP by Billoir
[2–4] and Fruhwirth [5], becoming the most popular algorithm for particle trajectory
reconstruction.

The Kalman filter [6] lies under most of track reconstruction algorithms used in
modern experiments, including experiments located at the Large Hadron Collider
(LHC) [7]. The LHC, located at CERN in Geneva, is the world’s largest and most
powerful particle accelerator. All four LHC experiments based their algorithms on
the Kalman filter with great success: ATLAS [8,9], CMS [10–12], ALICE [13,14] and
LHCb [15–17].

Despite of the success of Kalman filter, there are parallel efforts to develop new
tracking algorithms which use much simpler models, and at the same time provide
similar performance without using an approximation. Often, creation of the state
transition, control and observation matrices is difficult, especially when dealing with
multidimensional data. Furthermore, a desired feature is to eliminate slow combina-
torial algorithms for newly included particle detectors in the system.

In order to simplify such excessive processes, a search for a more general algorithm
was performed. The field of Machine Learning turned out to be a natural choice.
For reference, many techniques were studied, namely the Cellular Automaton for
the LHCb Outer Tracker [18] as well as a recursive neural network known as Hopfield
Network in the LHCb Muon System [19], developed in the LHCb experiment. Another
experiment, ALICE, presents an applicability of the Denby-Peterson network for the
Inner Tracking System [20–22]. Those new methods are often accompanied by the
Kalman Filter[18, 20–22]. Applying a search for potential points for extension of
track candidates, these methods preserve the drawback of Kalman filter. A detailed
overview of the state of event reconstruction techniques in HEP is provided in [23]
and [1].

In this paper, a novel evolutionary algorithm is presented along with application
on particle trajectory reconstruction in the NA61/SHINE experiment, located at the
CERN SPS accelerator. The facility of NA61/SHINE experiment [24] consists of many
sub-detectors, where the key componets are the Time Projection Chambers (TPC)
[25] shown in Fig. 1. Vertex TPCs are considered problematic due to the presence of
the magnetic field and very high track densities. Therefore, our study is focused on
the vertex TPC local track reconstruction.

2. The raw data

In order to understand the algorithm, the mechanism of acquiring the data has to be
presented. First, we will describe detector working principles and the raw data output.
Second, the clusterization algorithm will be explained, which is the last processing

1 An event refers to the results of a single fundamental interaction, which took place between
subatomic particles.
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Figure 1. Simplified detector configuration of the NA61/SHINE facility. The beam,
consisting of particles accelerated to relativistic speeds, is projected on a fixed target.
The produced particles traverse the Time Projection Chambers (TPCs), where their
trajectories are bent by the∼ 1.5T magnetic field of the superconducting spectrometer
magnets.

step before tracking. Finally, the nature of the particle trajectories is briefly described
in order to define the problem which needs to be solved by the presented algorithm.

2.1. Time Projection Chambers

A Time Projection Chamber (TPC), indicated in Figure 1, consists of particle de-
tectors placed inside a volume of noble gas located in a homogeneous electric field.
A particle passing within the TPC sensitive volume ionizes the gas. The resulting pri-
mary ionization electrons drift toward the amplification-and-readout plane due to the
electric field, as show in Figure 2. The amplification-and-readout plane, containing an
array of readout pads equipped with an amplifier, a time sampler and charge digitizer
electronics, provides the digital data about the ionization trace. The Z coordinate
along the track is parameterized by the padrow location index. At a given padrow,
the X value and Y value are derived from the charge deposit profile of the track in-
tersection with the padrow: the X coordinate is determined by the charge deposition
intensity along pad index, whereas the Y coordinate (drift depth) is determined from
the charge deposition profile in terms of time slice index, after Detector/clusterization.
The described structure of raw data is shown in Figure 3. A number of detector effects
can slightly influence the shape of a measured charge deposition cluster of a track in-
tersection with a padrow. For instance, particles traversing the bottom part of the
detector, and thus having a larger drift path, produce clusters with a larger radius due
to charge cloud diffusion in the working gas. This implies a deterministic distortion
effect on the signal. Fluctuations of the ionization process along with the electronic



162

x

z
y

Elecric
field

Track Electrons

Padrow

Time slice

Detection 
volume

Figure 2. Simplified illustration of TPC working principle.

pickup noise on the readout pads, on the other hand, superimpose a statistical uncer-
tainty on the measured charge depositions. The ensemble of all such detector effects
complicates the task of track pattern recognition in the system. Further readings on
the data readout is provided by [26] and [27].

2.2. Clusterization of ADC signals on a padrow

The number of deposited charge ADC signals within one event amounts to about
5 × 107 regardless what type of reaction is considered. It is a considerable amount
of data, especially in a situation where millions of events per reaction are collected.
Therefore, reduction of the data is needed by means of charge clusterization on each
padrow. This approach leads to significant reduction of the data size (factor of around
thousand for low particle multiplicity events). We aimed at having a fast clusterization
and therefore used a simple algorithm with value based start and stop criteria and
subsequent quality assessment of parameters such as shape, maximum and average
values of ADC signals. In the end, we produce the clusters with a point in the 3D
space as the main attribute.
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Figure 3. Maximal value of digitalized charge within one time slice (ADC signal)
measured for every pad in second sector of vertex TPC 1. One can recognize trajec-
tories produced by four traversing particles.

2.3. Particle motion

Recognition of particle trajectories in chambers without presence of magnetic field
such as MTPCs, reduces the problem to finding straight lines. However, when mag-
netic field is applied, the equation of motion has to incorporate the deflection caused
by the Lorentz force Fl

Fl =
dp

dt
= q · (E + v×B) ≈ q · v×B (1)

In case of NA61/SHINE, the strength of the electric field in the TPCs is of the
order of ∼ 20kV/m, whereas the magnetic field force is approximately ∼ 3 · 108V/m.
Therefore, the neglection of electric field is justified. The elapsed time t along the
track flight can be reparameterized using flight path length s as dt = ds/v, where
v = |v| is the magnitude of velocity vector. Introducing p = |p| for the momentum
magnitude, the unit vector e = v/v = p/p gives us the following equation

de =
q

p
· e×B · ds (2)

Afterwards, using a simple but tedious mathematical transformation, the path length
s is reparameterized by detector coordinate z, see for instance [28]. This leads to
a system of differential equations, z being the running parameter, resulting in the
following extrapolation operator
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Q : T × R→ T, (3)

where T is a track parameters vector space. Thus, an outcome of the Q, given a track
parameter vector Θ0 and destination z, is equal to

Θ̂ = Q(Θ0, z). (4)

Often instead of the above equation, an approximation is used, e.g. a helix track.
That is only possible in situations where the magnetic field is relatively homogeneous.
However, to acquire a homogeneous magnetic field in practice is a challenging task,
and therefore the helix equation may not always be a good approximation to the
true solution of our differential equation. Nevertheless, the helix approximation may
be handy for rough track parametrization in the parts of an algorithm where great
accuracy is not required.

3. Evolutionary tracker
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Figure 4. Values of digitized charge
for every pad and every time slice
for an example padrow. The clusters
(circular spots), determine locations
where particles traversed the particu-
lar padrow.

The evolutionary tracker is a recursive algo-
rithm that uses a series of measurements ob-
served over an elapsing parameter such as
time or z coordinate in our case, and pro-
duces estimates of a track parameters Θ.
The algorithm involves two stages: predic-
tion and measurement update. A prediction
is made by extrapolating a track parameter
vector with equation (3) to a Z position of
a next measurement, namely a cluster as in
Section 2.2.

The proposed algorithm consists of three
principal components. (i) Model of an event
– a whole event is modeled using a discrim-
inative model of a background and a gener-
ative model of a particle trajectory. Compe-
tition between those models shows good sig-
nal to noise separation. (ii) Measurement-
to-track association – this is performed us-
ing breadth search along with sorting of the
measurement in order to construct time-line.
(iii) Continuous track parameter optimiza-
tion – is realized by means of the Covariance

Matrix Adaptation Evolutionary Strategy (CMA-ES), stochastic and derivative-free
method proved to be working for an objective ill-conditioned function with disconti-
nuities where other derivative based and Quasi-Newton methods failed. In this section
each of the components are described.
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3.1. Model of an event

The event model consists of the two competing models, the generative model of a track
and discriminative model of a background. The aim of the competition is an efficient
method to separate signal from noise. In this section both models are described along
with a reason why the generative model was used for a track, whereas discriminative
models shows, in general, better performance [29].

A prior probability is estimated from simulated training samples and a likelihood
function is constructed based on known detector resolution. A one variable logistic
regression was used for the background, which proved to be sufficient.

3.1.1. Näıve Bayes trajectory model

The Näıve Bayes trajectory model assumes all parameters to be independent and
identically distributed as the track parameters are. Interestingly, the Näıve Bayes
demonstrates good performance in practice [30], also for problems which violate the
assumption of statistical independence. The explanation of this phenomenon can be
found in [31], which shows that the optimality of Näıve Bayes approach does not
depend on the independence attribute and the applicability is much greater than the
original restrictive assumptions would suggest.

The main reason of choosing a generative model is the fact that uncertainty of
track cluster position estimates are well known, hence there is no need to estimate
it from scarce labeled data. With constant arbitrary likelihood parameters, only a
prior probability estimate is required. Therefore, the Näıve Bayes model was chosen
although the the logistic regression is expected to overtake the performance of the
Näıve Bayes method as the number of training samples is increased [29].

The particle trajectory model is described as

Posterior probability︷ ︸︸ ︷
P (Θ̂|S(c)) ∝ P (Θ̂)︸ ︷︷ ︸

Prior probability

Likelihood︷ ︸︸ ︷
P (S(c)|Θ̂) (5)

where c = (x, y, z, s1, . . . , sn) stands for a cluster with center of gravity located at
(x, y, z) along with charge deposition ADC signals (s1, . . . , sn) in the cluster. The
symbol Θ̂ denotes an estimation for a track parameter vector Θ = p ⊕ o, where
p = (px, py, pz) denotes the particle momentum vector at a starting point o = (x, y, z)
and ⊕ denotes concatenation operator (dim(Θ) = dim(p) + dim(o)).

The operator S : T ∪C → R3 produces a three dimensional Euclidean space vector

S(ξ) = (ξx, ξy, ξz) (6)

where C is a cluster parameter vector space. The model (5) consists of two compo-
nents: likelihood function of a cluster, given a track; and an a priori probability of a
particular track parameter vector. The likelihood is defined in the following manner:

P (S(c)|Θ̂) = P (S(c)|Θ̂,Σ) ∼ N (Θ̂,Σ) (7)



166

where ‘∼’ denotes equality in distribution, Θ̂ is an estimate of parameters Θ being
extrapolated by equation (3) to a position cz = Θ̂z and Σ is a diagonal covariance
matrix. The parameters of the likelihood function are contained in the diagonal
covariance matrix

Σ = diag{σ2
x, σ

2
y, σ

2
z} (8)

Note that the value of σ2
z is irrelevant as z position of a cluster is not a stochastic

variable, but is determined by the padrow location.
The prior probability is an empirical distribution estimated from simulated data

(see Section 4.1.) using a maximum likelihood estimator. The data binning technique
along with the Gaussian Kernel smoother is used in order to reduce the memory
footprint of the probability density function (PDF), so that the size remains constant
regardless the amount of samples that have been used. The empirical prior probability
was chosen instead of a conjugate prior, as the distribution may change significantly
in a way that one distribution cannot describe all possible priors. The fact, that
the training data are simulated provided an opportunity for a wide range of studies,
such as selection of desired particle charge or tracks with desired pseudo-rapidity2.
The Bayesian approach makes it possible to consider some patterns more likely over
others, and opens new possibilities for new techniques in physics analysis.

3.1.2. Logistic regression as a background model
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Figure 5. Scaled probability mass distri-
bution of background noise PN , using max-
imum ADC feature value of a cluster.

On the other side of the competition, the
discriminative model is used to describe
the background. It is a simple one-
dimensional model which uses only one
single feature of clusters, namely maxi-
mal value of ADC signal within a clus-
ter. For this purpose, labeled real data
has been used. The probability mass dis-
tribution can be observed on Figure 5.
Note that cluster with maximum ADC
equals 255 is very likely to be a noise as it
indicates a saturation in the electronics.
Therefore, the final posterior probability
is given by

P (Ω|c) = PN (max(R(c))), (9)

with operator from cluster to ADC sig-
nal vector space R : C → A

R(c) = (cs1 , . . . , csn) (10)

2 Pseudo-rapidity is a commonly used spatial coordinate, describing the angle of a particle relative
to the beam axis.
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which returns a vector of a n ADC signals of a cluster of dimension n. The Ω denotes
a background class and PN is the probability mass distribution of maximum ADC
value of a noise cluster. Despite of its simplicity, this noise model is seen to work quite
well as a competitor to track model. It prevents attaching a cluster to a track is that
does not very likely belong to any track because of its unlikely signal amplitude and
therefore it reduces the number of outlier clusters on track candidates. In order to
avoid overtraining, the Kolmogorov-Smirnov test is used on consecutive distribution
updates until it reaches the significance level of α = 0.001.

3.2. Measurement-to-track association

In this section a competition algorithm is described along with a decision rule, which is
used in order to assign a cluster to a particular track or to background. An important
issue in tracking algorithms is a way to determine number of objects as well as how
to reach good computational efficiency of data association.

The computational efficiency has been accomplished using a greedy algorithm on
reduced search space, using a searching cone. Because of that, global optimum is not
guaranteed, however it provides good performance, as presented in a later section.
Although all measurements are available at the same time, the algorithm proceeds
using clusters ordered along the z coordinate which can be treated as a running time.
To be precise, it processes the clusters in opposite directions to natural time elapse,
namely towards the target. This approach is justified by the fact that the density of
tracks drops along the detectors in the downstream direction, and therefore we start
from the regions of smallest density. The reason of the lower particle trajectory density
in the downstream region is the initial opening angles between tracks, accompanied
by the spreading effect by the magnetic field.

The decision rule is defined in the following manner

δ(c) =

{
ϑ, if p(c) ≥ 1

Ω, otherwise
(11)

with the posterior probability ratio

p(c) =

arg max
ϑ∈T

P (ϑ|c)

P (Ω|c)
(12)

where T denotes a set of track parameter vectors. The δ(c) function governs mea-
surement association to a particular track/seed or to background. The latter implies
a new track creation as the background cluster may belong to an other, yet undis-
covered track. The initial step of track creation is called seeding: a new track object
without estimated parameters is called a seed. During this stage, the seed collects all
clusters within the search cone which do not belong to a track, but may share the
cluster with other seeds. The overall mechanism of track competition is illustrated
on Fig. 6.
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As we follow the particles of interest in the detector in the upstream direction, it is
possible to design a cone which will reduce the measurement search space. Therefore,
a cone is defined which is governed by the following inequalities

tg(β) ≥

√
(cnx − cx)2 + (cny − cy)2

|cnz − cz|
(13)

and
d ≥ |cnz − cz| (14)

where β is a cone generatrix angle, cn is a last (with highest z value) measurement of
a track and d is a maximum acceptable gap within a track. Collected clusters within
the cone can be seen as a tree as illustrated in Fig. 7. The breadth search along with
a prior probability function is used to find the most likely branch of the tree, that is
to become a new track with the parameters estimated using the clusters solely from
this branch. The remaining clusters are then released. The seed becomes a track
candidate when the estimate of its parameters becomes possible, namely, when the
following equation is satisfied

h ≥ dim(p) (15)

where h denotes level of a seed tree. Otherwise, direct comparison of tracks is not
possible. Therefore, as mention above, the seed may accept and share all clusters
which were not associated with a track.

In case when (13) is satisfied, the track parameter vector is estimated for a path
from a leaf (the newest cluster) until the tree root. When the parameters are esti-
mated, the posterior probability is calculated and stored for every possible parent.
Afterwards the estimated parameters from the most probable branch is chosen. A
detailed data association algorithm is provided in the form of pseudo-code (Alg. 1).
In the end, a second iteration over clusters is performed for reassociation of clusters
improperly classified to the background using tracks found in a previous trial. In this
stage, new tracks are not created.

3.3. Continuous parameters optimization

Association (see Section 3.2.) of a new cluster naturally provides additional informa-
tion, so a better trajectory estimate can be achieved. Therefore, every new assignment
yields parameter optimization as shown at line 10 of Algorithm 1. In order to produce
a new estimate of Θ the CMA-ES [32,33] algorithm has been chosen. It is a stochastic
and derivative-free evolutionary algorithm which allows the method to work whereas
Quasi-Newton methods fail. The chosen approach is regarded to be robust for a non-
convex functions which can comprise discontinuities, spikes or being ill-conditioned.
Thus, the CMA-ES [32] in particularly is useful for solving ‘black box’ scenarios,
where the knowledge about the underlying function is limited or an algorithm should
not depend on that knowledge. The latter feature is very useful when the objective
function significantly changes: severe modification to the algorithm is not needed,
because of this property.
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Figure 6. Illustration of the data
association decisions made in a typi-
cal situation. The window slides from
the left (downstream) to the right (up-
stream) pad-row by pad-row.
1) Failed to find a suitable track, thus
a new seed is created before classifi-
cation as a background; 2) P (Ω|c) <
P (Θ|c). It is not the most probable
candidate. It will become a new seed
and later classified as a background;
3) P (Ω|c) > P (Θ|c), therefore being
background is more likely, neverthe-
less it gets a chance as a seed, to form
a track. In the end it will become a
track Φ; 4) Looks for the most proba-
ble parent between Φ and Θ; 5) Being
background wins, so a seed is created
and it will be transformed to a track Γ.

Figure 7. Illustration of the breadth
search performed on a seed (within the
gray cone).
1) The root of a seed tree; 2) P (Ω|c) <
P (Θ|c). It is not the most suitable
candidate. Furthermore it will not be-
came a seed; 3) P (Ω|c) > P (Θ|c).
Classified as a background, neverthe-
less it becomes as a seed first; 4) Good
track cluster. 5) The track is formed,
thus a breath search is not performed.
A new cluster is attached to the track.

The CMA-ES consists of three main steps: (i) offspring generation – new solutions
(offspring) are generated by sampling a multivariate normal distribution; (ii) selection
and recombination – for each offspring an objective function is evaluated; (iii) adapting
a covariance matrix and a mean; see [34] for more detailed introduction.

For the algorightm to work, only an objective function f : Rn → R is required to
be defined.



170

Algorithm 1 Probabilistic data association

1: procedure PDA(cluster)
2: for all tracks do . Including mature seeds
3: probabilities[track]← P (track | cluster)
4: end for
5: bestTrack ← Max(probabilities)
6: if probabilities[bestTrack] <= P (Ω | cluster) then
7: return(False) . Check a premature seed or create a new seed
8: end if
9: AssociateWithTrack(bestTrack, cluster)

10: OptimizeParameters(bestTrack)
11: return(True)
12: end procedure

The evolutionary tracker uses χ2 as an objective function, defined in the following
manner

χ2 =
n∑

i=1

χ2
i , (16)

with
χ2
i = d · diag{d} · Σ−1, (17)

and distance vector
d = S(r(Θ̂, ciz))− ciz (18)

where ciz is an i-th (out of n) cluster of a track Θ and r(·, ·) stands for an extrapolation
function (3).

Given that event samples of several 100 millions need to be reconstructed, the
performance of event reconstruction algorithm is a very relevant issue. Therefore
we used an improved method of CMA-ES called Active-CMA-ES (aCMA-ES) [35].
The aCMA-ES differs from the original method by using information from unsuc-
cessful offspring in addition. The information is used in order to reduce variance in
unpromising directions. The authors demonstrate that an algorithm is superior in
performance compared to Original-CMA-ES [32] as well as to Hybrid-CMA-ES. The
highest performance, more than 40%, can be observed in case when the eigenvalue of
a particular objective function dominates the others.

4. Results

In this section we briefly review the methodology of preparing the input test data as
well as the technique to check the correctness of reconstruction. Finally, the perfor-
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Figure 8. Efficiency for VTPC1 (top) and VTPC2 (bottom) chamber. Multiplicity
denots the number of particles in the studied region of rapidity region. Low, medium
and high multiplicity are respectively 11.5, 115.6, 423.1 particles per event per unit
rapidity.

Table 1. Summary of fake track rates [%].

TPC Low multiplicity Medium multiplicity High multiplicity
VTPC 1 0.0084 0.0042 0.0018
VTPC 2 0.0077 0.0038 0.0033

mance results will be shown.



172

Figure 9. Goodness of fit using Pearson’s χ2 test for VTPC1 (top) and VTPC2
(bottom) chamber. Multiplicity denotes the number of particles per event per unit
rapidity (often denoted by dn

dy ). Low, medium and high multiplicity are respectively
11.5, 115.6, 423.1.

4.1. Simulation of the events

In order to study the efficiency and correctness of the algorithm, simulated data
where prepared. For event generating purpose, the flat phase space generator was
used, which produces necessary input for the GEANT toolkit [36]. The next step is
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Figure 10. An example reconstructed event of medium multiplicity. Black points
denotes those classified as background.

to produce events using the reconstruction software. In order to do that, an electronic
response of the TPCs readout was simulated, resulting in reference raw data. Real
detector noise clusters were superimposed on the simulated raw data in order to
imitate real conditions. Starting from this point, the same reconstruction software is
used on simulated as on experimental data. At this step the reconstructed simulated
data can be compared to the simulated event data, as shown in Fig. 10.

4.2. Matching procedure

The study of the new algorithm is based on a comparison of results between recon-
structed tracks to the simulated tracks from which they originate. The procedure is
called matching and it is done by a correlation between clusters and simulated points.
In order to make a decision on whether a cluster belongs to a simulated track point, a
maximum distance is defined. We use a distance of 0.25 cm, which is large enough to
ensure matching despite possible small distortion effects by detector effects. In this
procedure, multiple matches may occur. The ambiguities are handled on the match
analysis level.

4.3. Reconstruction performance

Until now, the method of generating input data as well as the matching procedure
were described. In this part we discuss the performance of the algorithm implemented
using the SHINE Offline framework [37].

The results of the reconstruction efficiency study is shown in Fig. 8. The rapidity
parameter here denotes rapidity understood in the center of mass system with the
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assumption of pion mass for the produced particle. As mentioned previously, this
algorithm is applied only for the VTPC detectors, immersed in a magnetic field. The
shape of histograms is determined by the detector acceptance, therefore it contributes
to a significant efficiency drop at the edges. Furthermore, for high multiplicity events
efficiency losses occur due to the finite two-track resolution of the detector. These
situations can result in merged tracks, which contribute to the fake track rate. The
fake track rates shown in Tab. 1, indicate that the presented method is also robust
in terms of forming fake tracks from noise clusters. Within the detector acceptance,
the algorithm is seen to perform remarkably well, especially that pure local tracking
was considered to be unachievable in chambers with the highest track density [38].

5. Conclusions and future work

The results show that the proposed algorithm can reliably track an unknown number
of particles traversing the detector, including those sharing parts of their trajectories.
This was achieved using simple Bayes models without incorporating the Kalman filter.
Notably, the reconstruction performance is relatively high given the small amount
of measurement information provided by the detector. Therefore, it is expected to
have a large potential in the field of event reconstruction. The method presents
an applicability for problems where the equations of motion are non-linear, non-
convex functions with discontinuities. However, the algorithm shows sensitivity to
chosen parameters in terms of computational time. This motivates further studies on
algorithm performance as a function of algorithm parameters, along with the exact
implementation of the gradient function. After the optimal algorithmic parameters are
determined, a full comparison with the Kalman filter is to be performed. Furthermore,
track and background clusters are to be analyzed in order to find better models,
emphasizing the latter one. A better model of background should decrease number of
outlier clusters and would lead to even higher reconstruction efficiency and goodness
of fit.

Presented algorithm is developed as a part of NA61/SHINE data reconstruction
software, performing a subdetector wise reconstruction.
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