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Abstract. This paper presents a formalised description of the models of influ-

ence propagation in social networks introduced in the classic paper of Kempe

et al. The formal framework that we propose clarifies the structure of the most

popular propagation models and helps rigorously re-establish the essential re-

sults concerning the problem of influence maximisation. We also introduce new

models of propagation and show how they fit into the general picture. In par-

ticular, we focus on models that capture either positive or negative effects of

resisting influence on individual’s future resistance.
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1. Introduction

Influence propagation in social networks is an important area of research due to its
applicability in various fields such as technology adoption, spread of ideas or, most
recently, viral marketing. This marketing strategy consists in targeting a small group
of highly influential individuals in order to trigger a large cascade of recommendations
of the product throughout the network. However, the problem of identifying the most
influential individuals turned out to be NP-hard even in the most basic models. This
problem was addressed in the classic paper of Kempe, Kleinberg and Tardos [1], where
the authors proposed a method of finding approximate solutions, laying foundations
for further research in the field. The main aim of the present paper is to introduce
a formal framework for influence propagation. This framework not only allows us to
rigorously re-establish the main results obtained in [1, 2], but it also exposes relations
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between different models and reveals some yet unexplored ones, thus allowing us to
define new meaningful models of propagation.

2. General Framework

Throughout the paper a social network is represented by a directed graph G = (V,E),
the vertices V = {v1, . . . , vN} correspond to individuals and the edges E ⊂ (V ×V ) \
{(v, v)|v ∈ V } represent relations between them. We call this kind of graph a network.
The set Nv := {u ∈ V | (u, v) ∈ E} is called the set of predecessors of v. Let us fix
a network G and a probability space (Ω, 2Ω,P), where Ω is finite.

Definition 1 A family of stochastic processes P := {PS}S∈2V , where PS : Ω × N 3
(ω, i) 7→ Si(ω) ∈ 2V , is called a propagation in G if for all S ∈ 2V we have S0(ω) := S
and for ω ∈ Ω, i ≥ 1 and v ∈ V it follows from v ∈ Si(ω) \ Si−1(ω) that there exists
u ∈ Si−1(ω) such that (u, v) ∈ E.

A single process PS is called a propagation process from S and the sets constituting
the trajectory (S, S1(ω), S2(ω), . . .) are called the active sets in subsequent time steps.
The set S is said to be the initial set and it corresponds to the vertices chosen for
activation at time i = 0. We also set S−1 := ∅ for the sake of consistency. As
a model of propagation we understand a way of determining Si(ω) for fixed i, ω and
S. We say that two propagations are equivalent if for every initial set S and for
every W ⊂ V and i ≥ 0 the value of probability P(Si = W ) is the same in both
propagations. A propagation P is said to be finished after time τ , if τ is the smallest
natural number such that Sτ (ω) = Sτ+k(ω) for all ω, S and k ∈ N, where N denotes
the set of non-negative integers

Lemma 1 Let P be a propagation in G = (V,E). If for all S ∈ 2V , ω ∈ Ω and i ∈ N
we have Si−1(ω) ⊂ Si(ω) and the implication Si−1(ω) = Si(ω) ⇒ Si(ω) = Si+1(ω)
holds, then P is finished after time τ ≤ #V − 1.

Proof. Let N denote the cardinality of V and suppose, contrary to our claim, that
there exist S, ω and k ∈ N such that SN−1(ω) 6= SN−1+k(ω). Then Si−1(ω)  Si(ω)
for every i ∈ {0, 1, . . . , N}, thus for every such i we can choose vi ∈ Si(ω) \ Si−1(ω).
We obtain {v0, v1, . . . , vN} ⊂ V , which is a contradiction.

Let P be a propagation finished after time τ . For an initial set S we consider the
random variable ϕS : Ω 3 ω 7→ Sτ (ω) ⊂ V . The function σ : 2V → N, σ(S) = E(#ϕS)
is then called the influence function in P. The problem of finding S∗ ⊂ V such that
S∗ ∈ argmax{σ(T ) | T ⊂ V, #T = k} is called the influence maximisation problem
with parameter k ∈ N. The breakthrough within the field of influence maximisation
came when a lower bound for the efficiency of the greedy algorithm was established in
[1]. The method used was based on a theorem proved in [3]. Before stating a special
case of the theorem (see Theorem 1), we first recall some necessary notions. Let us
consider a nonempty set X and a function σ : 2X → N. We say that σ is monotone
if σ(S) ≤ σ(T ) holds for all sets S, T satisfying S ⊂ T ⊂ X. If for all such sets
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S, T and for every v /∈ T we have σ(S ∪ {v}) − σ(S) ≥ σ(T ∪ {v}) − σ(T ) then we
say that σ is submodular. We also say that S is an r-approximated solution to the
problem of maximising σ over k-element subsets of X if S satisfies σ(S) ≥ rσ(S∗),
where S∗ ∈ argmax{σ(T ) | T ⊂ X, #T = k} and r ∈ (0, 1]. By the greedy algorithm
we mean the following steps:

1. S := ∅
2. for i= 1 to k {

vi ← argmaxv∈X\S (σ(S ∪ {v})− σ(S))

S ← S ∪ {vi} }
Theorem 1 If X is a nonempty set and a function σ : 2X → N is monotone and
submodular, then the set chosen by the greedy algorithm is a (1− 1/e)−approximated
solution to the problem of maximising σ over k-element subsets of X.

Therefore, if we consider a propagation P in which the influence function σ is
monotone and submodular, then the greedy algorithm finds (1− 1/e)−approximated
solution to the influence maximisation problem. In [1] the following strategy of de-
termining the submodularity and monotonicity of σ was proposed. First, for a given
G = (V,E) we consider the set of subgraphs of the form H = (V, F ), where F ⊂ E.
This set is denoted by Γ. For a given S ⊂ V we define the set of vertices reachable
from S in a subgraph H, denoted by ψH(S): a vertex v is reachable from S if either
v ∈ S or there exist k ∈ N and vertices {w0, w1, . . . , wk} ⊂ V satisfying w0 ∈ S and
(wi−1, wi) ∈ F for i = 1, . . . , k, and also (wk, v) ∈ F . Then we construct a function
that transports probability measure from Ω on Γ in a way that enables us to express
σ using the function S 7→ #ψH(S), which is easily proved to be submodular and
monotone. We will see that this method can be successfully applied to two basic
models of propagation, but it fails even for slight generalisations.

Theorem 2 Let P be a propagation in G = (V,E). If there exists h : Ω→ Γ satisfying
σ(S) = E(#ψh(·)(S)) for every S ⊂ V , then σ is monotone and submodular.

3. Cascade models

Cascade models describe propagation of influence as a sequence of attempts taken
by active vertices in order to influence their inactive neighbours. We re-establish the
main results stated in [1] to show how they fit into our framework (see Theorem 3),
and we distinguish models that capture the change in individual’s susceptibility to
influence after having resisted influencers’ attempts in the past.

For every edge (u, v) in a given network G = (V,E) we fix a parameter p(u,v) ∈
(0, 1] and assign every pair (u, v) ∈ V ×V a random variable X(u,v) : Ω→ {0, 1} such
that P(X(u,v) = 1) = p(u,v), where p(u,v) := 0 if (u, v) /∈ E. We assume that the
random variables {X(u,v) |(u, v) ∈ V 2} are independent. We say that a propagation is
given by the Independent Cascade Model (ICM) if for an initial set S and for a fixed
ω ∈ Ω the subsequent sets of active vertices are defined as Si(ω) := Si−1(ω) ∪Ai(ω),
where A0(ω) := S and Ai(ω) := {v ∈ V \Si−1(ω)| ∃u∈V u ∈ Ai−1(ω) ∧ X(u,v)(ω) = 1}
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for i ≥ 1. The set Ai is interpreted as the set of newly activated vertices in time step
i. Note that the propagation given by ICM satisfies the assumptions of Lemma 1,
thus it is finished after time τ ≤ #V − 1. We also have P(v ∈ Si+1 | v /∈ Si) =
1−∏u∈Ai

(1− p(u,v)). The influence maximisation problem in ICM is NP-hard [1].

Lemma 2 If v /∈ S, then v ∈ Sτ (ω) if and only if there exist vertices u0, u1 . . . , uk
such that u0 ∈ S and we have uj ∈ Aj(ω) and Xuj−1,uj

(ω) = 1 for j ∈ {1, . . . , k},
and also Xuk,v(ω) = 1.

Proof. Note that v ∈ Sτ (ω) if and only if v ∈ Ak+1(ω) for some k ∈ {0, . . . , τ − 1}.
This is equivalent to the existence of uk ∈ Ak(ω) such that Xuk,v(ω) = 1. Repeating
this reasoning k times completes the proof.

Theorem 3 The influence function in ICM is monotone and submodular.

Proof. Consider a network G = (V,E) with ICM and define h : Ω → Γ by taking
h(ω) = (V,Eω) such that (u, v) ∈ Eω if and only if X(u,v)(ω) = 1, where X(u,v) are
the random variables associated with ICM. We will show that ϕS(ω) = ψh(ω)(S) for
all S ⊂ V and ω ∈ Ω. Fix S and ω. It suffices to consider v /∈ S and to show that
v ∈ Sτ (ω) if and only if v ∈ ψh(ω)(S). This equivalence follows directly from Lemma
2, thus σ(S) = E(#ψh(·)(S)) and Theorem 2 completes the proof.

We now generalise ICM as proposed in [1], i.e. by relaxing the assumption of
independence of Xu,v for u ∈ Nv. We set Xv := (X(ui,v) | ui ∈ V, i = 1, . . . , N) for
every v ∈ V and assume that the random vectors {Xv}v∈V are independent. We
have to consider the probability of activation, conditioning on previous unsuccessful
attempts. We construct the parameters setting first pv(u, ∅) := P(X(u,v) = 1) for
every v ∈ V and u ∈ Nv. If pv(u, ∅) < 1, then we set the value pv(w, {u}) :=
P(X(w,v) = 1 | X(u,v) = 0) for every w ∈ Nv \ {u}. Analogously, we set pv(u, S) :=
P(X(u,v) = 1 | ∀w∈S X(w,v) = 0) whenever the probability of the condition is nonzero.
Moreover, we require that the parameters satisfy the condition (1 − pv(ui,W ))(1 −
pv(uj ,W ∪ {ui})) = (1− pv(uj ,W ))(1− pv(ui,W ∪ {uj})) for all v ∈ V , ui, uj ∈ Nv
and W ⊂ Nv \ {ui, uj}. Since every permutation can be written as a product of
transpositions, this condition is sufficient to ensure that P(v ∈ Si+1 | v /∈ Si) does
not depend on the order assumed in Ai(ω), where Ai(ω) is defined as in ICM. If for
a given ω ∈ Ω and i ≥ 1 the sets of active vertices Si(ω) are defined as in ICM,
then we say that the propagation is given by the General Cascade Model (GCM).
Obviously, Lemma 1 applies and the propagation in GCM is finished.

Let us now define two models that are special cases of GCM. If the implication

S ⊂ T =⇒ pv(u, S) ≤ pv(u, T )

holds for any v ∈ V , u ∈ Nv and S, T ⊂ Nv \ {u} such that pv(u, S) and pv(u, T )
are defined, then the model is called the Increasing Cascade Model (IncrCM). If the
reversed inequality holds, namely

S ⊂ T =⇒ pv(u, S) ≥ pv(u, T ),

then the model is called the Decreasing Cascade Model (DCM). Observe that DCM
expresses the principle that the more times one resists the influence, the more their
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resistance rises, whereas IncrCM captures exactly the opposite behaviour, namely
that influence accumulates, i.e. past attempts, though unsuccessful, have weakened
individual’s resistance. There are obvious everyday examples of various types of
influence that would require one of these models rather than the other. Note also
that ICM is a special case of both DCM and IncrCM. DCM was proposed in [1] and
we will argue that its influence function is submodular, but, as was shown in [2],
a suitable transport of the probability measure from Ω on Γ need not exist.

4. Threshold models

The second most popular model of influence propagation is the Linear Threshold
Model (LTM). We describe it not only to complete the picture, but also because it
exemplifies the accumulative mechanism of propagation. We reformulate the results
from [1] (see Theorem 4) and propose a simple yet meaningful generalisation of LTM.

For every edge in G = (V,E) we fix b(u,v) ∈ (0, 1] such that
∑
u: (u,v)∈E b(u,v) ≤ 1

for all v ∈ V . We set b(u,v) := 0 if (u, v) /∈ E. Each vertex v ∈ V is assigned
a uniformly distributed random variable θv : Ω → (0, 1) and these random variables
are assumed to be independent. A propagation is said to be given by the Linear
Threshold Model if for an initial set S and a fixed ω ∈ Ω the sets of active vertices
are defined as Si(ω) := S ∪ {v ∈ V | ∑u∈Si−1(ω) b(u,v) ≥ θv(ω)} for i ≥ 1. Lemma
1 ensures that the propagation given by LTM is finished after time τ ≤ #V − 1.
Moreover, we have P(v ∈ Si+1 | v /∈ Si) =

∑
u∈Si\Si−1

b(u,v)/(1−
∑
u∈Si−1

b(u,v)). The

influence maximisation problem in LTM is NP-hard [1]. In proving submodularity in
LTM, we cannot repeat the argument used in the case of ICM, since if there existed
h : Ω→ Γ satisfying ϕS(ω) = ψh(ω)(S) for every ω and S, then the submodularity of
#ϕ•(ω) : 2V → N would follow. However, Example 1 shows that this function need
not be submodular in a propagation given by LTM.

Example 1 Consider a network G = (V,E), where V = {u1, u2, v} and E =
{(u1, v), (u2, v)}, and LTM with parameters bui,v = 0.3 for i ∈ {1, 2}. Fix ω such
that θv(ω) = 0.5. For S := ∅ and T := {u1} we obtain #ϕS∪{u2}(ω) −#ϕS(ω) = 1
and #ϕT∪{u2}(ω)−#ϕT (ω) = 2, hence #ϕ•(ω) is not submodular.

Theorem 4 The influence function σ in LTM is monotone and submodular.

Proof. Consider G = (V,E) with LTM. We fix v ∈ V and order arbitrarily the set of
its predecessors Nv = {u1, . . . , ukv}. We define h : Ω→ Γ, h(ω) = (V,Eω) as follows

(ui, v) ∈ Eω ⇐⇒
i−1∑

j=1

buj ,v < θv(ω) ≤
i∑

j=1

buj ,v , i ∈ {1, . . . , kv}.

Fix S ⊂ V and ω ∈ Ω. In the subgraph h(ω) we have the following sets of vertices
reachable form S in successive time steps: ψ0(ω) := S and ψi(ω) := ψi−1(ω) ∪ {v ∈
V | ∃u∈ψi−1(ω) (u, v) ∈ Eω}.
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We obtained a propagation in which P(v ∈ ψi+1 | v /∈ ψi) =
∑
u∈ψi\ψi−1

b(u,v)/(1−∑
u∈ψi−1

b(u,v)) for every i ≥ 0. It follows from the independence of {θv}v∈V that the

propagation given by LTM and the one defined above are equivalent, hence P(SN−1 =
W ) = P(ψN−1 = W ), where N := #V . Clearly, ψN−1(ω) = ψh(ω)(S), since in a graph
with N vertices there are at most N − 1 edges between every two vertices. Moreover,
from Lemma 1 we get SN−1(ω) = ϕS(ω) for every ω. Thus E(#ϕS) = E(#ψh(·)(S))
and Theorem 2 completes the proof.

Following [1], we generalise LTM by relaxing the assumption of influence additivity.
For each vertex v we consider a function fv : 2Nv → (0, 1] which is monotone and
satisfy fv(∅) = 0. If for a given ω ∈ Ω and i ≥ 1 the sets of active vertices are defined
as Si(ω) := S ∪ {v ∈ V | fv(Si−1(ω)) ≥ θv(ω)}, then we say that the propagation is
given by the General Threshold Model (GTM). The function fv is called the activation
function of v. Lemma 1 implies that the propagation in GTM is finished after time τ ≤
#V −1. Moreover, we have P(v ∈ Si+1 | v /∈ Si) = (fv(Si)−fv(Si−1))/(1−fv(Si−1)).

A compelling special case of GTM is taken from LTM by relaxing normalisation
condition, i.e. we only demand that b(u,v) ∈ (0, 1] for every (u, v) ∈ E. If the sets
of active vertices are defined as in LTM, then we say that the propagation is given
by the non-normalised LTM (nLTM). This model is more natural than LTM in the
sense that it shares its parameters with ICM: the parameter corresponding to an
edge (u, v) describes the probability that v will be activated by an unassisted attempt
taken by u. The influence maximisation problem in nLTM is harder than in LTM. In
particular, a probability distribution on Γ that would allow us to use the subgraph
method need not exist (see Example 2). It also cannot be solved by uniform scaling
down the parameters of nLTM, so that parameters assigned to edges that come into
a vertex add up to at most one and the model becomes LTM, since such rescaling
may lead to a model with different optimal initial set (see Example 3).

Example 2 Set the network G = (V,E), where V = {u1, u2, u3, v} and E = {(u1, v),
(u2, v), (u3, v)}, and consider nLTM with bui,v = 0.5 for i ∈ {1, 2, 3}. Assume that
there is a probability distribution on Γ induced by h : Ω→ Γ as in Theorem 2. Taking
{u1, u2, u3} as the initial set, we see that the empty subgraph has probability zero.
Considering next the initial sets consisting of two vertices taken from {u1, u2, u3},
we see that the probability of every subgraph with exactly one edge is equal to zero.
Finally, taking the initial sets {ui}, i ∈ {1, 2, 3}, we conclude that each of the three
subgraphs with exactly two edges has probability 0.5.

Example 3 Set the network G = (V,E), where V = {u1, u2, w1, w2, v, x, y} and E =
{(u1, x), (u2, x), (x, v), (w1, y), (w2, y), (y, v)} and consider nLTM with the following
parameters: bui,x = 0.6 and bwi,y = 1 for i ∈ {1, 2} and bx,v = 1, by,v = 0.25 (see
Figure 1). By direct computation we see that {u1, w1} is the only optimal 2-elements
initial set. However, if we divide all the above parameters by 2, then {w1, w2} becomes
the only optimal 2-elements initial set in the resulting LTM.

In proving the submodularity of σ in nLTM, we make use of some properties
of the special case of GTM in which all the activation functions fv are required
to be submodular. This model, which we call Locally Submodular Threshold Model
(LocSTM), was first proposed in [1] and the submodularity of its influence function
was proved in [4]. In nLTM we have fv(S) = min(1,

∑
u∈S bu,v) and these functions
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Figure 1. The network from Example 3.

are easily seen to be submodular, hence nLTM is a special case of LocSTM and the
influence function in nLTM is indeed submodular.

5. Generalised models

We follow [1, 2] to show that GTM and GCM are in fact two different parametrisations
of the same model. Suppose we have GCM and we want to define a corresponding
GTM . Since in GTM the value fv(U) gives the probability of activating v, provided
U ⊂ Nv is active, we set fv(U) as being equal to the probability of activating v by
vertices from U = {u1, . . . , um} in the given GCM, i.e.

fv(U) = 1−
m∏

i=1

(1− pv(ui, U i−1)), (1)

where U0 := ∅ and U j := {u1, . . . , uj} for j ≥ 1. Note that fv(U) is well defined, since
we have already observed that the right-hand side of (1) depends only on the elements
of U and not on their order. Suppose now, conversely, that GTM is given. Fix v ∈ V ,
w ∈ Nv and U ⊂ Nv \ {w} and define pv(w,U) as being equal to the probability in
GTM of the influence of U ∪ {w} being sufficient to activate v on condition that the
influence of U was insufficient, i.e.:

pv(w,U) =
fv(U ∪ {w})− fv(U)

1− fv(U)
. (2)

Note that if fv(U) = 1 then P(∀u∈U X(u,v) = 0) = 0 and we do not set the value
pv(w,U). It is easily seen that (1) and (2) are equivalent. The next theorem, which
claims the equivalence of the propagations given by GTM and GCM, was first proved
in [2]. In particular, it implies that theorems proved for either of the models are valid
for both.

Theorem 5 If we consider GTM and GCM such that their parameters fv(U) and
pv(w,U), respectively, satisfy (1) for every v ∈ V , w ∈ Nv and U ⊂ Nv \ {w}, then
these models give equivalent propagations.

Proof. Fix S ⊂ V , v ∈ V and sets U = {u1, . . . , um}, W = U ∪ {um+1, . . . , um+n}.
It follows easily that in GTM the value P(v ∈ Si+1 |Si = W, Si−1 = U) equals
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(fv(W )− fv(U))/(1− fv(U)), and in GCM it equals 1−∏m+n
j=m+1(1− pv(uj ,W j−1)),

where Wm := U and W j := {u1, . . . , uj} for j > m . The independence of {θv}v∈V
in GTM and that of {Xv}v∈V in GCM along with (1) complete the proof.

Theorem 6 The influence function is monotone in a propagation given by GTM.

Proof. Consider G = (V,E) with GTM. Fix initial sets S and T satisfying S ⊂ T . It
follows from the monotonicity of fv, by induction over time steps, that Si(ω) ⊂ Ti(ω)
for every i ≥ 0 and ω ∈ Ω. Hence #SN−1(ω) ≤ #TN−1(ω) and σ(S) ≤ σ(T ).

Clearly, the influence maximisation problem in the generalised models is NP-hard.
Moreover, for every c > 0 it is NP-hard to find a n−c-approximated solution to this
problem [1]. The equivalence of GCM and GTM helps us analyse the already defined
special cases of GCM, namely DCM and IncrCM, since we can interchange between
cascade and threshold parameterisations of a model in question.

The submodularity of the influence function in DCM can be proved by introducing
generalised propagation processes that allow delayed activation of vertices [2], but it
also follows from the fact that DCM is a special case of LocSTM, since the defining
condition of DCM is, by (2), equivalent to (fv(S ∪ {u}) − fv(S))/(1 − fv(S)) ≥
(fv(T ∪ {u}) − fv(T ))/(1 − fv(T )), where v ∈ V , u ∈ Nv and S ⊂ T ⊂ Nv \ {u}. It
follows easily from the monotonicity of fv that this condition implies submodularity of
fv, hence also that of σ. Thereby we see that DCM fits naturally into the framework
build on submodularity. In what follows we investigate more closely IncrCM. Example
4 shows that its influence function need not be submodular, hence IncrCM is not
a special case of LocSTM. A simple necessary condition for a model to be LocSTM
can be derived as follows. For every v ∈ V , S ⊂ Nv and u1 ∈ S the submodularity of
fv implies that fv(S)− fv(S \ {u1}) ≤ fv({u1})− fv(∅). Repeating this argument for
the sets S \ {u1, . . . , uk}, where 1 ≤ k < #S, we obtain fv(S) ≤ ∑u∈S fv(u). Note
that as the limit case, i.e. fv(S) = min(

∑
u∈S fv(u), 1), we obtained nLTM. Using

(2), we conclude that nLTM is indeed a special case of IncrCM, thus it is an example
of a model that captures the accumulative mechanism of influence propagation and
at the same time fits into the submodular framework.

Example 4 Consider G = (V,E), where V = {u1, u2, v}, E = {(u1, v), (u2, v)}. Set
pv(u1, ∅) = pv(u2, ∅) = 0.1 and pv(u1, {u2}) = pv(u2, {u1}) = 8/9. Using (1), we
obtain the threshold parameters fv({u1}) = fv({u2}) = 0.1 and fv({u1, u2}) = 0.9.
From these it follows easily that σ({u2})−σ(∅) = 1.1 and σ({u1, u2})−σ({u1}) = 1.8.
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