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A b s t r a c t

The article presents some types of problems that can occur during solving the inverse kinematics and the 
steps to prevent them. These problems concern the numerical singularities which occur when Euler angles 
are used to describe the orientation of the mechanism links in space. This paper proposes to eliminate the 
mentioned numerical singularities by replacing Euler angles with quaternions. The discussed issues were 
shown on the example of a backhoe excavator equipment system.
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S t r e s z c z e n i e

W artykule przedstawiono pewien typ problemów, jakie mogą wystąpić podczas rozwiązywania zadania 
odwrotnego kinematyki oraz kroki pozwalające na ich zapobieganie. Problemy te dotyczą osobliwości 
numerycznych powstałych w wyniku stosowania kątów Eulera do opisu orientacji członów mechanizmu 
w przestrzeni. Poniższa praca proponuje wyeliminowanie wspomnianych osobliwości numerycznych 
poprzez zastąpienie katów Eulera kwaternionami. Poruszane zagadnienia przedstawiono na przykładzie 
osprzętu roboczego koparki podsiębiernej.
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1. Introduction 

The main task of the kinematic analysis of machines mechanisms is the study of motion 
of these mechanisms without taking into account the forces and moments that act upon 
them. In the case of serial mechanisms, an analysis can be divided into two general tasks. 
The first one is the simple kinematics problem, which is used to obtain the position and 
orientation of the last element in the kinematic chain. The second one, which is the inverse 
kinematics problem, is used to determine the values of all joint variables when the position 
and orientation of the last element of the kinematic chain is known. In serial mechanisms 
the inverse kinematics problem is much more difficult to solve than the simple kinematics 
problem [1]. This is due to the fact that the equations describing the relationships between 
joint variables and the position and orientation of the links are highly nonlinear [2].

The article discusses some types of problems that can occur during solving the inverse 
kinematics problem and also the steps to prevent them. These problems concern the 
numerical singularities which occur when Euler angles are used to describe the orientation 
of the mechanism links in space. This paper proposes to eliminate the mentioned numerical 
singularities by replacing Euler angles with quaternions. The discussed issues were shown on 
the example of a backhoe excavator equipment system.

2. Kinematic analysis based on the multibody system formalism 

Kinematic analysis, which is a part of the theory of mechanisms and machines, is the 
subject of a lot of research work and publications [1–7]. As a result of these studies several 
procedures have been developed that allow to automatically perform the kinematic analysis. 
One such procedure is the multibody system method. A solution of the inverse kinematics 
problem in the multibody system method is equivalent to solving the following system of 
equations:

  (1)

  (2)

  (3)

The formula identified by number (1) is a non-linear system of algebraic equations whose 
solution is the vector of generalized coordinates. The formulas identified by number (2) and 
(3) are a linear systems of algebraic equations whose solution is the vector of generalized 
velocities and generalized accelerations. A detailed description of the above equations is 
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given in reference [3]. The vector of generalized coordinates describing the position and 
orientation of all mechanism links can be expressed as follows:

  (4)

The presented above vector (4) describes the position and orientation of the links of the 
backhoe excavator equipment system, which is shown in Fig. 1. The position and orientation 
of a single link is determined by the vector and take the following form:

 qi = [ri
T, αi, βi, γi]

T (5)

where:
 ri

T – specifies the position of the origin of the local reference system πi of the 
link in global reference system π0,

 αi, βi, γi – three Euler angles α, β, γ which describe orientation of the local 
reference system πi of the link relative to global reference system π0.

q q q q q q q q q q q q q q= 1 2 3 4 5 6 7 8 9 10 11 12 13
T T T T T T T T T T T T T, , , , , , , , , , , , , qq14

T T
 

Fig. 1. Backhoe excavator equipment system scheme 

The most time consuming step in the kinematic analysis is the calculation of generalized 
coordinates’ vector (4). For this purpose an iterative Newton-Raphson algorithm is most 
widely used. It allows to determine the approximated values of the roots satisfying the system 
of equations (1). The Newton-Raphson algorithm was graphically shown in Fig. 2. Vector 
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function Φ (which is the left side of the equation system (1)) could be expanded in Taylor 
series in the vicinity of point qi with an assumption that the norm of vector Δqi becomes small 
and the higher-order terms in vector Δq can be neglected:

  (6)

Assuming that function Φ must satisfy the system of equations (1) at point qi+1 (qi is an 
initial approximation), equation (6) can be compared to zero, under the condition that Δq = 
qi+1 – qi. Then the equation (6) takes the following form:

  (7)

Which can also be written as:

  (8)

Fig. 2. Graphic presentation of the Newton-Raphson algorithm (only two first steps were shown) 
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The Newton-Raphson algorithm presented in Fig. 2 is an iterative algorithm, in which 
a single iteration consists of the following steps:
– Calculation of approximation qi+1 from the formula (8).
– Checking whether the approximation qi+1 satisfies the system of equations (1) with an 

accuracy of ε, i.e. if the condition ||Φ(qi+1)|| ≤ ε is true.
– If the algorithm in the previous step did not get a solution at a defined number of iterations, 

then the emergency termination of solution process occurs [4–5].
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3. Euler angles singularities 

In the classical approach to the kinematic analysis of spatial mechanisms, orientation of 
the particular mechanism links is described by Euler angles. This description, however, has 
a disadvantage, which is important from the kinematic analysis’ point of view [3]. When 
considering kinematic analysis of the boom separated from the equipment system shown in 
Fig. 1 boom orientation in space is described by Euler angles in the convention z-x-z. The 
global reference system π0 and local reference system π1, which is connected with boom was 
defined as shown in Fig. 3. For boom kinematic analysis purposes the following assumptions 
was made:
– boom is connected to a global reference system π0 with rotational joint in such a way, that 

it can only perform a rotational movement about an axis z0,
– vector of generalized coordinates of the boom at initialization time has the following 

coordinates q1 = [0, 1.78, 0, 0, 0, π/2]T,

– boom relative rotation angle is described by the following relation ϕ
π

1
2

2
− −t ,

– analysis is focused only on obtaining a vector of generalized coordinates of the boom in 
a defined time span.

Fig. 3. Boom extracted for kinematic analysis purposes 

For calculating the vector of generalized coordinates of a boom the Newton-Raphson 
algorithm was used. At the first iteration, for the time t = 0 Jacobian matrix is as follows:



24

  (9)

Unfortunately, this is a singular matrix because its determinant is equal to 0, and therefore, 
it cannot be reversed. As a result, an attempt to solve the system of equations (1) finishes with 
a failure. 

The appearance of singularities in the Jacobian matrix is caused by unfavorable adoption 
of orientation of the reference systems π0 and π1 (in practice it is often required that the z axes 
of the local reference systems of links have to be parallel to the z axis of the global reference 
system). It is, therefore, apparent that the system of Euler angles in z-x-z convention is not 
clearly specified in a situation where the axes of the global and the local reference system are 
parallel. In this position, the xy planes of the local and the global reference system are parallel, 
which means that the positioning of the line of nodes is not clearly defined and, therefore, 
the precession angle α is also not uniquely defined. For the same reason it is impossible to 
uniquely specify intrinsic rotation angle γ [3].

4. Quaternions

One of the solutions of the Jacobian matrix degeneration problem is to replace Euler 
angles with quaternions. Quaternions are an algebraic structure that extends complex 
numbers. Quaternions were defined by Hamilton in 1853 in the following form [8]:

 qH = s + ia + jb + kc     s, a, b, c ∈ R (10)

where:

 i2 = j2 = k2 = ijk = –1 (11)

 ij = k,     jk = i,     ki = j,     ji = –k,     kj = –i,     ik = –j (12)

From the kinematic analysis’ point of view their algebraic form is more useful, which can 
be written as follows:

 qH = [s, v]     s ∈ R, v ∈ R3 (13)

 qH = [s, xi, yj, zk]     s, x, y, z ∈ R (14)
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Elements of a quaternion which describe rotation of angle θ of the mechanism link around 
vector a can be expressed as follows:

  (15)

As we know, changing the orientation of the mechanism link is the same as changing of 
orientation of any point which is connected to the link. Thus, if for boom shown in Fig. 3 
we determine point S, whose position in reference system π1 is defined by vector s, then 
describing orientation of vector s will be inconsistent with describing the orientation of 
a boom. For example, rotation of angle φ1 of boom from Fig. 3 around vector a0, which was 
defined in global reference system π0, could be written as:

  (16)

where:

  (17)

Like shown previously the kinematic analysis of boom shown in Fig. 3 requires determining 
Jacobian Matrix for time t = 0, but orientation of boom will be described with quaternions. 
Elements of the Jacobian matrix after changing the description of boom orientation will have 
the following values:

  (19)

Values of the above matrix determinant equal 1, therefore it is not a singular matrix and, 
as a consequence, the Newton-Raphson converges. The use of quaternions in this example 
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allowed to avoid the singularities from the Jacobian matrix and also to determine a generalized 
coordinates vector in each time step.

5. Conclusions

The use of the Euler angles to describe the orientation of the mechanism links in 
space, can give rise to singularities in the Jacobian matrix. It is often caused by the fact 
that the requirements for orientation of links’ local reference systems in the global reference 
system are in conflict with the requirements which have to be fulfilled when Euler angles 
are used. The use of quaternions for orientation description eliminates the risk that the 
mentioned singularities will appear and thus increases numerical stability of the Newton-
Raphson algorithm. For better consistency of inverse kinematics the algorithm it is good 
to encapsulate translations and rotations of mechanism links into a unified representation. 
This can be achieved by using dual quaternions and Clifford algebra to solve the inverse 
kinematics problem.
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