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A b s t r a c t

This paper presents general formulas for the kinetic properties of semiconductor crystals 
expressed in terms of the Fermi integrals. The formulas provide algorithms for the calculation 
or identification of the kinetic properties and constitute (together with the results of theoretical 
analysis and other presented relationships) the mathematical model of the charge carrier 
transport phenomena in semiconductor crystals.
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1. Introduction

The theoretical problems of how to determine the kinetic properties of a semiconductor 
crystal are connected mainly with the following problems:
– determining the energy spectrum ε ( p)

���
,

– determining the scattering function u ( )ε ,

– determining the reduced chemical potential µ∗.
 In this paper, a theoretical analysis of the kinetic properties of the semiconductor 

crystals is presented. The kinetic properties of the semiconductor crystals are considered 
in the framework of the statistical theory of the solid state. This discussion is based on 
general formulas which are expressed in terms of the Fermi integrals.These formulas 
provided algorithms for the calculation of the kinetic properties and, together with other 
relations, constitute the mathematical model of the charge carrier transport phenomena 
in semiconductor crystals.

The calculation or identification of the kinetic properties of a crystal and the prediction 
of its useful technological properties are closely related [1, 2, 4, 8, 10, 13].

2. Theoretical analysis of the kinetic properties of semiconductor crystals

According to the statistical theory of the solid state, in the presence of a weak magnetic 
field, or when the magnetic field is absent, the kinetic properties of isotropic doped 
semiconductor crystals may be described by general formulas ‒ these are expressed in terms 
of the Fermi integrals.

Some of these properties are as follows:
– the resistivity r (T, m*)
– the Hall coefficient R (T, m*),
– the thermopower (the Seebeck coefficient) α (T, m*),
– the Nernst – Ettingshausen constant N (T, m*),
– the thermal conductivity c (T, m*),
– the conductivity s (T, m*),
– the carrier density n (T, m*),
– the carrier mobility UD (T, m*),
– the Hall mobility UH (T, m*),
and the apprioprate formulas based on the Fermi integrals take the forms:
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In the above expressions for the kinetic properties of semiconductor crystals, the symbols 
Jij (T, m*) are reserved for the Fermi integrals (the kinetic integrals) given by the following 
formulas:
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The analysis of the kinetic integrals (10) shows us that the following inequality takes 
place [6]:
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From this inequality, it follows that:
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Commonly, the function fR (T, m*) in lecture courses on solid state and semiconductor 
physics is called the Hall factor [7, 8]. It is easy to show that this function has a minimum 
value equal to 1 in a semiconductor crystal, where the current carriers are degenerated.

Using the function (10), formulas (8) and (9) describe the carrier and Hall mobilities:
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Thus, we have:
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Consequently, we also have UH (T, m*) = UD (T, m*) fR (T, m*), that is UH (T, m*) >  
> UD (T, m*).

From definition of the carrier mobility UD (T, m*), there is:
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In statistical physics, this expression has mathematical sense of the average value of 
the function u ( )ε ,  for all values ε ε, ∈ ∞[0, )  and this value is denoted by < > .  Clearly, 
in statistical physics, the carrier mobility UD (T, m*) is given by:

 U T uD T( , )µ ε µ
∗

∗= ( ) ,( , )< >  

where the subscripts (T, m*) denote that the average values < u (e) > are analytically 
dependent of the chemical potential and temperature. Hence, the carrier mobility UD (T, m*) 
equals the average value of the function u ( )ε  for all values of e.

We will now consider the Hall mobility which by formula (9) is given as:
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The Hall factor can be expressed in terms of the averages of the scattering function 
u u( )ε ε( ( )  is the average velocity of carriers in the presence of the unit electric field E

��
)  

in the following way:
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In statistical physics is proved that < > ≥< >u uT T( ) ( )2 2ε εµ µ( , ) ( , ) ,∗ ∗  then we obtain 
fR (T, m*) ³ 1.

Analysis of formulas (1)‒(10) for the kinetic properties of semiconductor crystals that 
is based on the above calculations shows that these kinetic properties analytically depend 
on the average values < > < >u uT T( ) ( ) 2ε εµ µ( , ) ( , ) .∗ ∗and

Carriers in semiconductor crystals are scattered by defects in the crystals hence 
the concept or notion of the scattering function u ( )ε  which describes the effect of 
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these scattering processes on kinetic properties of these crystals is a serious problem in 
semiconductor and solid state physics.

Formula (10) shows that the kinetic integrals Jij (T, m*) depend on the Fermi-Dirac 
equilibrium distribution function
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 From this formula, and from formulas (1)‒(10), it follows that all properties of the crystal, 
which are described by formulas (1)‒(10), analytically depend on the reduced chemical 
potential m*.

There is also an analytical dependence of kinetic properties on G g d( ) = ( )
0

ε ε ε
ε

∫  [8] 

in these formulae. Here, g ( )ε  is the density of states (DOS) lying in allowed bands which 

depends on the analytical form of the energy spectrum ε εp p��
��

= ( ).

In isotropic crystals ε ε εp p p��
��

= = ( )( ) ,| |  where p p p px y z= 2 2 2+ + .  Thus, all kinetic 

properties of these crystals which are described by formulas (1)‒(10) analytically depend on 
the energy spectrum ε εp p�� = ( ).

Formulas (1)‒(10) show that with the exception of the density n (T, m*) of current carriers 
in a semiconductor (formula (7)), all kinetic properties of crystals explicitly depend on the 
scattering function u (e) ‒ this describes the effect of these scattering processes on the kinetic 
properties of these crystals [8, 9]. Computations of values of the scattering function u (e) 
are connected with problems on determination the energy spectrum ε ( )p

��
 and scattering 

probability W p p(
�� ���
, ).′  The explicit form of this probability depends on the nature of 

the semiconductor crystal and the type of defects in this crystal by which free charge carriers 
are scattered [1, 10].

3. The energy spectrum and the discrete density of states (DOS) of the charge carrier 
energy in a semiconductor crystal

In the quantum theory of crystal structure, the energy spectrum is called the function – this 
describes the dependence of the total charge carrier energy e on this carrier quasimomentum 
p
��

 in this crystal, that is ε εp p��
��

= ( )  [8].

According to quantum mechanics, the charge carrier quasimomentum p
��

 in crystals 

varies discretly and there are as many values of p
��

 as there are structure particles in the 
crystal. In this connection, it should be noted the charge carrier energy is quantised. Moreover, 
it was proved [7] that the energy spectrum has symmetry properties being a periodic and 
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even function of the vector p p p p p P
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relationship,   is the Planck’s constant, Kn
���

 is the reciprocal lattice vector.

A free charge carrier with energy ε εp p��
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= ( )  in crystals has the velocity of chaotic 

motion ν ε
� ��
�� ��p p p= (∇ )  and this carrier subjected to the action of a force F

��
 will acquire an 

acceleration a p
�
�� ,  which is defined by formula [8]:
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 is called the reciprocal effective mass tensor. Once 

the symmetry properties of the energy spectrum are known, it is easy to approximate this 
energy spectrum of the free energy carriers in a semiconductor crystal.

It can be seen from these calculations that in the case of anisotropic crystals, the energy 
spectrum is described by the constant energy ellipsoid S, having the following anisotropic 
parabolic form:
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and in isotropic crystals, it is the constant energy sphere S, having the isotropic parabolic 
form:
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where m11, m22, m33 are the diagonal components of the charge carrier effective mass  
tensor [8].

In quantum mechanics, the quantity G (e), which determines the number of states of 
particles in a crystal, with the energy range between e = 0 and ε ( p

��
),  is given by the well- 

-known general expression:
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From the definition of the density of the energy states (DOS), we obtain:
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Substituting the value G (e) into equation (13), we have:
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where the integral has to be evaluated for the constant energy surface S, which is defined 
by the energy spectrum ε εp p��
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It is clear from formulas (12) and (14), that to determine the density of state (DOS), 
the constant-energy surface S must be known.

4. The calculation of the kinetic properties of isotropic doped semiconductor crystals

The presented formulas provide algorithms for the calculation of the kinetic properties 
(1)‒(9) of isotropic doped semiconductor crystals.

In isotropic crystals, the energy spectrum is isotropic and it takes the form: ep = e (p), 

where p p p p p= = 1
2

2
2

3
2| |

��
+ + .  It can then also be rewritten in the form: p = p (e).

We shall use formulae (12) and (14) to determine the quantities G (e) and g (e), taking 
into consideration the crystal with the isotropic energy spectrum. Now, the quantities G (e) 
and g (e) have the following forms:
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In the above formulae, the function p = p(e) is defined by the isotropic energy spectrum 
ep = e (p).

There are the different modes of the charge carriers scattering in semiconductors [1, 8, 
9, 13]. Here, the main mechanisms of interest are scattering by the acoustic phonons, the 
optical phonons, the point defects in semiconductors, and the charged impurities (the ions).

The scattering function of the main scattering modes is given by [1, 2, 3, 10]:

 u U T p d
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r r( ) = ( ) ,( ) (2 3)
2

ε
ε− 







  (17)

where U(r)(T) is the temperature dependent function known for the actual scattering mode, 
r is the parameter and it has the following values [1]:
– r = 0 for the scattering by the acoustic phonons and the point defects in semiconductors.
– r = 1 for the scattering by the optical phonons when the crystal’s temperature is larger than 

the Debay temperature Q.
– r = 2 for the scattering by the charged impurities (the ions) in the crystal lattice.
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In the case of the combined scattering mode, the general scattering function u is given by 
the formula:

 
1 = 1
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where 1
( )u ri

 is the scattering function of the simple scattering mode with the parameter ri,  

i = 0, …, 2.
Now, we can use the formulae (1)‒(9) to the calculation of the kinetic properties 

of isotropic doped semiconductor crystals with a narrow energy gap Eg.
In these crystals, the electrons and holes energy spectra are described by the nonparabolic 

Kane’s band [1, 5]:
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where m* is the parameter of the spectrum which plays a role of the electron or hole 
effective mass, Eg is the energy gap width.

For the energy spectrum (19) and the actual scattering modes (which are defined by 
the parameter r in formula (17)) taking into consideration formulae (15) and (17), the kinetic 
integral (10) takes form:
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In formula (20), the following notations were used:
Nc (T ) is the conduction band effective density of states and is defined by [8]:
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U(r)
 (T ) is the temperature dependent function, which has dimension of the mobility and 

is defined by [1, 3, 10]:
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where UA, UO, UI are the constants, which depend on the nature of the semiconductor crystal 
and the scattering mode of charge carriers in the crystal – the subscripts A, O, I are for the 
scattering by the acoustic phonons, the optical phonons, and the ions in the crystal lattice, 
respectively. d (…) is the Kronecker symbol.

Iij (T, m*) is the dimensionless functional and is given by:
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In formula (23), β ( ) =T kT
Eg

 is the parameter of nonparabolicity of the energy spectrum 

– this parameter is near zero in the semiconductor crystals with a wide energy gap Eg, 
and the nonparabolic Kane’s band turns into a parabolic band, i. e. the semiconductor 
crystal has a parabolic energy spectrum, x kT= / .ε

We substitute the value Jij (T, m*) from (20) in formulae (1)‒(9) of the kinetic properties. 
For example, the selected kinetic properties of the crystal take the forms:
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From formulae (24)‒(30) for the kinetic properties of the semiconductor crystals, it will 
be obvious that in order for the theoretical determination of these properties, the following 
experimental data should be known: the parameter of scattering r (i. e. the actual scattering 
mode or modes in the crystal), the reduced chemical potential m*, and the carriers’ effective 
mass m*. There are well-known experimental techniques capable of determining these 
experimental data [11‒13] including the actual scattering modes from the temperature 
dependence of the Hall mobility UH.

5. Conclusions

We have proposed general formulae for the kinetic properties of semiconductor crystals 
expressed in terms of the Fermi integrals.

The formulae constitute the mathematical model of the charge carriers transport 
phenomena in the semiconductor crystals.
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Possibly, it is useful to have a method of evaluating these properties without resorting to 
the Boltzmann equation, we do then not use this equation as the basis for our model and our 
analysis of the kinetic properties of semiconductor crystals.

The theoretical analysis of the model shows that for the calculation of the kinetic 
properties of isotropic doped semiconductor crystals, the following experimental data should 
be known: the actual scattering mode or modes in the crystal, the reduced chemical potential, 
and the carriers’ effective mass.
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