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1. Introduction

This paper is related to the Generalized Banach Contraction Principle (we will refer to it 
as GBCP for short) formulated as follows:

Theorem 1.1. [1] In a complete metric space X if for some N ³ 1 and 0 < M < 1  the 
mapping T X X: →  satisfies min{ ( , ), } ( , )d T x T y j N Md x yj j 1£ £ £  for any x y X, ,Î  
then T has a unique fixed point.

Firstly, let us have a quick look at a history of this theorem.
For N = 1 the above theorem is obviously the celebrated classical Banach contraction 

principle, see [B].
In [2], it was shown that if X is compact and if for x y X, Î  and ε> 0  there exists 

n ÎN  such that d T x T yn n( , )≤ ,ε  then T has a unique fixed point.
In [7], it was shown that GBCP is true for N = 2 and for N = 3, if  T is continuous.
In [6], it was shown that it is true for any N ³ 1, if T is uniformly continuous.
In [11], it was shown that it is true for any N ³ 1, if T is strongly continuous.
In [8], it was shown that it is true for N = 3 and for any N ³ 1, if T is continuous.
In [9] and [1] the above theorem was finally proved.
Before we proceed, let us recall some definitions:

Finite set A n n nk= ⊂{ }1 2< < < N  is said to be S-syndetic with constant S ÎN,   
if n n S for i ki i+ − −1 1 1£ £ £ .

Infinite set A ⊂ N  is said to be S-syndetic with constant S ÎN,  if for any l ÎN,  there  
is { : }: [ , ] .i l i l S l l S A∈ + ≤ ≤ + = + + ∩ ≠ ∅ 1 1

Infinite set A ⊂ N  is said to be piecewise S-syndetic with constant S ÎN,  if for any 
N ÎN,  there exists B A⊂  such that #B N³  and B is S-syndetic.

We call set A syndetic (or piecewise syndetic), if it is S-syndetic (piecewise S-syndetic) 
for some S ÎN.

Both proofs of Theorem 1.1 presented in [9], [1] are not elementary. In [1], the proof 
uses, among other tools, the strong result of H. Fürstenberg stated that if N ⊃ = ∪ =B Bi

N
i1  

is piecewise syndetic, then Bi is piecewise syndetic for some i NÎ{ , , }.1  In [9], the proof 
uses Ramsey’s theorem.

Another approach to the metric fixed point theory, presented in ([10]), resulted in the 
following:

Theorem 1.2. [10] Let (X, d) be a complete metric space. Let φ : [ , ) [ , ]0 0 1¥ →  be 

a non-increasing function such that φ( )t =1  if, and only if, t = 0. Assume that T X X: →  
is a contractive mapping such that:

1. d x Tx
d x x d Tx Tx

x M( , )
( , ) ( , )

,0 0
0 0

2
≤ ∉

−
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2. d Tx Ty d x y d x y x y M( , ) ( ( , )) ( , ), ,≤ ∈φ

for some M X x M⊂ , .0 Î  Then, T has a unique fixed point.
This instantly led to the following result regarding contractive mappings in complete 

metric spaces:

Corollary 1.3. For j as in Theorem 1.2, if d Tx Ty d x y d x y x y X( , ) ( ( , )) ( , ), , ,≤ ∈φ  
then  T has the  unique fixed point.

2. Main results

In this paper, we try to mix two approaches presented in Theorem 1.1 and Corollary 1.3, 
in order to achieve, under some additional assumptions, the following:

Theorem 2.1. Let (X, d) be a complete metric space, N ³ 1. Let φ : [ , ) [ , ]0 0 1¥ →  
be a continuous, non-increasing function satisfying φ( )t =1  if, and only if, t = 0. Assume  

that T X X: →  satisfies min{ ( , ), } ( ( , )) ( , ), , .d T x T y j N d x y d x y x y Xj j 1≤ ≤ ≤ ∈φ ⋅  
Then T has a unique fixed point.

The above theorem, in this general form, was proved in the author’s PhD thesis [12]. 
The proof is mainly based on the above mentioned Fürstenberg theorem. In this paper, 
we will show some special but important cases in which it is not necessary to apply this 
strong tool, which significantly simplifies the proof.

Firstly, we assume that T is a continuous mapping having the N-syndetic Cauchy  
orbit.

Theorem 2.2. Let (X, d) be a complete metric space, N ³ 1. Let T X X: →  be 
a continuous mapping such that:

1. for all y z X≠ ∈ ,  there exists n ÎN1  such that d T y T z d y zn n( , ) ( , )<

2. there exists x X NÎ Î, N1  and { }n j j= ⊂1
¥ N -increasing, N-syndetic such that  

{ }T xn j
j

=1
¥  is a Cauchy sequence.

T then has exactly one fixed point.

Proof. Let x T xn
n j

0 : lim .= →¥  Since 1 1£ £n n Nj j+ − ,  there exists b NÎ{ , , },1  
{ } { }n nj jl

⊂  such that n n bj jl l+ − =1 .  On the other hand, T x T T xj b nl jl+ =1 ( ).  By 

definition of x0, there is T x x ljl + → →1
0 , ,¥  and due to the continuity of T, we have 

T T x T x lb n bjl( ) ( ), .→ →0 ¥  Therefore, T 
b has a fixed point x0.

Let c b T b: min{ : }.= ÎN1 has a fixed point  Let us assume that c < 1.
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Let r d T x T x j k cj k: min{ ( , ), }.= −0 0 0 1≤ < ≤  Of course, r > 0 ‒ the opposite case 

would contradict with the choice of c. Since the minimum was taken over a finite set, there 
exists j k c0 0 0 1, { , , }Î  −  such that j0 < k0 and d T x T x rj k( , ) .0 0

0 0 =

By assumption, we can choose n ÎN  such that d T x T x d T x T xn j n k j k( , ) ( , ).+ +0 0 0 0
0 0 0 0<  

But n j p c j+ = ⋅ +0 0
 .  On the other hand, n k q c k+ = ⋅ +0 0

  for some j k c0 0 0 1

, { , , }.∈ −  
Of course, j k0 0



¹ .  Moreover, T x T T x x T T x T xq c c c c c p c⋅ ⋅= = = =0 0 0 0 0( ( ) ) ( ( ) ) .   

Therefore, d T x T x d T x T x d T x T xj k p c j q c k n j n k( , ) ( , ) ( ,







0 0 0 0 0 0
0 0 0 0 0= =⋅ + ⋅ + + +

00 0 0
0 0) ( , ),< d T x T xj k

 
which leads to a contradiction with the choice of  j0, k0.

We will now show that there is exactly one fixed point. Let us assume on the contrary, 
that there are x y0 0¹  such that Tx x Ty y0 0 0 0= =, .  By our assumption, there exists n ÎN  
such that d x y d T x T y d x yn n( , ) ( , ) ( , ),0 0 0 0 0 0> =  which leads to a contradiction.

¨

If there exists x X0 Î  such that d T x T xn n( , )0
1
0 0+ →  with n → ¥,  we can directly 

point out the Cauchy orbit. This fact is a subject of the following:

Theorem 2.3. Let (X, d) be a complete metric space. Assume that φ : [ , ]+ → 0 1  
is a continuous, non-increasing function such that φ( )t =1  if, and only if, t = 0. Let 
T X X: →  be a mapping satisfying the following conditions:

1. there exists N ÎN1  such that min{ ( , ), } ( ( , )) ( , )d T x T y j N d x y d x yj j 1£ £ £ φ  for  
all x y X, ,Î

2. d T x T x nn n( , ) ,+ → →1 0 ¥  for some x Î X.

Then { }T xn n=1
¥  is a Cauchy sequence.

Proof. Let x T xn
n: .=  Assume for indirect proof, that { } { }T x xn

n n n= ==1 1
¥ ¥  is not a Cauchy  

sequence. Therefore, there exists e > 0 such that for all n Î N, there exists k l nn n, >  
such that d x xk ln n

( , )≥ .ε  For n Î N let kn > n be the smallest possible such that there 

exist ln > kn satisfying d x xk ln n
( , )≥ .ε  For kn > n, let ln be the smallest possible such that 

d x xk ln n
( , )≥ .ε  Fix n0 Î N such that for all n ³ n0, d T x T x d x xn n

n n( , ) ( , ) .+
+=1
1 2

£
ε

 
Let us notice, that for n ³ n0 there is l kn n³ + 2.  Then, for fixed l kn n³ +2  we have 

d x x d x x d x x d x xk l k l l l l ln n n n n n n n
( , ) ( , ) ( , ) ( , )≤ <− − −+ + →1 1 1ε ε  with n → ¥.  Therefore, 

lim sup ( , ) .n k ld x x
n n→∞ ≤ ε  However, since d x xk ln n

( , ) ,³ ε  we have d x xk ln n
( , ) ,→ ε  

n → ¥.
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On the other hand, for all n Î N there exists j Nn Î{ , , }1  such that d x xk j l jn n n n
( , )+ + £

 
£ φ ( ( , )) ( , ).d x x d x xk l k ln n n n

 Define c i i Nn
i

jn: ( ) { , , },{ , , }= ⋅ −−χ 0 1 0 1


Î  where c is an 

indicator function. Let us estimate:
 d x x d x x d x x d x xk l k k k l l ln n n n n n n n

( , ) ( , ) ( , ) ( , ).£ + + + ++ +1 1 1 1  

Repeating this procedure, we get:

d x x d x x d x x d xk l k i k i k j l ji

j
ln n n n n n n n

n

n
( , ) ( , ) ( , ) (£ + + + + +=

−
+ +∑ 11

1
++ + +=

−∑ i l ii

j
x
n

n
11

1
, )

= + ++ + + + +=

−

+ +∑ d x x d x x d xk c k c k j l ji

N
l cn n

i
n n

i
n n n n n n

i( , ) ( , ) ( ,11

1
1 xxl ci

N

n n
i+=

−∑ )
1

1

£ d x x d x x d x x d xk c k c k l k li

N
ln n

i
n n

i
n n n n n

( , ) ( ( , )) ( , ) (+ + +=

−
+ +∑ 11

1
φ ++ + +=

−∑ c l ci

N

n
i

n n
ix11

1
, ).

By assumptions d x xk c k cn n
i

n n
i( , )+ + + →1 0  and d x xl c l cn n

i
n n

i( , )+ + + →1 0  with n → ¥  for 

i N∈ −{ , , }.0 1  Therefore, with n → ¥  in the above estimates, due to the continuity of f, 

we have ε φ ε ε£ 0 0+ ⋅ +( ) .  This implies φ ε( ) ,³1  which gives e = 0 and we therefore get 
a contradiction.

¨

Theorem 2.3 ensures the existence and uniqueness of a fixed point.
Theorem 2.4. Mapping T, which fulfils the assumptions of Theorem 2.3, has exactly one 

fixed point.

Proof. Using notations from Theorem 2.3, let z T xn
n

0 0: lim .= →¥  Due to the 

properties of T for any n Î N, there exists j Nn Î{ , , }1  such that d T x T zn j jn n( , )+
0 0 £  

£ φ ( ( , )) ( , ).d T x z d T x zn n
0 0 0 0  Therefore, there exists j NÎ{ , , }1  and { }nk ⊂ N  

such that d T x T z d T x z d T x zn j j n nk k k( , ) ( ( , )) ( , )+
0 0 0 0 0 0£ φ  for k ÎN.  Due to this fact, 

T x T zn j jk + →0 0  with k → ¥.  But on the other hand, T x zn jk + →0 0 ,  so T z zj
0 0= .

Let Z T x zn
n: { } { }.= ∪=0 1 0
¥  Let us notice, that T Z Zj ( ) .⊂

We will show that z0 is the only one fixed point of T j
Z

.  Indeed, if there is z w Z0 0≠ ∈  
‒ another fixed point of T j ,  then w T xn0 0=  for some n Î N. Then

 w T w T w T T x T x z kj k j k j n k j n
0 0 0 0 0 0= = = = = → →⋅ ⋅ ⋅ +

 ( ) , ,¥  

which leads to a contradiction.
We will show that z0 is a fixed point of T. Let j be the smallest natural number such 

that T z zj
0 0= .  Let 0 0 10 0 0 0

0 0< ≤ < ≤ε : min{ ( , ), } ( , )= − =d T z T z k l j d T z T zk l k l  for 
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some 0 10 0≤ < ≤k l j − .  There exists m NÎ{ , , }1  such that ε£ £d T z T zk m l m( , )0 0
0 0

+ +
 

£ φ φ ε ε( ( , )) ( , ) ( ) .d T z T z d T z T zk l k l0 0 0 0
0 0 0 0 =  Due to this fact, e = 0 – this leads to 

a contradiction.
We will now show that z0 is the only fixed point of T. Indeed, if there is z w X0 0≠ ∈   

‒ another fixed point of T, then for any n Î N there is T z zn
0 0=  and T w wn

0 0= .  For 

points z w0 0, ,  there exists j NÎ{ , , }1  such that d z w d T z T wj j( , ) ( , )0 0 0 0= £  
£ φ ( ( , )) ( , ).d z w d z w0 0 0 0⋅  This inequality implies that either d z w( , )0 0 0=  or  

φ ( ( , )).d z w0 0  Due to the properties of f, in both cases d z w( , )0 0 0=  – this contradicts  

with z w0 0¹ .

¨

The theorem below is useful for proving Theorem 2.1 for N = 2.
Theorem 2.5. Let (X, d) be a complete metric space, N ³ 1 and let φ : [ , ) [ , ]0 0 1¥ →  

be a continuous, non-increasing function such that φ ( )t =1  if, and only if, t = 0. Let 

T X X: →  satisfy min{ ( , ), } ( ( , )) ( , )d T x T y j N d x y d x yj j 1£ £ £ φ ⋅  for any x y X, .Î

Moreover, for fixed x y X, Î  let the sequence { } { , , }j Nn n= ⊂1 1¥
  be 

chosen (by the above assumption) in such a way, that for n ³ 2  we have  

d T x T y d T x T y d Tj j j j j j j j jn n n n( , ) ( ( , )) (1 1 1 1 1 1 1+ + + + + + + +− − ⋅   £ φ ++ + + +− − j j jn nx T y1 1 1, ).  Let 

z d T x T yn
j j j jn n: ( , ).... ...= + + + +1 1  Then zn → 0  with n → ¥.

Proof. Obviously zn ³ 0.  Since z z zn n n£ φ ( )− −1 1  and φ ( ) , { }t zn n≤ ∞1 1= , is non- 
-increasing.

If there exists n ÎN  such that z zn n= +1,  then z z z zn n n n= +1 £ φ ( ) ;  therefore, either 

zn = 0  or φ ( ) .zn ³1  Due to the properties of f, in both cases zn = 0.

In the opposite case (when for every n ÎN  there is z zn n¹ +1)  the sequence { }zn n=1
¥

 
is decreasing and bounded from below; therefore, it has a limit. Let g zn n: lim .= →¥  
We will show that this limit is 0. Assume for the purpose of contradiction that g > 0.  
Since φ ( )g <1  and φ φ( ) ( ),z gn →  due to continuity of f, for any δ> 0  there exists 

n0 ÎN  such that for any n n z gn≥ ≤0 φ φ δ( ) ( ) .+  Choose d such that φ δ( ) .g + <1  
Then φ φ δ( ) ( )z gn ≤ <+ 1  for n n³ 0.  On the other hand, 0 1 1£ £ £z z zn n nφ ( )− −  
£ £φ φ φ δ( ) ( ) [ ( ) ]z z z g zn n n

n n
n−

−+ →1 0 0
0

0
0  with n → ¥;  therefore, zn → 0  with 

n → ¥.
¨
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Now we will show proof of Theorem 2.1 for N = 2 without applying the Fürstenberg 
theorem.

Theorem 2.6. Let (X, d) be a complete metric space. Let φ : [ , ]+ → 0 1  be 

a continuous, non-increasing function such that φ ( )t =1  if, and only if, t = 0. Let 

T X X: →  be a mapping such that min{ ( , ), } ( ( , )) ( , )d T x T y j d x y d x yj j 1 2£ £ £ φ  
for any x y X, .Î

Then d T x T x nn n( , ) ,+ → →1
0 0 0 ¥  for any x X0 Î  and T has exactly one fixed  

point.
Proof. Assume for indirect proof, that there exists x X0 Î  such that   

d T x T xn n( , ) ;+1
0 0 0  therefore, there are x X kn n0 10∈ > ∞, , { }ε = ⊂ N  such that 

d T x T xk kn n( , )0
1
0

+ ≥ .ε

For k = 1, 2 let us create two sequences { }nm
k
m=1
¥  in the following way:

Let nk0 0: ;=  Having already chosen n nk
m
k

0 , , ,  define z d T x T xm
k n n km

k
m
k

: ( , )= +
0 0  and

 n
n d T x T x z z

n
m
k m

k n n k
m
k

m
k

m
k

m
k

m
k

+

+ + +

=
+ ⋅

+
1

1
0

1
01

2
:

, ( , ) ( )

,

gdy

gdy

£ φ

dd T x T x z zn n k
m
k

m
km

k
m
k

( , ) ( )+ + + ⋅






2
0

2
0 £ φ

 

The sequences { } , ,n km m= =0 1 2¥  are increasing and 2-syndetic. Moreover, due to 

Theorem 2.5, we have z m km
k → →0 1 2, , { , }.∞ ∈

Let us notice, that for all m0 ÎN ,  there exists m m³ 0  satisfying k nm p p∉ ∞{ } .1
0=  

Otherwise, there exists m0 ÎN  such that for any m m³ 0 ,  there is k nm p p∈ ∞{ } ;1
0=  

therefore, k nm p m= ( ) .
1  Taking, if needed, the subsequence of { }km m=0

¥  and renumbering 

it, without loss of generality, we can assume that m p m£ ( ).  Then d T x T xk km m( , )0
1
0

+ =  

= → →+d T x T x mn np m p m( , ) , ,( ) ( )
1 1

0
1
0 0 ¥  which leads to contradiction.

Therefore, for all m0 ÎN ,  there exists m m³ 0  satisfying k nm p p∉ ∞{ } .1
0=  For such m, 

there exists p m( )ÎN  satisfying n k np m m p m( ) ( ) .
1

1
1< < +  Without the loss of generality, 

we can assume that m p m£ ( ).  Obviously, n k np m m p m( ) ( ) .1
1

11 1+ = = −+

Since { }nq q
2

0=
¥  is a 2-syndetic sequence, there exists q m( )ÎN  such that either 

k nm q m= ( )
2  or k nm q m− =1 2

( ) ,  because { , } { } .k k nm m q q− ∩ ∅=1 2
0

∞ ≠  Without the loss of 

generality, we can assume that m q m£ ( ).
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If k nm q m− =1 2
( ) ,  then d T x T x d T x T x d T x T xk k k k k km m m m m m( , ) ( , ) ( , )0

1
0 0

1
0

1
0

1
0

+ − − ++£ £
 

£ d T x T x d T x T xn n n np m p m q m q m( , ) ( , ) ,( ) ( ) ( ) ( )
1 1 2 2

0
1
0 0

2
0 0+ ++ →  with m → ¥  – this follows from 

Theorem 2.5, and leads to contradiction.
If k nm q m= ( ) ,

2  then d T x T x d T x T x d T x T xk k k k k km m m m m m( , ) ( , ) ( , )0
1
0 0

2
0

2
0

1
0

+ + + ++£ £  

£ d T x T x d T x T xn n n nq m q m p m p m( , ) ( , ) ,( ) ( ) ( ) ( )
2 2

1
1

1
1

0
2
0 0

1
0 0+ ++ →+ +  with m → ¥  – this also leads 

to contradiction.
Therefore, d T x T xn n( , )+ →1

0 0 0  with n →∞.  Theorem 2.4 completes the proof.

¨

We will now show a proof of Theorem 2.1 for uniformly continuous mappings.

Theorem 2.7. Let (X, d) be a metric space. Assume that φ : [ , ]+ → 0 1  is 
a continuous, non-increasing function such that φ ( )t =1  if and only if t = 0. Let 

 T X X: →  be a uniformly continuous mapping such that

 ∀x y X d T x T y j N d x y d x yj j, min{ ( , ), } ( ( , )) ( , )∈ ≤ ≤ ≤1 φ  (1)

for some N ³ 1.
Moreover, if X is complete, then T has exactly one fixed point.

Proof. First we show, that d T x T x nn n( , ) ,+ → →1
0 0 0 ¥  for any x X0 Î .  Assume 

on the contrary, that d T x T xn n( , , )0
1
0 0+   for some x X0 Î ;  therefore, there exists  

x X0 Î ,  ε>
∞0 1, nk k{ } ⊂= N  such that:

 d T x T x kn nk k( , ) ,0
1
0

+ > ∈ε N  (2)

Due to the uniform continuity of T, for the e chosen above, there exists δ> 0  such  
that d Tx Ty( , )< ε  for any x y X, Î  satisfying d x y( , ) .< δ

Repeating this procedure N times, d can be chosen in such way, that:

 d x y( , )< δ  implies d T x T yj j( , )< ε  for any 1≤ ≤ ∈j N x y X, ,  (3)

Due to the assumption (1) for x X0 Î  chosen in (2), there exists j N1 1Î{ , }  such  

that d T x T x d x Tx d x Txj j( , ) ( ( , )) ( , ).1 1
0

1
0 0 0 0 0

+ £ φ  There then exists j N2 1Î{ , , }  such  

that d T x T x d T x T x d T x T xj j j j j j j j( , ) ( ( , )) ( , )1 2 1 2 1 1 1 1
0

1
0 0

1
0 0

1
0

+ + + + +£ φ ..

Continuing the above procedure, we will get j jl l1 1+ +{ } =... ¥  – an increasing and 

N-syndetic sequence, which fulfils the assumptions of Theorem 2.5 for the pair ( , ).x Tx0 0  
Therefore, d T x T xj j j jl l( , )... ...1 1

0
1
0 0+ + + + + →  with l → ¥.  Define m j j ll l: , .= + +1  ÎN  
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Let l0
 ÎN  be such that d T x T xm ml l( , )0

1
0

+ < δ  for l l³ 0
 .  Since the sequence ml l l{ }

= 0


¥

  

is N-syndetic (because ml l{ } =1
¥  is an increasing); therefore, we can choose l l0 0³  such  

that { ,..., } .m m N nl l k k0 0
1 1+ + ∩{ } ∅=

∞ ≠

Therefore, there exists j N0 1Î{ , , }  and k0 ÎN  such that:

 m j nl k0 00+ =  (4)

By (2), it follows that d T x T xn nk k( , ) ,0 0
0

1
0

+ > ε  and also d T x T xm ml l( , ) ,0 0
0

1
0

+ < δ  

it therefore (3) implies that d T x T xm j m jl l( , ) ,0 0 0 0
0

1
0

+ + + < ε  which, in respect of (4), leads 
to contradiction.

¨

Now we can make use of the above theorems in the following example:

Example 2.1. Let T l x l x i l x l x ii i: { : , } { : , }∞ ∞ ∞ ∞∈ ≥ ∈ ∈ ≥ ∈∩ → ∩0 0N N  be 

defined in the following way: T x x x Tx
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Obviously, Tx Ty x y− −∞ ∞≤ 2 .  We also have T x x
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Let us estimate:
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x y
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i

i i

i i i i

i i
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∞

,

i ÎN.

The latter inequality follows from the fact that t t
t

→
+1

 is an increasing function  

on [ , ).0 ¥  Similarly, 
x
x

y
y

x y
x y

i

i

i

i1 3 1 3 1+
−

+

−

+ −
≤ ∞

∞

,  and therefore, T x T y2 2−
∞
≤
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≤
∞

∞

1
1+ −

−
x y

x y .  The mapping T satisfies the assumptions of both Theorem 2.6 

and Theorem 2.7 with φ ( ) : ,t
t

=
+
1
1

 it therefore follows that T has a unique fixed point. It is 

of course ( , , , ).1 0 0  However, the mapping T does not satisfy assumptions of Theorem 1.1.
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R e f e r e n c e s

[1] Arvanitakis A.D., A proof of the generalized Banach contraction conjecture, Proc. of the Amer. 
Math. Soc. 131, 2003, 12:3647-3656, MR 1998170.

[2] Bailey D.F., Some theorems on contractive mappings, J. London Math. Soc. 41, 1966, 101-106.
[3] Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations 

integrales, Fund. Math. 3, 1922, 133-181.
[4] Furstenberg H., Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton 

University Press, 1981, MR0603625 (82j:28010).
[5] Goebel K., Concise course on fixed point theorems, Yokohama Publishers, 2002.
[6] Jachymski J.R., Stein J.D. Jr., A minimum condition and some related fixed-point theorems, 

J. Austral. Math. Soc. 66, 1999, 224-243.
[7] Jachymski J.R., Schroder B., Stein J.D. Jr., A connection between fixed point theorems and 

tiling problems, J. Combin. Theory 87, 1999, 273-286.
[8] Merryfeld J., Rothschild B., Stein J.D. Jr., An application of Ramsey’s theorem to the Banach 

contraction principle, Proc. of the Amer. Math. Soc. 130, 2001, 927-933, MR 2002h:54040.
[9] Merryfeld J., Stein J.D. Jr., A generalization of the Banach contraction principle, J. Math. Anal. 

Appl. 273, 2002, 112-120, MR 1933019 (2003g:54100).
[10] Rakotch E., A note on contractive mappings, Proc. Amer. Math. Soc. 13, 1962, 459-465.
[11] Stein J.D. Jr., A systematic generalization procedure for fixed-point theorems, Rocky  

Mountain J. of Math., 30, 2000, 735-754 (2), MR 2001i:54052.
[12] Punkty stałe odwzorowań w przestrzeniach metrycznych i SF-przestrzeniach, Thesis, Jagiellonian 

University, Kraków 2015.


