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Abstract
This paper presents some results concerning the Generalized Banach Contraction Principle:
In a complete metric space X if for some N > 1 and 0 < M < 1 the mapping T: X - X
satisfies min{d(zj,ij), 1<j<N}< Md(x,y) for any x,y€ X, then T has a unique
fixed point. In some special cases, the above constant M can be replaced by a continuous, non-
-increasing function 0 < ¢ (d(x,y)) <1 such that ¢(¢z) =1 if, and only if, t = 0.
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1. Introduction

This paper is related to the Generalized Banach Contraction Principle (we will refer to it
as GBCP for short) formulated as follows:

Theorem 1.1. [1] In a complete metric space X if for some N > 1 and 0 < M < 1 the
mapping T: X — X satisfies min{d(T’x,T’y), 1< j < N} < Md(x,y) forany x,y € X,
then T has a unique fixed point.

Firstly, let us have a quick look at a history of this theorem.

For N = 1 the above theorem is obviously the celebrated classical Banach contraction
principle, see [B].

In [2], it was shown that if X is compact and if for x,y € X and &> 0 there exists
n €N such that d(T"x,T"y) <&, then T has a unique fixed point.

In [7], it was shown that GBCP is true for N =2 and for N =3, if T is continuous.
In [6], it was shown that it is true for any N > 1, if T is uniformly continuous.

In [11], it was shown that it is true for any N > 1, if T'is strongly continuous.

In [8], it was shown that it is true for N =3 and for any N > 1, if 7 is continuous.
In [9] and [1] the above theorem was finally proved.

Before we proceed, let us recall some definitions:

Finite set A={n <mn, <...<m}cN is said to be S-syndetic with constant S €N,
ifm,—n<§ for 1<i<k-l.

Infinite set A N is said to be S-syndetic with constant S €N, if for any | €N, there
is {ieN  I+1<i<[/+8}=[l+LI+S]nA#D.

Infinite set A< N is said to be piecewise S-syndetic with constant S € N, if for any

N €N, there exists Bc A such that #B > N and B is S-syndetic.
We call set A syndetic (or piecewise syndetic), if it is S-syndetic (piecewise S-syndetic)
for some S € N.
Both proofs of Theorem 1.1 presented in [9], [1] are not elementary. In [1], the proof

uses, among other tools, the strong result of H. Fiirstenberg stated that if N> B =UY, B,
is piecewise syndetic, then B, is piecewise syndetic for some i €{l,...,N}. In [9], the proof

uses Ramsey’s theorem.
Another approach to the metric fixed point theory, presented in ([10]), resulted in the
following:

Theorem 1.2. [10] Let (X, d) be a complete metric space. Let ¢: [0,00) —[0,1] be
a non-increasing function such that ¢(t) =1 if, and only if, t = 0. Assume that T: X - X

is a contractive mapping such that:
d(x,xy)—d(Tx,Txy)
2 b

1. d(xy,Txy) < x¢gM
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2. d(Tx,Ty) < ¢(d(x, y)d(x,y), x,yeM

Jorsome M c X, xy € M. Then, T has a unique fixed point.

This instantly led to the following result regarding contractive mappings in complete
metric spaces:

Corollary 1.3. For ¢ as in Theorem 1.2, if d(Tx,Ty) < d(d(x,y))d(x,y), x,y € X,
then T has the unique fixed point.

2. Main results

In this paper, we try to mix two approaches presented in Theorem 1.1 and Corollary 1.3,
in order to achieve, under some additional assumptions, the following:

Theorem 2.1. Let (X, d) be a complete metric space, N > 1. Let ¢:[0,00) —[0,1]
be a continuous, non-increasing function satisfying ¢(t) =1 if, and only if, t = 0. Assume
that T:X — X satisfies min{d(T'x,T’y), 1< j < N} <d(d(x,y))-d(x,y), x,y€X.

Then T has a unique fixed point.

The above theorem, in this general form, was proved in the author’s PhD thesis [12].
The proof is mainly based on the above mentioned Fiirstenberg theorem. In this paper,
we will show some special but important cases in which it is not necessary to apply this
strong tool, which significantly simplifies the proof.

Firstly, we assume that 7 is a continuous mapping having the N-syndetic Cauchy
orbit.

Theorem 2.2. Let (X, d) be a complete metric space, N > 1. Let T: X — X be

a continuous mapping such that:

1. forall y=z€ X, thereexists n € Ny such that d(T"y,T"z) < d(y,z)
2. there exists x€ X, N €N, and {n; }ﬁl c N -increasing, N-syndetic such that
(r" x}iil is a Cauchy sequence.
T then has exactly one fixed point.
Proof. Let x,:=lim, . 7" x. Since 1<n;,;—n; <N, there exists b€ {l,...,N},

{n;}<{n;} such that n; ,-n; =b. On the other hand, T/ =TP(T" x). By

Jp+l
definition of x,, there is T Ity — Xy, [ > 00, and due to the continuity of 7, we have
Vi (T"x)—>T b (%), { = oo. Therefore, T has a fixed point x,.

Let c:=min{be N, : T’ has a fixed point}. Let us assume that ¢ < 1.
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Let r:= min{d(zjO,TkxO), 0<j<k<c-1}. Of course, r > 0 — the opposite case
would contradict with the choice of ¢. Since the minimum was taken over a finite set, there
exists jg,kq €10,...,c—1} such thatj <k and d(Tjoxo,Tk"xO) =r.

By assumption, we can choose n € N such that d(T"*0x,,T"* x,) < d(T" xy, T x,).
But n+ j, = p-c+ j,. On the other hand, n+k, = q-c+l;0 for some fo,l;o €{0,...,c—1}.
Of course, j, = IEO. Moreover, T9xy =T(...(Txp)..)=xy =T (..(Txy)...) =T"“x,.

Therefore, d(T% xO,TIEO Xp)= d(TP<th xO,Tq'C”;" Xo) = d(T" 0 xy, T 0 x0) < d(T7 xy, TR0 x,),

which leads to a contradiction with the choice of j, k.

We will now show that there is exactly one fixed point. Let us assume on the contrary,
that there are x;, = y, such that Tx, =x,, Ty, = y,. By our assumption, there exists n € N

such that d(x,,y,) > d(T"xy,T"yy) = d(xy,¥,), Which leads to a contradiction.
O
If there exists %o € X such that d(T"xy,T""'x)) =0 with 7 —> 00, we can directly
point out the Cauchy orbit. This fact is a subject of the following:

Theorem 2.3. Let (X, d) be a complete metric space. Assume that ¢:R, —[0,1]
is a continuous, non-increasing function such that ¢(t)=1 if, and only if, t = 0. Let
T:X > X be a mapping satisfying the following conditions:

1. there exists N €N, such that min{d(T'x,T’y), 1< j < N} <o(d(x,y))d(x,y) for

all x,ye X,

2. d(T"™'x,T"x) >0, n—> 0o for somex € X.

Then {T"x},2, is a Cauchy sequence.

Proof. Let x, :=T"x. Assume for indirect proof, that {T"x},>, = {x,}, is nota Cauchy
sequence. Therefore, there exists € > 0 such that for all » € N, there exists k,,/, >n

n’°'n

such that d(xkn,xln)z e. For n €N let k >n be the smallest possible such that there

exist [, >k, satisfying d(x, ,x; ) >& Fork > n,let/ be the smallest possible such that

d(x ,x, ) >e Fix n, € N such that for all n > n, d(T™x,T"x) = d(x

€
n+l1 '»'xn) < 5
Let us notice, that for n > n there is [, >k, +2. Then, for fixed [, >k,+2 we have
d(x, ,x ) <d(x ,x, ) +d(x; _,x )<e+d(x; _;,x; ) >¢ with n—>o0. Therefore,

lim sup,_, . d(x; ,x; ) <e. However, since d(x, ,x; )>¢, we have d(x; ,x; )¢,
n — o0.
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On the other hand, for all n € N there exists j, € {L,..., N} such that d(x; ., ,x, ,; )<
<o(d(x; ,x, )d(x, ,x, ). Define c! =i%0,. ;-3 €{0,.... N -1}, where y is an
indicator function. Let us estimate:

d(x, ,x ) <dOx ,x; )+d0g X 0)+d(x 4,x).

Repeating this procedure, we get:
d(x, o3 )< )+d( VA x )
Ko X1,) > 2 A Xk i X i X+, 0%+, i P i1 X i
N-1 J J N-1 J
- Zi=1 (xk,, +eh? xk” +ch +1) + (xkn +Jn> Mty )+ Zizl (xl,, +ch+1 ’xln +c )

N-1 N-1
<Y A X )0 DA )Y ).

By assumptions d (xkﬁc; Xy

)—>0 and d(x

X, )—>0 with n > o0 for
L+c, > 1, +c,+1

i€{0,...,N—1}. Therefore, with » — oo in the above estimates, due to the continuity of ¢,

we have € <0+ ¢(g)-e+0. This implies ¢(¢) >1, which gives € = 0 and we therefore get
a contradiction.

O

Theorem 2.3 ensures the existence and uniqueness of a fixed point.

Theorem 2.4. Mapping T, which fulfils the assumptions of Theorem 2.3, has exactly one
fixed point.

Proof. Using notations from Theorem 2.3, let z,:=lim, , T"x,. Due to the
properties of T for any n € N, there exists j, € {l,..., N} such that d(T"+j"xO,Tj”zo) <
<o(d(T"xy,29))d(T"xy,2y). Therefore, there exists je{l,...,N} and {n}cN
such that d(T"™"/xy,T72,) < &(d(T" xy,2,))d(T" x,,2,) for k€N. Due to this fact,
T"* xy — T’ z, with j _, oo But on the other hand, T"*/x, — z,, so T7z, = z,.

Let Z:={T"x,}, U{z,}. Letus notice, that T/ (Z) c Z.

We will show that z is the only one fixed point of 7' J 4, Indeed, if there is zy = w, € Z
— another fixed point of 77, then w, =T"x, for some n € N. Then
wy =T wy =...=T* wy, =T (T"x,) = T"/""xy — 2y, k — 00,

which leads to a contradiction.
We will show that z; is a fixed point of 7. Let j be the smallest natural number such

that 777 =z, Let 0<e=min{d(T"zy,T'z)), 0<k <1< j-1}=d(T"z),Thzy) for
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some 0 <k, <[, <j—1. There exists m € {l,..., N} such that ¢ < d(TkO“"zO,TlO*sz) <

<O(d(T 0 zy,T"2)))d(T* 2y, T" z;) = d(e)e. Due to this fact, € = 0 — this leads to
a contradiction.
We will now show that z is the only fixed point of 7. Indeed, if there is zy = wy € X
— another fixed point of 7, then for any n € N there is 7"z, =z, and T"w, =w,. For
points z,, w,, there exists j€{l,...,N} such that d(zy,w,)=d(T’zy,T'w,)<
<0(d(zy,wy)) - d(zy,wy). This inequality implies that either d(zy,w,)=0 or
¢ (d(zy,w,)). Due to the properties of ¢, in both cases d(z,,w,)=0 — this contradicts
with z, = w.
O

The theorem below is useful for proving Theorem 2.1 for N = 2.
Theorem 2.5. Let (X, d) be a complete metric space, N > 1 and let ¢: [0,00) = [0,1]

be a continuous, non-increasing function such that ¢(¢)=1 if, and only if, t = 0. Let
T:X — X satisfy min{d(T’x,T’y), 1< j < N}<d(d(x,y))-d(x,y) forany x,y € X.

Moreover, for fixed x,y€X let the sequence {j, }oei<{l,...,N} be
chosen (by the above assumption) in such a way, that for n>2 we have
d(le+"'+jn x’le+"'+jn y) < (I)(d(le+"'+jn71 X, Tt »))- d(Tj1+"'+j"’1 X, Tht i y). Let
z,, = d(TH g, T/**In ) Then z, — 0 with n — co.

Proof. Obviously z,>0. Since z,<d(z,)z,, and ¢(#) <1, {z,}c,, is non-
-increasing.

If there exists n € N such that z, =z,,,, then z, =z,,, <¢(z,)z,; therefore, either

z, =0 or ¢(z,) >1. Due to the properties of ¢, in both cases z, = 0.

In the opposite case (when for every n €N there is z, = z,,,) the sequence {z,},,
is decreasing and bounded from below; therefore, it has a limit. Let g:=1lim, , z,.
We will show that this limit is 0. Assume for the purpose of contradiction that g > 0.
Since ¢(g) <1 and ¢(z,) = ¢(g), due to continuity of ¢, for any §~ ( there exists
ny € N such that for any n>ny ¢(z,) <¢$(g)+8. Choose & such that ¢(g)+d<1.
Then ¢(z,) <d(g)+6<1 for n>ny,. On the other hand, 0<z, <¢(z, )z, <
<6(z,0).--0(z, )z, <[d(g)+8]" "z, >0 with n—>o0; therefore, z, >0 with
n— Q.

O
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Now we will show proof of Theorem 2.1 for N = 2 without applying the Fiirstenberg
theorem.

Theorem 2.6. Let (X, d) be a complete metric space. Let ¢: R, —[0,1] be
a continuous, non-increasing function such that &()=1 if, and only if, t = 0. Let
T:X > X be a mapping such that min{d(T’x,T’y), 1< j <2} <d(d(x,y))d(x,y)
forany x,ye X.

Then d(T"+1x0,T"x0)—>0, n—oo for any xy,€X and T has exactly one fixed

point.
Proof. Assume for indirect proof, that there exists xy;€X such that

d(T™'xy,T"xy) » 0; therefore, there are x,€X, £>0, {k,}°°, cN such that

d(T* xy, T x) > &

oo

For k=1, 2 let us create two sequences {n,l; Yoel

in the following way:
k._ (. . k k k ._ n nk vk
Let n, :=0; Having already chosen #y,...,n,,, define z,, :=d(T""x,,T" " x,) and

oAb mdy d@ g, T ) <62k 2

My =

k
2, gdy d(T g, T ) < (k) k

[o.¢]

The sequences {n,},_ o,

k=1,2 are increasing and 2-syndetic. Moreover, due to
Theorem 2.5, we have zfn -0, m>oo, ke{l,2}.
Let us notice, that for all m, € N, there exists m >m, satisfying k, & {nl,}jf:().
. c : 1 .
Otherwise, there exists m, € N such that for any m >m,, there is k, € {np };":0,
therefore, k,, = n},(m). Taking, if needed, the subsequence of {k,}, _, and renumbering
it, without loss of generality, we can assume that m < p(m). Then d(T o xo,Tk'"+1x0) =
= d(T"lp(m X0, T"L(m“ Xy) =0, m — oo, Which leads to contradiction.
. - 1
Therefore, for all m, € N, there exists m >m, satisfying k,, & {n,},_o. For such m,

1

. . . 1
there exists p(m) €N satisfying n,,,,) <k,, <np()s1-

Without the loss of generality,

we can assume that m < p(m). Obviously, n,,, +1=k, = n;(mm -1.

qg(m)eN

1
p(m

Since {nj}gio is a 2-syndetic sequence, there exists such that either

by =1 OF k,—1=nZ, . because {k, —Lk,}"{n }>) =@. Without the loss of

generality, we can assume that m < g(m).



22

If ky, —1=n7 . then d(T*x,, T xg) < d(T" xy, T% " x) +d (T xy, T xg) <

1 1 2 2
<d(T"™ xO,Tn"(m)HxO)—i-d(Tn"“”) xO,Tn“'”>+2x0) — 0, with m — oo — this follows from
Theorem 2.5, and leads to contradiction.
If K, =nl,), then d(T*x,, T 50y <d(T* xy, T"*2x))+d(T*?xy, T xy) <

; 2om 2 ; ; 1 . .
< d(T" xy, T “x0) + d(T"" " xo, T x3) = 0, with m — oo — this also leads
to contradiction.

Therefore, d(T"*'x,,T"x,) — 0 with n — co. Theorem 2.4 completes the proof.

We will now show a proof of Theorem 2.1 for uniformly continuous mappings.
Theorem 2.7. Let (X, d) be a metric space. Assume that ¢: R, —[0,1] ;¢
a continuous, non-increasing function such that ¢(t)=1 if and only if t = 0. Let
T:X — X be auniformly continuous mapping such that
Vx,y€ X min{d(T'x,Ty), 1< j <N} <¢(d(x,)d(x,y) e)
for some N > 1.
Moreover, if X is complete, then T has exactly one fixed point.

Proof. First we show, that d(T""'x,,T"x,) =0, n—o0 for any x, € X. Assume

on the contrary, that d(T"x,,,T "”xo)—/»O for some x, € X; therefore, there exists
X €X, £>0, {n},° <N suchthat:

d(T"x,, T ' x,)>¢, keN 2)
Due to the uniform continuity of 7, for the € chosen above, there exists & >0 such
that d(Tx,Ty) < e forany x,y € X satisfying d(x,y) <9.
Repeating this procedure N times, 8 can be chosen in such way, that:
d(x,y) <& implies d(I'x,T’y)<e forany 1<j<N, x,y€X 3)
Due to the assumption (1) for x, € X chosen in (2), there exists j €{l,...N} such
that d(T% x,, T x,) < 0(d(xy.Tx,)) d(xy,Txy). There then exists j, € {l,...,N} such
that d(T/*2x,, T2 x)) < (AT 0, T x0)) d(T7 %, T4 ).
Continuing the above procedure, we will get { St j,}?:l — an increasing and
N-syndetic sequence, which fulfils the assumptions of Theorem 2.5 for the pair (x,,Tx,).

Therefore, d(T/*ix,, TA**1*x ) 50 with [ —oco. Define m; = j, +...+ j;, [€N.
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Let IEGN be such that d(T™x,,T" %)) <8 for 12?0. Since the sequence {m,};’Cf
=h

o0

- is an increasing); therefore, we can choose I, >/, such

is N-syndetic (because {m;}
that {my, +1,...,m + N} m{nk}iil = .
Therefore, there exists j, € {l,...,N} and k; € N such that:
m + jo =y, 4)

7

°+1x0)>8, and also d(T

mlo

By (2), it follows that d(T™x,,T X0, 7" ' xy) <8,

it therefore (3) implies that d(Tm1°+j *xo,T " O+lxo) < g, which, in respect of (4), leads
to contradiction.
O
Now we can make use of the above theorems in the following example:
Example 2.1. Let T:[ _n{xe€l: x>0, icN} >/ n{xecl : x;>0, icN} be

1 1
2%y 5x2 25 Ex“

defined in the following way: 7 :x = (x,x,,...) > Tx=| L, s s ) een |
I+x; 1+x, T4+x5 1+x,

. x x
Obviously, ||Tx—Ty||x§2||x—J’"oo. We also have T?x= 1,1 32 ’1+33~x3’
+=x,
2
az ) i ,... | Let us estimate:
1+§x 1+ 3x;5
4
2
‘ N i ‘< Yi — )i ‘< |x =il < | =il < |x=xl,
1+%x,- 1+;yi‘ 1+;(xi+yi)+49|.xiyi‘ Febsien] = 1= 1+||x_y||oo
ieN.

. . t . . . .
The latter inequality follows from the fact that t—)l— is an increasing function
+t

x| ol

ooy, Simmilal _
on [0,00). Similarly, 14+3x, 143y, |~ L+]x-y|

, and therefore, “sz—sz“Oo <
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<
L x=»],

||x— y||oo. The mapping T satisfies the assumptions of both Theorem 2.6

and Theorem 2.7 with ¢(¢) = IL’ it therefore follows that 7 has a unique fixed point. It is
+t

of course (1, 0, 0,...). However, the mapping 7 does not satisfy assumptions of Theorem 1.1.

I would like to thank Professor Grzegorz Lewicki for his valuable suggestions and remarks.
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