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1. Introduction 

The deterioration of concrete under combined environmental actions and mechanical 
loading involves different mechanisms acting on different scales, from the nanometer to the 
meter level, [11]. The governing equations used to describe the processes at the molecular 
level are usually averaged statistically at the mesoscale. Due to the limited possibilities of 
laboratory testing, the process parameters are determined at the macro scale. As a result, 
the understanding of the process mechanisms is blurred and the parameters are averaged 
over a representative volume. The use of averaged values leads to a phenomenological 
description where the bulk behaviour of the body can be explained statistically and applied 
to macroscopic state variables.

This paper deals with a phenomenological model of stress-assisted concrete corrosion. It 
presents constitutive equations for the viscoelastic continuum and multicomponent transport 
through porous material. The deterioration of material is described by a scalar parameter split 
into chemical and mechanical parts. For each part, a proper evolution equation is adopted. 
Compound chemical and mechanical deterioration allows the prediction of the stress state in 
the material. To transpose these results onto the real scale of structural members, the stress is 
integrated over a cross-section. The bearing capacity of the partially damaged cross-section 
is simulated numerically. The ultimate limit state, prescribed by Eurocode 2, provides the 
interaction surfaces of the cross-sectional forces. Evolution of these surfaces over time 
exemplifies the change of the cross-section bearing capacity. Almost all numerical simulations 
are carried out by a novel method of cellular automata. In this method, the space is divided 
into identical cells. The simulation relies on a series of actualization of cell states on the basis 
of an automation rule – this is identical for all the cells and uses the state of neighboring cells. 
For more information about cellular automata, please see [12].

In the paper, the main characteristics of the proposed model are reported succinctly, while 
more attention is paid to the construction of interaction curves.

2. Constitutive equations 

2.1. Concrete matrix 

Concrete is considered to be a viscoelastic material with fading memory. The creep of 
the material in response to loading can be described by the hereditary theory in the form of 
Volterra integral equation of the second type [1]:
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where σ is the effective stress, and the compliance function J can be expanded in a Dirichlet 
series:
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which leads to a generalized Kelvin chain with a series arrangement. This is equivalent to 
the second order differential equation but is in contradistinction to the generalized Maxwell 
chain where each element sustains the same stress value. This achieves two goals. Firstly, 
the constitutive laws for a viscoelastic material can be written in terms of a limited number 
of internal variables. Secondly, a recurrent definition of internal variables can be introduced, 
[1, 13]: 
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and limited to two elements of the chain: 
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and only one internal variable in each calculation point takes into account the history of the 
process. This reduces the number of numerical operations and demands on computer memory. 
Therefore, a remark in Cervera et al. [2] about the integral approach being unsuitable for 
numerical computation does not seem to be justified in a general sense. 

The material behaviour is not dependent on ongoing diffusion processes. The effects of 
liquid and gas pressure are not included. 

2.2. Transport equations 

The mixture theory describes the behaviour of simultaneous multicomponent flows that 
occur inside the material. The mass balance equations for each constituent concentration ci  
result in a set of Fick’s second law equations: 
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where some terms can be neglected. The terms of pressure diffusion and external forces are 
irrelevant for free inflow of aggressive species, and when the Peclet number is much smaller 
than one, the transport processes are diffusion driven and the convection term can be omitted, 
[5, 9]. The actual form of diffusion equations: 
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serves as the basis for the determination of components concentration. The above formulae 
describe conjugated as well as coupled flows. Using the concept of cellular automata, [14], 
equations (6) can be written as:
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using the von Neumann automaton rule, and:
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using the Moore automaton rule. The diffusion coefficients depend on the volumetric strain, 
[12].

The presented automata rules are a novel and alternative method to the simultaneous 
multicomponent flows that occur inside the material. 
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2.3. Evolution equations 

Within a frame of continuous damage mechanics, the material deterioration can be 
entirely described by a scalar parameter composed of two parts – chemical and mechanical. 
The effective stress due to material degradation is, [4]:

 
( )( )1 1ch md d

σ
σ =

− −
 (11)

2.3.1. Chemical part 

The diffusion processes through the porous material are very slow when compared to the 
rate of chemical reactions. The calculation recounted in [9] for similar chemical processes 
gave the Damköhler number of order 800, so much greater than one. This means that the 
chemical reaction process is strongly diffusion controlled. This is called an encounter complex 
where the formation of products is almost instantaneous. The actual rate of chemical reaction 
is limited by the slowest step – diffusion. 

Considering a first order reaction kinetics, a formula similar to that which was proposed 
in [3] can be used: 

 0a a
dK c c
dt +

= χ −  (12)

where two parameters play an important role: they limit the concentration ca0 of the onset of 
the corrosion process and the coefficient χ is of a stoichiometric nature.

A simple linear dependence of the chemical damage parameter and the chemical reaction 
extent can be assumed: 

 ( )0, ,1chd K= ξ ξ∈ ξ  (13)

where ξ0 stands for maximum material damage or residual strength of the material due to its 
non-homogeneity. A similar idea has been presented in [8].

2.3.2. Mechanical part 

The mechanical damage parameter is defined by the formula in terms of an equivalent 
tensile strain, [6]:
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The above formula is well suited for the modeling of concrete under compression as well 
as under tension and was compared with the Eurocode nonlinear elastic-plastic prescription, 
[14].

3. Numerical examples 

A reinforced concrete cross-section exposed to 10% ammonium nitrate (V) solution 
and flexure stress is considered. Two cases of environmental action are considered: the first 
without protection; the second with one side protected, Fig. 1.

All required material and process data were adopted from the author’s previous works, 
[12], or from numerical simulation of laboratory experiments on cementitious samples, [10]. 
The cement characteristics from [15] are recalculated here onto concrete characteristics.

3.1. Cross-section damage 

The concentration contour lines were obtained as a solution of the transport equations 
with the use of the cellular automata. The reaction products are calcium nitrate and ammonia 
with a residual strength of the solid phase, this indicates the deterioration of the material.

Fig. 1. A cross-section of RC beam: without protection (left); with one side protected (right)
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The contour lines of the accumulative damage parameter are presented in Fig. 2. The 
solution for the case without protection demonstrates a lack of horizontal symmetry due 
to the mechanical load and different damage rate from the tensioned side in relation to the 
compressed side. The comparison of the solutions with different protections clearly shows 
the influence of boundary conditions on the actual form of cross-section damage. The bearing 
capacity of the RC cross-section comes from a combined action of the reinforcement and the 
compressed zone of concrete. Therefore, the damage processes in the compressed zone of the 
cross-section can considerably influence its bearing capacity. 

3.2. Interaction surfaces 

The cross-section bearing capacity decreases as a consequence of the material damage. 
The determination of cross-sectional forces in ultimate limit state is very important from 
the point of view of structural engineering. To assess limit values of the forces, the effective 
stress should be integrated over the cross-section area. The more general picture of limit 
values can be presented by interaction surfaces, or, due to poor visibility of 3D objects in 2D 
presentation, their sections commonly named the interaction curves.

However, the stress integration is not a standard procedure here for two reasons. Firstly, 
the effective stress state always depends on both space variables. In such cases, the ordinary 
integration procedures commonly employed in structural mechanics are useless. Secondly, 
due to stress softening, both in tension and compression, the ultimate values of cross-sectional 
forces are obtained for imminent but not exactly limit strains. The use of limit strains as 
prescribed by Eurocode for standard cases yields partially non-convex interaction curves. 
This is not an exact denouement to the problem, but such an erroneous solution can be found 
in several research papers ([7], for instance). 

Fig. 2. Contour lines of damage parameter: without protection (left); with one side protected (right).
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A method of stress integration adopted here uses triangularisation based on the cellular 
automata discretization (Fig. 3). Using linear approximation, we get simple formulae for the 
finite difference resultant and its position:
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The interaction curves are a solution of an inverse problem. For a given strain repartition, 
an appropriate stress repartition is calculated and integrated. In this way, a point in cross-
sectional space is created. The interaction curves are simply a convex hull of all possible 
interaction points. To complete the task, a sufficiently dense, computer-generated set of 
possible strain repartition should be used. 

The interaction curves of axial force and bending moment, (N–My), result from strain 
repartitions conserving symmetry, with the neutral axis perpendicular to the cross-section 
symmetry axis. The interaction curves of bending moments, (My–Mz), require an additional 
loop of iterations to fulfill the condition of zero axial force.

The interaction curves evolve over time. In Fig. 4, N–My and My–Mz curves are presented 
for the case without protection, and in Fig. 5, for the case with one side protected.

Due to ongoing material deterioration, the residual bearing capacity of the cross-section 
diminishes and the interaction curves shrink over time. Protection of one side of the cross-
section results in smaller damage to the compression zone and a much greater bending 
moment capacity. The difference, however, is less visible on My–Mz curves.

Fig. 3. A nominal stress repartition and stress integration method
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4. Conclusions 

Despite the many simplified assumptions adopted, the physical and chemical modelling 
of concrete corrosion presented here seems to be adequate to reproduce the characteristic 
material damage as well as the synergetic action of the environmental and mechanical 
load. The material and process parameters used in calculations were collected from various 
experimental works presented by other researchers so the results presented here have an 
informative character only.

Cellular automata are a robust tool for numerical analysis of the transport equations as 
well as stress integration. The existing ‘classical’ methods (Alternating Implicit Direction 
method, for instance) can be successfully replaced by this 60-year-old but novel method. 

Most notably, to author’s knowledge this is the first study to simulate the long-term effects 
of concrete corrosion for different boundary conditions on the load-bearing capacity of the 
structural member cross-section. 

Fig. 4. Interaction curves N–My (left) and My–Mz (right), no protection

Fig. 5. Interaction curves N–My (left) and My–Mz (right), one side protected



378

R e f e r e n c e s

[1] Bažant Z.P., Hauggaard A.B., Baweja S., Ulm F.-J., Microprestress-solidification theory 
for concrete creep. I: Aging and drying effects, Journal of Engineering Mechanics,  
Vol. 123(11), 1997, 1188-1194. 

[2] Cervera M., Oliver J., Prato T., Thermo-chemo-mechanical model for concrete. II: 
Damage and creep, Journal of Engineering Mechanics, Vol. 125(9), 1999, 1028-1039.

[3] Comi C., Kirchmayr B., Pignatelli R., Two-phase damage modeling of concrete 
affected by alkali–silica reaction under variable temperature and humidity conditions, 
International Journal of Solids and Structures, Vol. 49, 2012, 3367-3380.

[4] Kattan P.I., Voyiadjis G.Z., Decomposition of damage tensor in continuum damage 
mechanics, Journal of Engineering Mechanics, Vol. 129(9), 2001, 940-944.

[5] Kubik J., Przepływy wilgoci w materiałach budowlanych, Oficyna Wyd. Politechniki 
Opolskiej, Opole 2000.

[6] Kuhl D., Bangert F., Meschke G., Coupled chemo-mechanical deterioration of 
cementitious materials. Part I: Modeling, International Journal of Solids and Structures,  
Vol. 41, 2004, 15-40.

[7] Papanikolaou V.K., Analysis of arbitrary composite sections in biaxial bending and 
axial load, Computers and Structures, Vol. 98-99, 2012, 33-54.

[8] Saetta A.V., Scotta R., Vitaliani R., Mechanical behavior of concrete under physical-
chemical attacks, Journal of Engineering Mechanics, Vol. 124(10), 1998, 1100-1109.

[9] Samson E., Marchand J., Modeling the transport of ions in unsaturated cement-based 
materials, Computers and Structures, Vol. 85, 2007, 1740-1756.

[10] Schneider U., Chen S.-W., Deterioration of high-performance concrete subjected to 
attack by the combination of ammonium nitrate solution and flexure stress, Cement 
and Concrete Research, Vol. 35, 2005, 1705-1713.

[11] Xi J., Willam K.J., Frangopol D.M., Multiscale modeling of interactive diffusion 
processes in concrete, Journal of Engineering Mechanics, Vol. 126(3), 2000, 258-265. 

[12] Zaborski A., Zastosowanie automatów komórkowych do numerycznej symulacji korozji 
betonu pod obciążeniem, Technical Transactions, series Mechanics, Vol. 107(9), 2010, 
147-158. 

[13] Zaborski A., Corrosion of reinforced concrete due to stress-assisted diffusion, Archive 
of Civil Engineering, Vol. 41(3), 1995, 447-460.

[14] Zaborski A., Symulacja numeryczna wpływu korozji chemicznej betonu na nośność 
elementów żelbetowych, Ochrona przed Korozją, Vol. 6, 2012, 279-281.

[15] Zaborski A., Zmiany nośności przekroju żelbetowego wynikające z postępującej 
degradacji chemiczno-mechanicznej betonu, Przegląd Budowlany, Vol. 5, 2014, 73-75.


