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A b s t r a c t
During the design process of members post-tensioned with unbonded tendons, deformations of the whole 
structure between anchorages, having impact on ultimate value of prestressing force, shall be considered. 
The conducted researches enabled the separation of several parameters influencing the stress increase in 
unbonded tendons – i.a. the loading pattern in multi-span members. This paper presents selected codes 
provisions and theoretical researches describing this factor. Values received from analytical calculations 
are shown and compared.
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S t r e s z c z e n i e
Podczas projektowania elementów sprężonych cięgnami bez przyczepności należy wziąć pod uwagę od-
kształcenia całej konstrukcji pomiędzy zakotwieniami mające wpływ na graniczną wartość siły sprężają-
cej. W przeprowadzonych badaniach wyodrębniono kilka parametrów wpływających na przyrost naprężeń 
w cięgnach bez przyczepności – m.in. schemat obciążeń. Artykuł przedstawia wybrane przepisy normowe 
i podejścia teoretyczne opisujące ten wskaźnik. Zaprezentowano i porównano jego wartości otrzymane 
z obliczeń teoretycznych.
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1.  Introduction

Knowledge of cross-section internal forces is required for the estimation of bending 
moment resistance; thus, compression forces in concrete and ordinary reinforcement, tension 
forces in ordinary and prestressing reinforcement. For this purpose, strain compatibility 
analysis, strains-stresses relationships for concrete and steel and equilibrium equations 
introduced both in Polish Code [3] and Eurocode 2 [2] can be used. However, problems 
connected with establishing the prestressing force value in unbonded tendons are encountered. 
Prestressing reinforcement stresses can be described using the equations:
–	 EC2 notation [2]
	 σ σ σpmt pm p= +∞ ∆ ,ULS 	 (1a)

–	 ACI 318M-14 notation [1]
	 f f fps se ps= +D 	 (1b)

where: 
spmt, fps	 ‒	 stress in tendons at ultimate,
spm¥, fse	 ‒	 effective prestress in tendons,
Dsp,ULS, Dfps	 ‒	 stress increase in unbonded tendons at ultimate.

Although effective prestress determination can be performed with limited effort, 
stress increase in unbonded tendons due to external loading is not such an easy task. The 
encountered problem is caused by the fact that strains increase in unbonded tendons has 
rather global than local character in comparison with bonded tendons. Ideal bond assumption 
between concrete and prestressing reinforcement, which could be taken in case of bonded 
tendons, leads to the same strains changes in prestressing reinforcement and concrete at the 
tendon’s level. On the other hand, neglecting friction between the prestressing reinforcement 
and the sheath in the case of unbonded tendons results in the same value of stresses along 
the tendon. Therefore, strain changes in prestressing reinforcement are equal to mean value 
of strain changes in concrete at tendon’s level between anchorages.

Thanks to both theoretical and experimental research, several parameters influencing 
stress increase in unbonded tendons were distinguished. These are: concrete compressive 
strength, span-to-depth ratio, type of loading, ordinary and prestressing reinforcement 
ratios and finally, the loading pattern in the case of multi-span members. A large majority 
of them are presented in a previous article dealing with stress increase in unbonded tendons 
at ultimate [10].

2.  Codes provisions

Recommendations regarding stresses in unbonded tendons at ultimate could be 
encountered for the very first time in ACI 318 Code 1963 edition. Due to the small number 
of tests and corresponding lack of proper knowledge concerning these types of structures, 
the following very simple and conservative equation was proposed:
	 f fps se= +105 [ ]MPa 	 (2)
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The increasing amount of tests’ data and theoretical researches conducted over dozens 
of years has led to the introduction of three parameters to the equations describing stress 
increment in unbonded tendons at ultimate. These are: concrete compressive strength ′fc ,  
prestressing reinforcement ratio ρp and span-to-depth ratio l deff p/ .  Currently used equations 

are gathered in Table 20.3.2.4.1 of ACI 318-14 [1]. Equation (3) is used for calculating stress 
in unbonded tendons at ultimate for members with span-to-depth ratio not greater than 35 
( / ).L dp £ 35  Equation (4) is valid for more slender members.
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In chapter 5.10 of Eurocode 2 entitled ‘Prestressed members and structures’, 

recommendations regarding such types of structures are gathered. The most crucial facts 
concerning the above mentioned matter included in paragraph 5.10.8 are as follows:
–	 for prestressed members with permanently unbonded tendons, it is generally necessary 

to take the deformation of the whole member into account when calculating the increase 
of the stress in the prestressing steel,

–	 if no detailed calculation is made, it may be assumed that the increase of the stress from the 
effective prestress to the stress in the ultimate limit state is Ds p,ULS  with the indication 
that the recommended value should equal 100 MPa,

–	 if the stress increase is calculated using the deformation state of the whole member, the 
mean values of the material properties should be used. The design value of the stress 
increase D D Dσ σ γpd p P= ⋅  should be determined by applying partial safety factors 

g gD DP P,sup ,infand  respectively. The recommended values for g gD DP P,sup ,infand  are 
1.2 and 0.8 respectively. If linear analysis with uncracked sections is applied, a lower limit 
of deformations may be assumed and the recommended value for both g gD DP P,sup ,infand  
is 1.
Additionally, in chapter 7.2 Eurocode recommends that the mean value of the stress in 

prestressing tendons should not exceed 0.75 fpk.
Polish Code [3] (significantly based on Eurocode 2) does not contain different information 

regarding calculation of stress increase in the unbonded tendons. Recommendations 
concerning this type of prestressing are described in paragraph 7.1.10 entitled ‘Structures 
post-tensioned without bond’. These recommendations are as follows:
–	 prestressing force value at Ultimate Limit State equals the design value of the force in the 

tendon enlarged by the mean increase of the concrete strain along the tendon’s duct,
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–	 it is assumed that the stress increase in the internal unbonded tendons equals 100 MPa for 
a single span length. In the case of a higher number of spans, this value should be reduced 
considering amount of spans,

–	 the number of tendons in continuous slabs should be chosen in such a way that releasing 
prestress in two adjacent tendons will not lead to the destruction of the construction,

–	 in the case of a single tendon failure, the redistribution of internal forces should be assured 
by ordinary reinforcement.
Moreover in chapter 7.1.2, Polish Code recommends that the mean value of the stress 

in prestressing tendons should not exceed 0.65 fpk.
The above review of codes which are used in Poland during the design process indicates 

their conservativeness with regards to ULS of structures post-tensioned with unbonded 
tendons. The constant value equal to 100 MPa is given both in Polish Code [3] and Eurocode 2 
[2], with no differentiation regarding the type of structures (beams, slabs, tanks etc.). This 
conforms to the state of art described by the ACI Code from 1963. Even though the Polish 
Code provides stress reduction necessity in the case of continuous members, it does not 
specify exact means to be taken in this regard. Although ACI Code [1] takes into account 
three parameters influencing stress increase in unbonded tendons, the loading pattern is not 
considered among them. Factors distinguished during regression analysis were calculated 
based on tests’ researches both for single and multi-span members.

3.  Theoretical researches 

Description trials of the above mentioned phenomenon were conducted by various authors. 
Two trends could be emphasised among the proposed theories. The first trend introduces 
the prestressing reinforcement strain reduction factor which allows conducting calculations 
in a similar way as for members post-tensioned with bonded tendons [8, 11]. The second 
one refers to plastic hinge length which occurs at ultimate [4‒7]. Only theories considering 
the loading pattern as a parameter used for estimating stress increase in unbonded tendons 
are described below.

3.1.  Naaman et al.

Strain reduction factor defined as mean strain increase in unbonded tendons to strain 
increase in equivalent bonded tendons in critical cross-section was introduced by Naaman. 
This is expressed by the equation below:
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where:
(Depsu)av	 ‒	 average strain increase in unbonded tendons beyond epe,
(Depsb)m	 ‒	 maximum strain increase in bonded tendons beyond epe,
(Decps)m	 ‒	 maximum strain increase in concrete at the level of the tendon.

During regression analysis, two parameters were taken into consideration: type of loading 
(one-point loading, third-point loading and uniformly distributed loading) and span-to-depth 



91

ratio varying within the limits of 7.8 to 45 – this covers the majority of commonly used 
beams and slabs. The best convergence between test results and analytical calculations was 
obtained for the following values of Wu:
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Equation describing the value of stress in unbonded tendons at ultimate:
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where:
Eps	 ‒	 prestressing steel modulus of elasticity,
ecu	 ‒	 ultimate compressive strain in the concrete,
dps	 ‒	 effective depth of a cross-section,
c	 ‒	 concrete compressive stress block depth,
L1	 ‒	 sum of spans lengths under loading,
L2 	 ‒	 tendon length between anchorages.

3.2.  Harajli et al.

In one of the first papers, Harajli [4] connected stress increase in unbonded tendons with 
the number and length of plastic hinges which occur at ultimate. After few operations, plastic 
hinge length L0 could be expressed as a function of loading type and span-to-depth ratio 
described by the equation below:
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where: 
f = ¥	 ‒	 for one-point loading,
f = 6	 ‒	 for uniformly distributed loading,
f = 3	 ‒	 for third-point loading.

In equation (11), which describes value of stress increment in unbonded tendons, 
plastic  hinge length was expressed by usage of the g parameter (10). Additionally, by 
means  of  regression analysis, two factors a and b (depending on type of loading) were 
introduced.
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where:
a = 0.10; b = 0.18	 ‒	 for one-point loading (f = ¥),
a = 0.25; b = 0.44	 ‒	 for uniformly distributed loading (f = 6),
a = 0.40; b = 0.70	 ‒	 for third-point loading (f = 3),
n0	 ‒	 number of spans under loading,
n	 ‒	 total number of spans.

In consecutive paper [5] plastic hinge length was expressed as a function of compression 
zone depth c and type of acting loading (12). The stress increment in continuous members 
could be calculated as a variable of plastic hinges number np and length Lp (13) – its form is 
described by equation (14) in which compression zone depth cy is counted by assuming yield 
strength both in ordinary and prestressing reinforcement (15).
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where:
fps	 ‒	 partial safety factor,
np	 ‒	 number of formed plastic hinges at ultimate,
Aps	 ‒	 prestressing reinforcement area,
fpy	 ‒	 yield strength of prestressing reinforcement,
As	 ‒	 ordinary reinforcement area,
fy	 ‒	 yield strength of ordinary reinforcement,
b1	 ‒	 factor in the Whitney stress block,
b	 ‒	 width of concrete compressive stress block.

Figure 1 shows differences in calculations of the loading pattern factor for two- and three-
span members according to equations (8), (10) and (14). It should be pointed out that in all 
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cases, expressions L1/L2, n0/n and np/n are equal to 1 for simply supported beams. It can be 
observed that failure mechanism analysis by considering number of plastic hinges at ultimate 
enables to obtain greater values of loading pattern factor. Another benefit is that it takes into 
account and differentiates which span is loaded – the external or the internal. It should be 
emphasised that applying some loading patterns could lead to a value greater than 1 which is 
assumed for simply supported members.

Some discrepancies can be found in over-mentioned theory. In (14) factor f which 
depends on loading type expresses only one plastic hinge length. It should be added that 
plastic hinge length might differ in span where different types of loading could be acting 
(f = 3, 6 or ¥) and at support where reaction should be rather associated with one-point 
loading (f = ¥).

The next paper [6] deals with these doubts by introducing distinction for plastic hinges 

formed in spans np
+  and at supports np

- .  Both of these are connected and expressed by Np 
factor (16). Equation (17) for calculating the stress increase in unbonded tendons at ultimate 
is a modification of the former equation (14).
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The method of calculating the Np factor in accordance with equation (16) is presented 

in  Fig. 2. The numbers of plastic hinges in spans np
+  and at supports np

-  are presented. 
Moreover, two values of this factor which depend on the type of loading are presented 
for one-point loading (1P) and uniformly distributed loading (q) respectively. It is worth 
emphasising that this value for simply supported beams is 10.5 and 14 accordingly.

Fig.  1.  Load pattern factor values – two- and three-span members
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The following assumptions and limitations regarding the formation of plastic hinges are 
introduced:
–	 all plastic hinges behave similarly i.e. concrete compressive block depth c, depth and area 

of prestressing reinforcement dps and Aps and ordinary reinforcement ds and As are the same 
or very similar in all spans and support cross-sections,

–	 the section is rectangular or has rectangular section behaviour,
–	 stress increase at ultimate above the effective prestress Dfps is assumed to be not greater 

than (0.95fpy ‒ fse) – this ensures that the stress in tendons will not reach yield strength 
of prestressing reinforcement.

4.  Conclusions

The above presented code recommendations treat unbonded tendons stress increase 
in continuous members in a superficial manner. ACI Code design equations for calculating 
stress increase do not make distinctions between simply supported and continuous members. 
The opportunity to achieve lower values of stress increase in multi-span members compared 
to simply supported elements in the case of loading which does not act at all spans 
simultaneously is disregarded by EC 2. Even though such a possibility is mentioned in Polish 
Code, no detailed provisions are given.

Due to this fact, directions for solving the problem of stress increment in multi-span 
unbonded members are searched and can be successfully found in theories proposed by 
various authors. All of the above presented equations in continuous members are expansions 
of equations derived firstly for simply supported members. Hence, the loading pattern factor 
for simply supported beams is equal to 1.

Table 1 contains a comparison of parameters needed to calculate the loading pattern factor 
utilising equations (10, 14 and 16) for members for which the span number is not greater 
than 3. Span names are signed with first alphabet letters as shown in Fig. 3. Due to symmetry 
and assumption that all spans lengths are equal not all combinations are being considered 
(e.g. in three-span member separate loading of external spans A and C, external and internal 
spans A+B and B+C will produce the same value of loading pattern factor).

Fig.  2.  Load pattern factor calculation with span and support hinge distinction taken into account
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Ta b l e  1
Loading pattern factor value for simply supported, two-span and three-span members

Type of member One-span Two-spans Three-spans

Loaded spans A A A+B A B A+B A+C A+B+C

Total number of spans n 1 2 3

Number of loaded spans n0 1 1 2 1 1 2 2 3

Value of factor n0/n ‒ eq. (10) 1 1/2 1 1/3 1/3 2/3 2/3 1

Number of plastic hinges np 1 1 1/2 3 1 1/2 2 3 1/2 3 5

Value of factor np/n ‒ eq. (14) 1 3/4 1 1/2 1/2 2/3 1 1/6 1 1 2/3

Number of plastic hinges np
+ 1 1 2 1 1 2 2 3

Number of plastic hinges np
‒ 0 1/2 1 1/2 1 1 1/2 1 2

Np(1P) value ‒ eq. (16) f = ¥ 10.5 15.8 31.5 15.8 21.0 36.8 31.5 52.5

Np(q) value ‒ eq. (16) f = 6 14.0 19.2 38.4 19.2 24.5 43.7 38.4 62.9

Factor Np(1P)/(n·Np (1 span)) 1 3/4 1 1/2 1/2 2/3 1 1/6 1 1 2/3

Factor Np(1q)/(n·Np (1 span)) 1 2/3 1 3/8 1/2 3/5 1 1 1 1/2

Observation of loading pattern factor values gathered in Table 1 leads to the following 
conclusions regarding two- or three-span members:
–	 in the case of only one span loaded stress increase in unbonded tendons will be lower 

than  that calculated for simply supported member. This effect is greater for three-span 
than for two-span members; therefore, for members containing additional spans, this 
phenomenon will intensify,

–	 in the case of all spans loaded in two-span or at least two spans loaded in three-span, 
member stress increase in unbonded tendons will be greater or at the very least, the 
same as for simply supported members. Once again, this effect is greater for three-span 
than for  two-span members; therefore, for members containing additional spans this 
phenomenon will intensify,

–	 loads acting in internal spans give greater values of load pattern factor than in the case 
of external span loading – this is caused by a higher number of formed plastic hinges.
Usually, when designing ordinary reinforced structures or structures post-tensioned with 

bonded tendons, we get into the habit of checking resistance in crucial cross-sections using 
loading patterns which give maximum bending moments. In the case of three-span members, 
the maximum moment in span A occurs when spans A and C are loaded simultaneously. The 
maximum moment at internal support appears when spans A and B (or B and C) are loaded 
simultaneously.

The design of multi-span structures post-tensioned with unbonded tendons could be 
different to the one described in the above scheme. In some cases, Ultimate Limit State could 

Fig.  3.  Span nomenclature – simply supported, two-span and three-span members
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be reached by different loading patterns; for example, both span and support bending moments 
caused by loading only one exterior span (A) would be lower than loading both exterior 
spans (A+C) and exterior and interior span (A+B) respectively. It should be emphasised 
that stress increase in unbonded tendons which has an influence on the bending moment 
resistance would also be lower. In some cases, loading of only one span could result in the 
bending resistance reduction being greater than the decrease of bending moment produced 
by external loading. It could be anticipated that this effect would be greater for members 
with a higher number of spans. Ultimate Limit State would not be reached by a sophisticated 
loading pattern but for simple scheme where one, external span is loaded.
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