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AN AXIOMATIZATION OF WANSING’S

EXPANSION OF NELSON’S LOGIC

A b s t r a c t. The present note offers an axiomatization for

an expansion of Nelson’s logic motivated by Heinrich Wansing

which serves as a base logic for the framework of nonmonotonic

reasoning considered by Dov Gabbay and Raymond Turner. We

also show that the expansion of Wansing is not conservative over

intuitionistic logic, but at least as strong as Jankov’s logic.

.1 Introduction

In [5], Heinrich Wansing observes some problems faced in the case of

having intuitionistic logic, suggested by Dov Gabbay in [1], or Kleene’s

strong three-valued logic, suggested by Raymond Turner [4], as a base logic

for a framework of nonmonotonic reasoning. In order to overcome the

counterintuitive results, Wansing introduces an expansion of Nelson’s logic
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(cf. [6, 2]), and shows that the new logic serves well as a base for the non-

monotonic reasoning. The expansion involves a connective M where MA is

read as “it is consistent to assume at this stage that A”.

Based on these, the aim of this note is to give an axiomatization of the

system which was left as an open problem in [5, p.52].

.2 Semantics and proof theory

After setting up the language, we first present the semantics, and then turn

to the proof theory.

Definition 2.1. The language L consists of a finite set {⊥,∼,M,∧,∨,
→} of propositional connectives and a countable set Prop of propositional

variables which we denote by p, q, etc. Furthermore, we denote by Form

the set of formulas defined as usual in L. We denote a formula of L by A,

B, C, etc. and a set of formulas of L by Γ, Δ, Σ, etc.

.2.1 Semantics

Let us now state the semantics. Although Wansing’s focus was on one of

the Nelson’s logics known as N3 in the literature1, we will take a little

more general system N4⊥, introduced by Sergei Odintsov in [3], as the

base system and add the consistency connective.

Definition 2.2. A model for the language L is a triple 〈W,≤, V 〉, where
W is a non-empty set (of states); ≤ is a partial order on W ; and V :

W ×Prop −→ {∅, {0}, {1}, {0, 1}} is an assignment of truth values to state-

variable pairs with the condition that i ∈ V (w1, p) and w1 ≤ w2 only if

i ∈ V (w2, p) for all p ∈ Prop, all w1, w2 ∈ W and i ∈ {0, 1}. Valuations

V are then extended to interpretations I to state-formula pairs by the

following conditions:

• I(w, p) = V (w, p),

• 1 �∈ I(w,⊥),

1In [5], Wansing refers to the system as N, but here we will use the updated notation

from later publications.
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• 0 ∈ I(w,⊥),

• 1 ∈ I(w,∼A) iff 0 ∈ I(w,A),

• 0 ∈ I(w,∼A) iff 1 ∈ I(w,A),

• 1 ∈ I(w,A ∧B) iff 1 ∈ I(w,A) and 1 ∈ I(w,B),

• 0 ∈ I(w,A ∧B) iff 0 ∈ I(w,A) or 0 ∈ I(w,B),

• 1 ∈ I(w,A ∨B) iff 1 ∈ I(w,A) or 1 ∈ I(w,B),

• 0 ∈ I(w,A ∨B) iff 0 ∈ I(w,A) and 0 ∈ I(w,B),

• 1 ∈ I(w,A → B) iff for all x ∈ W : if w ≤ x and 1 ∈ I(x,A) then

1 ∈ I(x,B),

• 0 ∈ I(w,A → B) iff 1 ∈ I(w,A) and 0 ∈ I(w,B),

• 1 ∈ I(w,MA) iff for some x ∈ W : w ≤ x and 1 ∈ I(x,A),

• 0 ∈ I(w,MA) iff 0 ∈ I(w,A).

Finally, semantic consequence is now defined as follows:

Σ |= A iff for all models 〈W,≤, I〉, and for all w ∈ I:

1 ∈ I(w,A) if 1 ∈ I(w,B) for all B ∈ Σ.

Remark 2.3. If we eliminate the clause for M, then we obtain the

semantics for the system N4⊥. Note also that two falsity conditions are

considered for M in [5]. Based on the observation given by Wansing in [5,

p.51], we take the simpler version.

.2.2 Proof Theory

We now turn to the proof theory. Since Nelson’s logic is presented in terms

of a Hilbert-style calculus in [5], we will follow that path, and present some

axioms for the new connective.
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Definition 2.4. The system N4⊥(Md) consists of the following axiom

schemata and a rule of inference:

A → (B → A) (Ax1)

(A → (B → C)) → ((A → B) → (A → C)) (Ax2)

(A ∧B) → A (Ax3)

(A ∧B) → B (Ax4)

(C → A) → ((C → B) → (C → (A ∧B))) (Ax5)

A → (A ∨B) (Ax6)

B → (A ∨B) (Ax7)

(A → C) → ((B → C) → ((A ∨B) → C)) (Ax8)

∼∼A ↔ A (Ax9)

∼(A ∧B) ↔ (∼A ∨ ∼B) (Ax10)

∼(A ∨B) ↔ (∼A ∧ ∼B) (Ax11)

∼(A → B) ↔ (A ∧ ∼B) (Ax12)

⊥ → A (Ax13)

∼⊥ (Ax14)

(MA ∧ (A → ⊥)) → B (Ax15)

MA ∨ (A → ⊥) (Ax16)

∼MA ↔ ∼A (Ax17)

A A → B

B
(MP)

Following the usual convention, we define A ↔ B as (A → B) ∧ (B → A).

Finally, we write Γ � A if there is a sequence of formulas B1, . . . , Bn, A,

n ≥ 0, such that every formula in the sequence B1, . . . , Bn, A either (i)

belongs to Γ; (ii) is an axiom of N4⊥(Md); (iii) is obtained by (MP) from

formulas preceding it in sequence.

Remark 2.5. The subsystem of N4⊥(Md) consisting of axioms (Ax1)

through (Ax8) together with the rule of inference (MP) is the positive

intuitionistic logic. Moreover, if we eliminate the axioms related to M, i.e.

axioms (Ax15), (Ax16) and (Ax17) from N4⊥(Md), then we obtain the

system N4⊥. Finally, the system N3 is obtained from N4⊥ by simply

adding A → (∼A → B) as an axiom.
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Before turning to the soundness and completeness proofs, we note that

the deduction theorem is provable for N4⊥(Md).

Proposition 2.6. For any Γ∪{A,B} ⊆ Form, Γ, A � B iff Γ � A → B.

Proof. It can be proved in the usual manner in the presence of axioms

(Ax1) and (Ax2), given that (MP) is the sole rule of inference. �

.3 Soundness and completeness

.3.1 Soundness

As usual, the soundness part is rather straightforward.

Theorem 3.1 (Soundness). For Γ∪{A} ⊆ Form, if Γ � A then Γ |= A.

Proof. By induction on the length of the proof. We here only check

that the three axioms for M are all valid.

For (Ax15): For any w ∈ W , the following holds.

1 ∈ I(w,MA ∧ (A → ⊥))

iff 1 ∈ I(w,MA) and 1 ∈ I(A → ⊥)

iff (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

and (for all x ∈ W : if w ≤ x and 1 ∈ I(x,A) then 1 ∈ I(x,⊥))

iff (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

and (for all x ∈ W : if w ≤ x then 1 �∈ I(x,A))

iff (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

and not (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

Therefore, we obtain that 1 �∈ I(w,MA∧(A → ⊥)), and thus |= (MA∧(A →
⊥)) → B.
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For (Ax16): For any w ∈ W , the following holds.

1 ∈ I(w,MA ∨ (A → ⊥))

iff 1 ∈ I(w,MA) or 1 ∈ I(A → ⊥)

iff (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

or (for all x ∈ W : if w ≤ x and 1 ∈ I(x,A) then 1 ∈ I(x,⊥))

iff (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

or (for all x ∈ W : if w ≤ x then 1 �∈ I(x,A))

iff (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

or not (for some x ∈ W : w ≤ x and 1 ∈ I(x,A))

Therefore, |= MA ∨ (A → ⊥).

For (Ax17): For any w ∈ W , the following holds.

1 ∈ I(w,∼MA) iff 0 ∈ I(w,MA)

iff 0 ∈ I(w,A)

Therefore, |= ∼MA ↔ ∼A, and this completes the proof. �

.3.2 Completeness

We now turn to the completeness proof. First, we introduce some standard

notions.

Definition 3.2. A set of formulas, Σ, is deductively closed if the fol-

lowing holds:

if Σ � A then A ∈ Σ.

And Σ is prime if the following holds:

if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ.

Σ is prime deductively closed (pdc) if it is both. Finally, Σ is non-trivial if

A �∈ Σ for some A.

Then the following two lemmas are well-known, and thus we will omit

the details of the proofs. We only note in passing that the deduction theo-

rem is the key for the second lemma.
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Lemma 3.3. If Σ �� A then there is a pdc, Δ, such that Σ ⊆ Δ and

Δ �� A.

Lemma 3.4. If Σ is pdc and A → B �∈ Σ, there is a pdc Θ such that

Σ ⊆ Θ, A ∈ Θ and B �∈ Θ.

Now, we are ready to prove the completeness.

Theorem 3.5 (Completeness). For Γ ∪ {A} ⊆ Form, if Γ |= A then

Γ � A.

Proof. We prove the contrapositive. Suppose that Γ �� A. Then by

Lemma 3.3, there is a Π ⊇ Γ such that Π is a pdc and A �∈ Π. Define

the interpretation A = 〈X,≤, I〉, where X = {Δ : Δ is a non-trivial pdc},
Δ ≤ Σ iff Δ ⊆ Σ and I is defined thus. For every state, Σ and propositional

parameter, p:

1 ∈ I(Σ, p) iff p ∈ Σ and 0 ∈ I(Σ, p) iff ∼p ∈ Σ

We show that this condition holds for any arbitrary formula, B:

1 ∈ I(Σ, B) iff B ∈ Σ and 0 ∈ I(Σ, B) iff ∼B ∈ Σ (∗)

It then follows that A is a counter-model for the inference, and hence that

Γ �|= A. The proof of (∗) is by a simultaneous induction on the complexity

of B with respect to the positive and the negative clause.

For bottom: For the positive clause, note that the semantic clause is

1 �∈ I(Σ,⊥) and that (Ax13) together with the non-triviality of Σ gives us

⊥ �∈ Σ. Therefore, we obviously have 1 �∈ I(Σ,⊥) iff ⊥ �∈ Σ, and so, by

contraposition, the desired result is proved. For the negative clause, we use

the semantic clause 0 ∈ I(Σ,⊥) as well as (Ax14).

For negation: We begin with the positive clause.

1 ∈ I(Σ,∼C) iff 0 ∈ I(Σ, C)

iff ∼C ∈ Σ IH

The negative clause is also straightforward.

0 ∈ I(Σ,∼C) iff 1 ∈ I(Σ, C)

iff C ∈ Σ IH

iff ∼∼C ∈ Σ (Ax9)
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For disjunction: We begin with the positive clause.

1 ∈ I(Σ, C ∨D) iff 1 ∈ I(Σ, C) or 1 ∈ I(Σ, D)

iff C ∈ Σ or D ∈ Σ IH

iff C ∨D ∈ Σ Σ is a prime theory

The negative clause is also straightforward.

0 ∈ I(Σ, C ∨D) iff 0 ∈ I(Σ, C) and 0 ∈ I(Σ, D)

iff ∼C ∈ Σ and ∼D ∈ Σ IH

iff ∼C ∧ ∼D ∈ Σ Σ is a theory

iff ∼(C ∨D) ∈ Σ (Ax11)

For conjunction: Similar to the case for disjunction, and thus we leave

the details to the reader.

For implication: We begin with the positive clause.

1 ∈ I(Σ, C → D) iff for all Δ s.t. Σ ⊆ Δ, if 1 ∈ I(Δ, C) then 1 ∈ I(Δ, D)

iff for all Δ s.t. Σ ⊆ Δ, if C ∈ Δ then D ∈ Δ IH

iff C → D ∈ Σ

For the last equivalence, assume C → D ∈ Σ and C ∈ Δ for any Δ such

that Σ ⊆ Δ. Then by Σ ⊆ Δ and C → D ∈ Σ, we obtain C → D ∈ Δ.

Therefore, we have Δ � C → D, so by (MP), we obtain Δ � D, i.e. D ∈ Δ,

as desired. On the other hand, suppose C → D �∈ Σ. Then by Lemma 3.4,

there is a Σ′ ⊇ Σ such that C ∈ Σ′, D �∈ Σ′ and Σ′ is a pdc. Furthermore,

non-triviality of Σ′ is obvious by D �∈ Σ′. Thus, we obtain the desired

result.

As for the negative clause, it is straightforward.

0 ∈ I(Σ, C → D) iff 1 ∈ I(Σ, C) and 0 ∈ I(Σ, D)

iff C ∈ Σ and ∼D ∈ Σ IH

iff C ∧ ∼D ∈ Σ Σ is a theory

iff ∼(C → D) ∈ Σ (Ax12)

For consistency: We begin with the positive clause.

1 ∈ I(Σ,MC) iff for some Δ, Σ ⊆ Δ and 1 ∈ I(Δ, C)

iff for some Δ, Σ ⊆ Δ and C ∈ Δ IH

iff MC ∈ Σ
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For the last equivalence, assume MC ∈ Σ. Then, we have (C → ⊥) → ⊥ ∈
Σ by (Ax15), and since Σ is non-trivial, i.e. ⊥ �∈ Σ, we obtain C → ⊥ �∈ Σ.

Then by Lemma 3.4, there is a Σ′ ⊇ Σ such that C ∈ Σ′, ⊥ �∈ Σ′ and Σ′ is
a pdc, as desired. For the other half, assume MC �∈ Σ and C ∈ Δ for any Δ

s.t. Σ ⊆ Δ. Then by the former, (Ax16) and the primeness of Σ, we obtain

C → ⊥ ∈ Σ, and thus C → ⊥ ∈ Δ. This together with C ∈ Δ implies that

⊥ ∈ Δ which contradicts to the assumption that Δ is non-trivial.

As for the negative clause, it runs as follows.

0 ∈ I(Σ,MC) iff 0 ∈ I(Σ, C)

iff ∼C ∈ Σ IH

iff ∼MC ∈ Σ (Ax17)

Thus, we obtain the desired result. �

Remark 3.6. For the axiomatization of the original case, we first elim-

inate ⊥ from the language. Moreover, we need to make the following small

changes. Semantically, we make the valuation to assign one of the val-

ues {1}, ∅ or {0}, but not {1, 0}, and we delete the clauses for ⊥. Proof-

theoretically, we eliminate axioms (Ax13) and (Ax14), add A → (∼A → B),

and replace axioms (Ax15) and (Ax16) by the following respectively:

(MA ∧ (A → ∼A)) → B (Ax15’)

MA ∨ (A → ∼A) (Ax16’)

Then, the soundness and completeness will follow in the same manner.

.4 Reflections and concluding remarks

Let us now briefly examine the system N4⊥(Md). In the case of N4⊥, the
unary operation ¬A, which is an abbreviation for A → ⊥, is exactly the

intuitionistic negation. However, this is not the case anymore in N4⊥(Md).

Proposition 4.1. The following formulas are provable in N4⊥(Md).

(A ∨B) → (¬A → B) (1)

MA ↔ ¬¬A (2)

¬A ∨ ¬¬A (3)
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Proof. For (1), it is enough to prove A → (¬A → B) and B → (¬A →
B), and these are obvious in N4⊥(Md). For (2), the left-to-right direction

is immediate in view of (Ax15), and the right-to-left direction follows by

combining (Ax16) and (1). Finally, (3) is derivable in view of (2) and

(Ax16). �

Remark 4.2. Here are two remarks related to the above proposition.

First, the provability of (3) shows that the addition ofMmakes the negation

¬ stronger than the intuitionistic negation. More specifically, the M-free

fragment of N4⊥(Md) is at least strong as Jankov’s logic, the superintu-

itionistic logic which is semantically obtained by adding the directedness

condition. Second, (2) may give the thought that M can be defined once we

add the directedness condition. However, that is not the case as we have

the following result.

Proposition 4.3. The following formula is not provable in N4⊥(Md).

∼MA ↔ ∼¬¬A (4)

Proof. If we have the above equivalence, then we obtain that ∼A ↔
¬A is provable in view of the equivalences ∼MA ↔ ∼A and ∼¬A ↔
A. However, it follows that this is not the case by the following simple

countermodel: take two states w,w′ with w ≤ w′, I(w, p) = {0}, and

I(w′, p) = {1} for atomic p. Then we have 1 ∈ I(w,∼p) and 1 �∈ I(w,¬p),
and thus 1 �∈ I(w,∼p ↔ ¬p), as desired. �

Remark 4.4. The derivability of (2) and non-derivability of (4) show

that provable equivalence is not a congruence relation in N4⊥(Md). As is

well-known, this is also the case in N4 and N4⊥ which can be observed by

considering the axiom (Ax12). Indeed, ∼(p → q) ↔ (p ∧ ∼q) is derivable

in N4 and N4⊥, but ∼∼(p → q) ↔ ∼(p ∧ ∼q), i.e. (p → q) ↔ (∼p ∨ q) is

not.

In sum, we presented a Hilbert-style system which is sound and com-

plete with respect to the semantics introduced by Wansing in [5]. Moreover,

we observed that unlike Nelson’s logics, N4⊥(Md) is not conservative over

intuitionistic logic, but at least as strong as Jankov’s logic which is obtained

by adding (3) to intuitionistic logic.
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