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Hernando GAITÁN

ENDOMORPHISMS AND SUBALGEBRAS OF

TARSKI ALGEBRAS

A b s t r a c t. In this note we prove that a Tarski algebra is

determined by the monoid of its endomorphisms as well as by the

lattice of its subalgebras.

.1 Introduction

It is known that if A and B are Boolean algebras then

Sub(A) ∼= Sub(B) iff A ∼= B iff End(A) ∼= End(B).

See [11] for the first equivalence and [8] or [10] for the second one. Impli-

cation algebras, also called Tarski algebras or semi-Boolean algebras (see

[2, 9] for the basics of this kind of algebras) are the algebraic counterpart
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of the implication fragment of classical propositional logic. Implication al-

gebras form a variety which corresponds the {→}-subreducts of Boolean

algebras. It is the purpose of this paper to prove that the above result is

also true for Tarski algebras.

Following [4], two objects A,B in a category K are equimorphic if

End(A) ∼= End(B) and, for a cardinal α, the category is said to be

α-determined if every set of non-isomorphic equimorphic objects of K has

a cardinality smaller than α. Using these definitions our second result assert

that the category of Tarski algebras is 2- determined. In [5] we prove this

result using a topological duality established in [3]. In this paper we prove

the same result using the algebraic side. We think that this provide a more

transparent definition of the endomorphisms involved, simplifies many of

the proofs and gives the results a structure similar to the one in paper [6]

were bounded distributive lattices are proved to be 3-determined.

Recall that a Tarski algebra is an algebraic structure A := 〈A,→〉 of

type (2) that satisfies the following identities:

(x → y) → x ≈ x, (1)

(x → y) → y ≈ (y → x) → x, (2)

x → (y → z) ≈ y → (x → z). (3)

The identity x → x ≈ y → y is validated by A. We denote by 1 the

element of A such that 1 = a → a for all a ∈ A. The binary relation ≤
defined on A by the prescription x ≤ y if and only if x → y = 1 establishes

a partial order on A with greatest element 1. We have that for all a, b ∈ A,

a, b ≤ (a → b) → b = (b → a) → a. We set a ∨ b := (a → b) → b and

clearly, we have that a∨ b = b∨a and this element is the least upper bound

of a and b in the order defined above. Indeed, 〈A,∨〉 is a join semilattice

whose principal filters are Boolean algebras.

.2 Endomorphisms

Let A be a Tarski algebra. Recall that a filter of A is a non-empty sub-

set F of A such that (i) 1 ∈ F and (ii) a, a → b ∈ F imply that b ∈ F .

A maximal filter P is a proper filter that is not contained properly in

another proper filter. In [3] (Theorem 2.4), it is proved that if P is
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a maximal filter then

z → y �∈ P iff z ∈ P and y �∈ P, (4)

In [1] maximal filters are characterized as follows:

A proper filter P is maximal iff ∀a �∈ P, ∀x ∈ A, a → x ∈ P. (5)

Maximal filters separate non-comparable elements, that is, if a, b ∈ A,

a � b =⇒ ∃P,maximal filter, such that a ∈ P and b �∈ P (6)

For the proof of this result see [3], Theorem 2.4.

It is easy to show that if g ∈ End(A) and F is a filter of A then g−1(F )

is a filter of A.

Proposition 2.1. If Q is a maximal filter of a Tarski algebra A and

g ∈ End(A) is such that g−1(Q) �= A then g−1(Q) is a maximal filter of A.

Proof. Suppose that g−1(Q) is not a maximal filter of A. Then, by

property (5), there exists a �∈ g−1(Q) such that a → b �∈ g−1(Q) for some

b ∈ A. So, g(a) �∈ Q is such that g(a) → g(b) �∈ Q and this is against the

hypothesis that Q is a maximal filter, see (5). �

For each maximal filter Q of A and each x ∈ A, x �= 1, define the

function fQ,x : A −→ A by the formula

fQ,x(t) =

{
1, if t ∈ Q ;

x, if t �∈ Q.

One can check that fQ,x ∈ End(A). The constant function from A into

itself with constant value 1 is clearly an endomorphism. We denote this

constant function by 1A. For maximal filters P and Q of A and g ∈
End(A), the following equalities are easily checked:

fP,x ◦ fQ,y =

{
fQ,x, if y �∈ P ;

1A, if y ∈ P .
(7)

g ◦ fP,x = fP,g(x). (8)
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fP,x ◦ g =

{
fg−1(P ),x if g−1(P ) �= A ;

1A, if g−1(P ) = A.
(9)

In what follows, A1 and A2 are Tarski algebras and

Φ : End(A1) −→ End(A2)

is a monoid isomorphism.

Proposition 2.2. Φ(1A1) = 1A2.

Proof. Assume, on the contrary that Φ(1A1) �= 1A2 . Then, there exists

y ∈ A2, y �= 1, such that Φ(1A1)(x) = y for some x ∈ A2. Clearly, x �= 1.

As 1A1 ◦ f = f ◦ 1A1 = 1A1 for all f ∈ End(A1) then

Φ(1A1) ◦ g = g ◦ Φ(1A1) = Φ(1A1) ∀ g ∈ End(A2). (10)

Due to property (6) we can choose a maximal filter P such that y �∈ P .

From Φ(1A1)(x) = y and equality (8) it follows that Φ(1A1) ◦ fP,x = fP,y.

By (10), the left-hand side of this equality is Φ(1A1), so Φ(1A1) = fP,y; but

this is a contradiction because, using (8), it follows at once that fP,y does

not enjoy property (10). �

Our next proposition asserts that endomorphisms of Tarski algebras of

the form fP,x, where P is a maximal filter, are preserved under monoid

isomorphisms.

Proposition 2.3. Let P be a maximal filter of A1 and x ∈ A1 � {1}.
Then Φ(fP,x) = fR,y for some maximal filter R of A2 and y ∈ A2 � {1}.

Proof. Let u ∈ A2 � {1} and pick a maximal filter Q of A2. Set

Ψ := Φ−1 and ρu := Ψ(fQ,u). By Proposition 2.2, we can choose tu, yu ∈
A1, yu �= 1 such that ρu(tu) = yu. Set gu := Φ(fP,tu) and hu := Φ(fP,yu).

By (8), ρu ◦ fP,tu = fP,yu . Applying Φ to both sides of this equality we

receive fQ,u ◦ gu = Φ(fP,yu) = hu and by (8) we obtain

Φ(fP,yu) = fg−1
u (Q),u.

Set R := g−1
u (Q). Since clearly fP,yu is not the constant endomorphism of

value 1, due to Proposition 2.2 and Proposition 2.1, R is a maximal filter

of A2.
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Next we assert that there exists u ∈ A2 such that yu �∈ P . For otherwise,

due to (7), we have fP,x◦fP,yu = 1 and consequently Φ(fP,x)◦fR,u = 1 for all

u ∈ A2 and this means that Φ(fP,x)(u) = 1 for all u ∈ A2, a contradiction.

Let yu �∈ P . Then, by (7), fP,x ◦ fP,yu = fP,x. Consequently Φ(fP,x) =

Φ(fP,x) ◦ fR,u and by (8) we have that

Φ(fP,x) = fR,v where v := Φ(fP,x)(u).

�

The assertion in the following two lemmas are in the context of Proposi-

tion 2.3. There, P and P ′ are maximal filters of A1, Q and Q′ are maximal

filters of A2, x, x
′ ∈ A1 � {1} and y, y′ ∈ A2.

Lemma 2.4. Φ(fP,x) = fQ,y and Φ(fP,x′) = fQ′,y′ imply Q = Q′.

Proof. Pick x′′ �∈ P . Due to Proposition 2.3, Φ(fP,x′′) = fQ′′,y′′ , for

some maximal filterQ′′ ofA2 and y′′ ∈ A2. By (7), fP,x◦fP,x′′ = fP,x and by

applying Φ on both sides of this equality we get fQ′′,y = fQ,y◦fQ′′,y′′ = fQ,y,

the first equality being due to (7) (observe that x′′ �∈ P implies y′′ �∈ Q′′).
Hence, Q = Q′′. Similarly we get Q′ = Q′′. So, Q = Q′. �

Lemma 2.5. Let P and P ′ be maximal filters of A1 and x �∈ P, P ′. Set

Φ(fP,x) = fQ,y and Φ(fP ′,x) = fQ′,y′. Then y = y′.

Proof. By (7), fP,x ◦ fP,′x = fP,′x and since Φ is and isomorphism we

have that fQ,y ◦ fQ′,y′ = fQ′,y′ which implies that y′ �∈ Q (y′ ∈ Q implies

fQ,y ◦ fQ′,y′ = 1A2 �= fQ′,y′). As fQ,y ◦ fQ′,y′ = fQ′,y as well, fQ′,y′ = fQ′,y;

so, y = y′. �

Define the function φ : A1 −→ A2 by the following prescription:

φ(1) = 1

and, for x �= 1,

φ(x) = y if Φ(fP,x) = fQ,y

where P is a maximal filter of A1 such that x �∈ P and Q is the maximal

filter of A2 given by Proposition 2.3. By Lemma 2.5, this function is well

defined and by Lemma 2.4, it is one to one. Indeed, by symmetry, the

assignment ψ : A2 −→ A1, defined similarly with Ψ = Φ−1 instead of Φ, is

such that φ−1 = ψ. So, φ is a bijective function.
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In what follows, we will prove that φ is an isomorphism. With this

purpose, set

φ(x → x′) = z, φ(x) = u and φ(x′) = u′. (11)

We want to show that u → u′ = z. If x = 1 or x′ = 1 or x ≤ x′ (i.e.,
x → x′ = 1) the equality is easy to prove. So we assume that x, x′, x →
x′ �= 1. First we assert that u → u′ ≤ z; for otherwise, we can choose a

maximal filter Q of A2 such that u → u′ ∈ Q but z �∈ Q. By definition of

φ, there exists a maximal filter P of A1 such that Ψ(fQ,z) = fP,x→x′ or,

equivalently, Φ(fP,x→x′) = fQ,z. Pick now a maximal filter K of A1 such

that x �∈ K. Then, again by the definition of φ we may set

Φ(fK,x) = fU,u and Φ(fP,x′) = fU ′,u′ , (12)

where U and U ′ are maximal filters of A2. Observe here that since z �∈ Q

then x → x′ �∈ P and consequently, x ∈ P and x′ �∈ P . So, fP,x→x′ ◦ fP,x′ =

fP,x→x′ and consequently, fQ,z ◦ fU ′,u′ = fQ,z. It follows from this that

u′ �∈ Q. Also, as x ∈ P , fP,x→x′ ◦ fK,x = 1 and therefore, fQ,z ◦ fU,u = 1

and this means that u ∈ Q; so, by (4), u → u′ �∈ Q, a contradiction. This

proves that u → u′ ≤ z.

To complete the proof we need to show that z ≤ u → u′. We assume the

contrary, i.e., z � u → u′ and look for a contradiction. By (6), there exists

a maximal filter T of A2 such that z ∈ T but u → u′ �∈ T . By (4), u ∈ T

and u′ �∈ T . Setting Ψ(fT,u′) = fP ′′,x′′ and knowing that Ψ(fU ′,u′) = fP,x′

we have, by Lemma 2.5, that x′′ = x′. Thus, Ψ(fT,u′) = fP ′′,x′ . Observe

that, as u′ �∈ T , x′ �∈ P ′′. Now, by Lemma 2.4, Ψ(fT,u) = fP ′′,t for some

t ∈ A1 and now, since Φ(fK,x) = fU,u, by Lemma 2.5 we have that t = x.

(Observe that, as u ∈ T then x ∈ P ′′ and since x′ �∈ P ′′ then x → x′ �∈ P ′′).
Summarising we have:

Φ(fP ′′,x′) = fT,u′ ; Φ(fP ′′,x) = fT,u and Φ(fP,x→x′) = fQ,z. (13)

It follows now from Lemma 2.5 and Lemma 2.4 that Φ(fP ′′,x→x′) = fT,z;

but this is a contradiction because x → x′ �∈ P ′′ implies z �∈ T . We have

proved this way the following result:

Theorem 2.6. End(A1) ∼= End(A2) iff A1
∼= A2.
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.3 Subalgebras

Through this section, if A is a Tarski algebra, Sub(A) will denote the

lattice of subalgebras of A. For S ⊆ A we denote by 〈S〉 the subalgebra

of A generated by S. Clearly, {1, a} is a subuniverse of A for each a ∈ A.

In fact, the atoms of the lattice Sub(A) are all the subalgebras 〈a〉 with

universe {1, a} for each a ∈ A� {1} and the trivial Tarski algebra 〈1〉 with
universe {1} is the least element of this lattice. So we have the following

easy result:

Proposition 3.1. If Sub(A1) ∼= Sub(A2) then |A1| = |A2|.

If Φ : Sub(A1) −→ Sub(A2) is a lattice isomorphism, define φ : A1 −→
A2 by the prescription

φ(x) = y iff Φ(〈x〉) = 〈y〉. (14)

We intend to prove that φ is an isomorphism of Tarski algebras. Certainly,

φ is well defined and it is a bijective function. For a, b ∈ A1, a �= b, 〈a, b〉 =
〈a〉 ∨ 〈b〉 and since Φ is a lattice isomorphism we have that Φ(〈a, b〉) =

Φ(〈a〉) ∨ Φ(〈b〉) = 〈φ(a)〉 ∨ 〈φ(b)〉 = 〈φ(a), φ(b)〉; so,

Φ �Sub(〈a,b〉): Sub(〈a, b〉) −→ Sub(〈φ(a), φ(b)〉)

is a lattice isomorphism. There are, up to isomorphisms, three Tarski

algebras with two generators namely: (i) {1, a, b} where a → b = b, b →
a = a. (ii) {1, a, b, b → a} where a → b = 1 and (iii) the free algebra with

two genertors (it is described in [2] p.179).
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〈1〉

〈b〉 〈b→a〉 〈a∨b〉 〈a→b〉 〈a〉

〈b
, b
→

a
〉

〈b→a, a∨b〉 〈b→a, a→b〉 〈a→b, a∨b〉

〈a
, a→

b〉

〈b, a∨b〉 〈a→b, b→
a, a∨b

〉

〈a, a∨b〉

〈b, a→
b, b→

a〉 〈a, a→b, b→a〉

〈a, b〉

The lattice Sub(〈a, b〉) in the case 〈a, b〉 is the free algebra with two

generators is depicted above. We see that in this lattice, the subalgebra

〈a, a → b〉 is the join of two atoms; more precisely,

〈a, a → b〉 = 〈a〉 ∨ 〈a → b〉.

In these equalities ‘∨’ obviously stands for the join operation in the lattice.

Now, since Φ is a lattice isomorphism, in Sub(〈φ(a), φ(b)〉) we have that

Φ(〈a, a → b〉) = Φ(〈a〉) ∨ Φ(〈a → b〉) = 〈φ(a), φ(a → b)〉.

As Sub(〈a, b〉) ∼= Sub(〈φ(a), φ(b)〉) and 〈a, b〉 is the free algebra with two

generators, so is 〈φ(a), φ(b)〉. In this algebra, the element which is the join

of two atoms, one of them being 〈φ(a)〉, is 〈φ(a), φ(a) → φ(b)〉; therefore
we have that

〈φ(a), φ(a) → φ(b)〉 = Φ({1, a, a → b}) = 〈φ(a), φ(a → b)〉
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from which it follows that φ(a → b) = φ(a) → φ(b). The other two cases

of two-generated Tarski algebras are treated similarly arriving in both of

them to the same conclusion, namely that φ(a → b) = φ(a) → φ(b). So we

have proved the following result.

Theorem 3.2. Sub(A1) ∼= Sub(A2) iff A1
∼= A2.
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