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Norihiro KAMIDE

INTERPOLATION THEOREMS

FOR SOME VARIANTS OF LTL

A b s t r a c t. It is known that Craig interpolation theorem

does not hold for LTL. In this paper, Craig interpolation theo-

rems are shown for some fragments and extensions of LTL. These

theorems are simply proved based on an embedding-based proof

method with Gentzen-type sequent calculi. Maksimova separa-

tion theorems (Maksimova principle of variable separation) are

also shown for these LTL variants.

.1 Introduction

Linear-time temporal logic (LTL) has been used as a base logic for verify-

ing and specifying concurrent systems [4, 21]. By the virtue of the simple

linear-time formalism, LTL is known to be one of the most useful modal

logics in Computer Science. A number of model checking tools have been
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constructed based on LTL [4]. Some Gentzen-type sequent calculi, which

are a useful basis for automatic theorem proving, have been developed for

LTL (see e.g., [2, 8, 12]). A sequent calculus LTω for LTL was introduced

by Kawai [12], and a 2-sequent calculus 2Sω for LTL, which is a natu-

ral extension of the usual sequent calculus, was introduced by Baratella

and Masini [2]. A direct syntactical equivalence between Kawai’s LTω and

Baratella-Masini’s 2Sω was shown by introducing the translation functions

that preserve cut-free proofs of these calculi [7].

It is known that LTL can naturally be defined as a Kripke semantics and

the completeness theorem with respect to the semantics holds (see e.g.[2, 12]

for the completeness). But, Craig interpolation theorem is usually discussed

as a syntactical property for the provability of logic. Thus, in this paper,

we define some variants of LTL by a syntactical way using Gentzen-type

sequent calculi, and discuss the syntactically stated Craig interpolation

theorem for these variants.

Craig interpolation theorem for classical logic was originally shown by

Craig [3], and this theorem and its variants have been studied by many re-

searchers for a number of non-classical logics. Craig interpolation theorems

have many applications such as modular ontologies and model checking.

A strong version of Craig interpolation theorems is known to be useful for

extracting modular ontologies from a given large-scale ontology [13]. Craig

interpolation theorems for some temporal logics including some variants of

LTL have been well-studied for applications to model checking [19]. On the

other hand, it was discussed in [17, 5] that Craig interpolation theorems do

not hold for LTL and some of its fragments. It was proved by Gheerbrant

and ten Cate [5] that Craig interpolation theorems hold for the next-time

only fragment of LTL and for an extended LTL with a fixpoint operator.

The proof by them was semantical.

Firstly in the present paper, an alternative embedding-based proof of

the Craig interpolation theorem for the next-time only fragment (called

here a next-time LTL) is given using a theorem for embedding the next-time

LTL into classical logic. Next, it is shown that Craig interpolation theorem

holds for an extended LTL with both infinitary conjunction and infinitary

disjunction (called here an infinitary LTL). This theorem is proved using

a theorem for embedding the infinitary LTL into the countable fragment

of infinitary logic. Moreover, it is shown that Craig interpolation theorem

holds for some paraconsistent variants of the next-time LTL and the infini-
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tary LTL.Maksimova separation theorems (Maksimova principle of variable

separation) [16] are also shown for these LTL variants. The proofs of these

results for Craig interpolation and Maksimova separation are given based

on an embedding-based proof method with Gentzen-type sequent calculi.

Some remarks are addressed as follows. It was shown in [8] that LTω is

embeddable into a sequent calculus LKω for countable infinitary logic. An

embedding-based cut-elimination proof for LTω and its infinitary extension

ILTω (a sequent calculus for the infinitary LTL) was shown in [8]. It was

proved in [14] that Craig interpolation theorem holds for the countable

infinitary logic. It was also shown in [18] that Craig interpolation theorem

does not hold for other (uncountable) infinitary logics. The sequent calculus

(logic) ILTω (inifinitary LTL), which is regarded as a natural and simple

extension of LTω, is a very expressive (undecidable) logic, which not only

extends the linear-time μ-calculus, but also characterizes ω-words up to

isomorphism.

The contents of this paper are then summarized as follows.

In Section 2, Kawai’s sequent calculus LTω for LTL and Gentzen’s se-

quent calculus LK for classical logic are presented, and the Craig interpo-

lation theorem for LK is reviewed.

In Section 3, it is shown that Craig interpolation theorem holds for

the next-time only fragment LTx of LTω. This theorem is proved using

a theorem for embedding LTx into LK.

In Section 4, it is shown that Craig interpolation theorem holds for an

infinitary extension ILTω of LTω. This theorem is proved using a theorem

for embedding ILTω into a sequent calculus LKω for the countable infinitary

logic.

In Section 5, it is shown that Craig interpolation theorem holds for

a paraconsistent extension PLTx of LTx. PLTx is regarded as a modified

fragment of the sequent calculus for the paraconsistent LTL proposed in

[11]. The Craig interpolation theorem for PLTx is proved using a theorem

for embedding PLTx into LTx, and based on a proof method proposed in

[9] for a paraconsistent logic.

In Section 6, it is shown that Craig interpolation theorem holds for

a paraconsistent extension PILTω of ILTω. This theorem is proved, in

a similar way as in Section 5, using a theorem for embedding PILTω

into ILTω.

In Section 7, it is shown that Maksimova separation theorem holds for
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the constant-free fragments of LTx, ILTω, PLTx and PILTω.

In Section 8, it is remarked that Craig interpolation theorem holds for

a bounded-time version BLT[l] of LTω.

In Section 9, this paper is concluded, and some remarks are given.

.2 Preliminaries

Formulas of LTL are constructed from countably many propositional vari-

ables, � (truth constant), ⊥ (falsity constant), → (implication), ∧ (con-

junction), ∨ (disjunction), ¬ (negation), G (globally), F (eventually) and

X (next). Lower-case letters p, q, ... are used to denote propositional vari-

ables, Greek lower-case letters α, β, ... are used to denote formulas, and

Greek capital letters Γ,Δ, ... are used to represent finite (possibly empty)

sets of formulas. For any � ∈ {G,F,X}, an expression �Γ is used to de-

note the set {�γ | γ ∈ Γ}. The symbol ≡ is used to denote the equality

of symbols. The symbol ω is used to represent the set of natural numbers.

Lower-case letters i, j and k are used to denote any natural numbers. An

expression Xiα is defined inductively by X0α ≡ α and Xi+1α ≡ XiXα. An

expression of the form Γ ⇒ Δ is called a sequent. An expression L � S is

used to denote the fact that a sequent S is provable in a sequent calculus

L. A rule R of inference is said to be admissible in a sequent calculus L if

the following condition is satisfied: for any instance

S1 · · ·Sn

S

of R, if L � Si for all i, then L � S.

Kawai’s sequent calculus LTω [12] for LTL is presented below. This

formulation has some small modifications from the original one (see [7] for

the detail).

Definition 2.1 (LTω). The initial sequents of LTω are of the form: for

any propositional variable p,

Xip ⇒ Xip ⇒ Xi� Xi⊥ ⇒.

The structural rules of LTω are of the form:

Γ ⇒ Δ, α α,Σ ⇒ Π

Γ,Σ ⇒ Δ,Π
(cut)
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Γ ⇒ Δ
α,Γ ⇒ Δ

(we-left) Γ ⇒ Δ
Γ ⇒ Δ, α

(we-right).

The logical inference rules of LTω are of the form:

Γ ⇒ Σ,Xiα Xiβ,Δ ⇒ Π

Xi(α→β),Γ,Δ ⇒ Σ,Π
(→left)

Xiα,Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α→β)
(→right)

Xiα,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left1) Xiβ,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left2)

Γ ⇒ Δ,Xiα Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α ∧ β)
(∧right) Xiα,Γ ⇒ Δ Xiβ,Γ ⇒ Δ

Xi(α ∨ β),Γ ⇒ Δ
(∨left)

Γ ⇒ Δ,Xiα

Γ ⇒ Δ,Xi(α ∨ β)
(∨right1) Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α ∨ β)
(∨right2)

Γ ⇒ Δ,Xiα

Xi¬α,Γ ⇒ Δ
(¬left) Xiα,Γ ⇒ Δ

Γ ⇒ Δ,Xi¬α
(¬right)

Xi+kα,Γ ⇒ Δ

XiGα,Γ ⇒ Δ
(Gleft)

{ Γ ⇒ Δ,Xi+jα }j∈ω
Γ ⇒ Δ,XiGα

(Gright)

{ Xi+jα,Γ ⇒ Δ }j∈ω
XiFα,Γ ⇒ Δ

(Fleft)
Γ ⇒ Δ,Xi+kα

Γ ⇒ Δ,XiFα
(Fright).

Some remarks are given as follows.

1. (Gright) and (Fleft) have infinite premises.

2. The sequents of the form: Xiα ⇒ Xiα for any formula α are provable

in LTω. This fact can be proved by induction on α.

3. Cut-elimination theorem holds for LTω [12], and Craig interpolation

theorem does not hold for LTω [17, 5].

A sequent calculus LK for classical logic can be defined as a subsystem

of LTω. Cut-elimination and Craig interpolation theorems hold for LK (see

e.g., [23, 3, 3]).

Definition 2.2 (LK). LK is obtained from LTω by deleting {(Gleft),

(Gright), (Fleft), (Fright)} and replacing Xi with X0. The modified infer-

ence rules for LK by replacing Xi with X0 are denoted by using “LK” as a

superscript, e.g., (→leftLK).
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An expression V (α) denotes the set of all propositional variables in a

formula α

Proposition 2.3 (Craig interpolation theorem for LK). For any for-

mulas α and β, if LK � α ⇒ β, then there exists a formula γ such that

1. LK � α ⇒ γ and LK � γ ⇒ β,

2. V (γ) ⊆ V (α) ∩ V (β).

.3 Next-time LTL

The next-time only fragment LTx of LTω is introduced below.

Definition 3.1 (LTx). The {G,F}-free fragment LTx of LTω is ob-

tained from LTω by deleting {(Gleft), (Gright), (Fleft), (Fright)}.

Definition 3.2. We fix a countable non-empty set Φ of propositional

variables and define the sets Φi := {pi | p ∈ Φ} (i ∈ ω) of propositional

variables where p0 := p ∈ Φ, i.e., Φ0 = Φ. The language LLTx of LTx is

defined using Φ, �,⊥,¬,→,∧,∨ and X. The language LLK of LK is defined

using
⋃

i∈ω Φi, �,⊥,¬,→,∧ and ∨.
A mapping f from LLTx to LLK is defined by the following clauses:

1. f(Xip) := pi ∈ Φi for any p ∈ Φ (esp. f(p) := p ∈ Φ),

2. f(Xi�) := � where � ∈ {�,⊥},

3. f(Xi¬α) := ¬f(Xiα),

4. f(Xi(α � β)) := f(Xiα) � f(Xiβ) where � ∈ {→,∧,∨}.

An expression f(Γ) denotes the result of replacing every occurrence of

a formula α in Γ by an occurrence of f(α).

Lemma 3.3. Let Γ and Δ be sets of formulas in LLTx , and f be the

mapping defined in Definition 3.2. Then:

1. if LTx � Γ ⇒ Δ, then LK � f(Γ) ⇒ f(Δ),

2. if LK − (cut) � f(Γ) ⇒ f(Δ), then LTx − (cut) � Γ ⇒ Δ.
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Proof. Straightforward. Similar to the proof for the corresponding

embedding theorem of LTω in [8]. �

The cut-elimination theorem for LTx can be obtained using Lemma 3.3.

Theorem 3.4 (Cut-elimination for LTx). The rule (cut) is admissible

in cut-free LTx.

Proof. Suppose LTx � Γ ⇒ Δ. Then we have LK � f(Γ) ⇒ f(Δ)

by Lemma 3.3 (1), and hence LK − (cut) � f(Γ) ⇒ f(Δ) by the cut-

elimination theorem for LK. By Lemma 3.3 (2), we obtain LTx − (cut) �
Γ ⇒ Δ. �

Theorem 3.5 (Embedding from LTx into LK). Let Γ and Δ be sets of

formulas in LLTx , and f be the mapping defined in Definition 3.2. Then:

LTx � Γ ⇒ Δ iff LK � f(Γ) ⇒ f(Δ).

Proof. (=⇒) : By Lemma 3.3 (1). (⇐=) : Suppose LK � f(Γ) ⇒ f(Δ).

Then, we have LK − (cut) � Γ ⇒ Δ by the cut-elimination theorem for LK.

By Lemma 3.3 (2), we obtain LTx − (cut) � Γ ⇒ Δ. Therefore we obtain

LTx � Γ ⇒ Δ. �

Lemma 3.6. Let f be the mapping defined in Definition 3.2. For any

i ∈ ω, any propositional variable p in LLTx and any formula α in LLTx,

p ∈ V (Xiα) iff pj ∈ V (f(Xiα)) for some j ∈ ω.

Proof. By induction on α.

• Base step. It is obvious since p ∈ V (Xip) and pi = f(Xip) ∈ V (f(Xip))

hold.

• Induction step. We show only the following cases.

1. Case (α ≡ Xβ). By induction hypothesis, we have the required fact:

p ∈ V (Xi+1β) iff pj ∈ V (f(Xi+1β)) for some j ∈ ω.

2. Case (α ≡ β ∧ γ). We obtain: p ∈ V (Xi(β ∧ γ))

iff p ∈ V (Xiβ) or p ∈ V (Xiγ)

iff [pj ∈ V (f(Xiβ)) for some j ∈ ω] or [pk ∈ V (f(Xiγ)) for some

k ∈ ω] (by induction hypothesis)
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iff pl ∈ V (f(Xiβ) ∧ f(Xiγ)) with l ∈ {j, k}
iff pl ∈ V (f(Xi(β ∧ γ))) for some l ∈ ω (by the definition of f).

�

Lemma 3.7. Let f be the mapping defined in Definition 3.2. For any

formulas α and β in LLTx,

if V (f(α)) ⊆ V (f(β)), then V (α) ⊆ V (β).

Proof. Suppose p ∈ V (α). Then, we obtain pj ∈ V (f(α)) for some

j ∈ ω by Lemma 3.6 taking 0 for i. By the assumption, we obtain pj ∈
V (f(β)) for some j ∈ ω, and hence obtain p ∈ V (β) by Lemma 3.6 taking

0 for i. �

Theorem 3.8 (Craig interpolation theorem for LTx). For any formulas

α and β, if LTx � α ⇒ β, then there exists a formula γ such that

1. LTx � α ⇒ γ and LTx � γ ⇒ β,

2. V (γ) ⊆ V (α) ∩ V (β).

Proof. Suppose LTx � α ⇒ β. Then, we have LK � f(α) ⇒ f(β) by

Theorem 3.5. By Proposition 2.3, we have the following: there exists a

formula γ of LK such that

1. LK � f(α) ⇒ γ and LK � γ ⇒ f(β),

2. V (γ) ⊆ V (f(α)) ∩ V (f(β)).

Let L∗
LK be LLK − ⋃

i∈ω−{0}Φi. We now consider the following two cases

for the formula γ:

1. γ is in L∗
LK,

2. γ is in
⋃

i∈ω−{0}Φi.

We firstly consider the former case, and then, consider the latter case.

• Case (γ is in L∗
LK): In this case, we have the fact γ = f(γ) for any

γ ∈ L∗
LK ⊆ LLK. This fact can be shown by induction on γ. Thus we have

the following: there exists a formula γ in L∗
LK such that

1. LK � f(α) ⇒ f(γ) and LK � f(γ) ⇒ f(β),
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2. V (f(γ)) ⊆ V (f(α)) ∩ V (f(β)).

By Theorem 3.5, we thus obtain the following: there exists a formula γ

such that

1. LTx � α ⇒ γ and LTx � γ ⇒ β,

2. V (f(γ)) ⊆ V (f(α)) ∩ V (f(β)).

Now it is sufficient to show that V (f(γ)) ⊆ V (f(α)) ∩ V (f(β)) implies

V (γ) ⊆ V (α) ∩ V (β). This can be shown using Lemma 3.7.

• Case (γ is in
⋃

i∈ω−{0}Φi): In this case, γ is of the form pi, and we

have the fact pi = f(Xip) for any propositional variable pi ∈
⋃

i∈ω−{0}Φi

⊆ LLK. Thus we have the following: there exists a formula pi = f(Xip) in

LLK such that

1. LK � f(α) ⇒ f(Xip) and LK � f(Xip) ⇒ f(β),

2. V (f(Xip)) ⊆ V (f(α)) ∩ V (f(β)).

By Theorem 3.5, we thus obtain the following: there exists a formula Xip

such that

1. LTx � α ⇒ Xip and LTx � Xip ⇒ β,

2. V (f(Xip)) ⊆ V (f(α)) ∩ V (f(β)).

Now it is sufficient to show that V (f(Xip)) ⊆ V (f(α)) ∩ V (f(β)) implies

V (Xip) ⊆ V (α) ∩ V (β). This can be shown using Lemma 3.7. �

.4 Infinitary LTL

It is known that the Craig interpolation theorem for LTω does not hold.

According to this fact, in our method, we cannot show a similar fact pre-

sented in Lemma 4.4: γ = f(γ) for any formula γ of LKω. The reason of

the failure of this fact is that LTω is not an extension of LKω. We thus

introduce a natural extension ILTω of both LKω and LTω. Formulas of

ILTω are obtained from that of LTω by adding
∧

(infinitary conjunction)

and
∨

(infinitary disjunction). For
∧

and
∨
, if Θ is non-empty countable

set of formulas, then
∧

Θ and
∨

Θ are also formulas. Note that
∧{α} and
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∨{α} are equivalent to α, and that ∧ and ∨ are regarded as special cases

of
∧

and
∨
, respectively.

A sequent calculus ILTω is introduced below.

Definition 4.1 (ILTω). ILTω is obtained from LTω by replacing

{(∧left1), (∧left2), (∧right), (∨left), (∨right1), (∨right2)} by the inference

rules of the form:

Xiα,Γ ⇒ Δ (α ∈ Θ)

Xi(
∧

Θ),Γ ⇒ Δ
(
∧

left)
{ Γ ⇒ Δ,Xiα }α∈Θ
Γ ⇒ Δ,Xi(

∧
Θ)

(
∧

right)

{ Xiα,Γ ⇒ Δ }α∈Θ
Xi(

∨
Θ),Γ ⇒ Δ

(
∨

left)
Γ ⇒ Δ,Xiα (α ∈ Θ)

Γ ⇒ Δ,Xi(
∨

Θ)
(
∨

right)

where Θ denotes a non-empty countable set of formulas.

A sequent calculus LKω for countable infinitary logic is introduced be-

low.

Definition 4.2 (LKω). LKω is obtained from ILTω by deleting {(Gleft),

(Gright), (Fleft), (Fright)} and replacing Xi with X0. The modified infer-

ence rules for LKω by replacing Xi with X0 are denoted by using “LKω” as

a superscript.

Definition 4.3. We fix a countable non-empty set Φ of propositional

variables and define the sets Φi := {pi | p ∈ Φ} (i ∈ ω) of propositional

variables where p0 := p ∈ Φ. The language LILTω of ILTω is defined using

Φ, �,⊥,¬,→,
∧
,
∨
,G,F and X. The language LLKω of LKω is defined

using
⋃

i∈ω Φi, �,⊥,¬,→,
∧

and
∨
.

A mapping f from LILTω to LLKω is defined by the following clauses:

1. f(Xip) := pi ∈ Φi for any p ∈ Φ (esp. f(p) := p ∈ Φ),

2. f(Xi�) := � where � ∈ {�,⊥},

3. f(Xi¬α) := ¬f(Xiα),

4. f(Xi(α→β)) := f(Xiα)→f(Xiβ),

5. f(Xi�Θ) := �f(XiΘ) where � ∈ {∧,
∨} and Θ: a non-empty countable

set of formulas,
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6. f(XiGα) :=
∧

{f(Xi+jα) | j ∈ ω},

7. f(XiFα) :=
∨

{f(Xi+jα) | j ∈ ω}.
Lemma 4.4. Let LLK∗

ω
be LLKω − ⋃

i∈ω−{0}Φi. Let f be the mapping

defined in Definition 4.3. For any formula β in LLK∗
ω
(⊆ LILTω), f(β) = β.

Proof. By induction on β. Since β ∈ LLK∗
ω
, it is sufficient to consider

the following cases: β ≡ p (p: propositional variable), β ≡ �, β ≡ ⊥,

β ≡ β1→β2, β ≡ ¬β1, β ≡ ∧
Θ and β ≡ ∨

Θ (Θ: countable nonempty set

of formulas). These cases are simply obtained from the definition of f by

considering the special cases that i in Xi is 0. We show only the case β ≡
β1→β2 below. By the definition of f , we have f(β1→β2) = f(β1)→f(β2).

By induction hypothesis, we have f(β1) = β1 and f(β2) = β2. We thus

obtain the required fact f(β1→β2) = β1→β2. �
Lemma 4.5. Let Γ and Δ be sets of formulas in LILTω , and f be the

mapping defined in Definition 4.3. Then:

1. if ILTω � Γ ⇒ Δ, then LKω � f(Γ) ⇒ f(Δ).

2. if LKω − (cut) � f(Γ) ⇒ f(Δ), then ILTω − (cut) � Γ ⇒ Δ.

Proof. • (1): By induction on the proofs P of Γ ⇒ Δ in ILTω. We

distinguish the cases according to the last inference of P , and show some

cases.

1. Case (Xip ⇒ Xip): The last inference of P is of the form: Xip ⇒ Xip.

In this case, we obtain LKω � f(Xip) ⇒ f(Xip), i.e., LKω � pi ⇒ pi
(pi ∈ Φi) by the definition of f .

2. Case (→left): The last inference of P is of the form:

Γ ⇒ Σ,Xiα Xiβ,Δ ⇒ Π

Xi(α→β),Γ,Δ ⇒ Σ,Π
(→left).

By induction hypothesis, we obtain the required fact:
....

f(Γ) ⇒ f(Σ), f(Xiα)

....
f(Xiβ), f(Δ) ⇒ f(Π)

f(Xiα)→f(Xiβ), f(Γ), f(Δ) ⇒ f(Σ), f(Π)
(→leftLKω)

where f(Xiα)→f(Xiβ) coincides with f(Xi(α→β)) by the definition

of f .
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3. Case (
∧
right): The last inference of P is of the form:

{ Γ ⇒ Δ,Xiα }α∈Θ
Γ ⇒ Δ,Xi(

∧
Θ)

(
∧

right).

By induction hypothesis, we have LKω � f(Γ) ⇒ f(Δ), f(Xiα) for all

α ∈ Θ, i.e., for all f(Xiα) ∈ f(XiΘ). Then, we obtain:

....
{ f(Γ) ⇒ f(Δ), f(Xiα) }f(Xiα)∈f(XiΘ)

f(Γ) ⇒ f(Δ),
∧

f(XiΘ)
(
∧

rightLKω)

where
∧

f(XiΘ) coincides with f(Xi(
∧

Θ)) by the definition of f .

• (2): By induction on the proofs Q of f(Γ) ⇒ f(Δ) in LKω. We

distinguish the cases according to the last inference of Q, and show only

the following case.

Case (
∧
rightLKω): The last inference of Q is of the form:

{ f(Γ) ⇒ f(Δ), f(Xiα) }f(Xiα)∈f(XiΘ)

f(Γ) ⇒ f(Δ),
∧

f(XiΘ)
(
∧

rightLKω)

where
∧

f(XiΘ) coincides with f(Xi(
∧

Θ)) by the definition of

f . By induction hypothesis, we have ILTω � Γ ⇒ Δ,Xiα for all

Xiα ∈ XiΘ, i.e., for all α ∈ Θ. Then, we obtain the required

fact: ....
{ Γ ⇒ Δ,Xiα }α∈Θ
Γ ⇒ Δ,Xi(

∧
Θ)

(
∧

right).

�

Theorem 4.6 (Cut-elimination for ILTω). The rule (cut) is admissible

in cut-free ILTω.

Proof. Similar to Theorem 3.4. We use Lemma 4.5. �

Theorem 4.7 (Embedding from ILTω into LKω). Let Γ and Δ be sets

of formulas in LILTω , and f be the mapping defined in Definition 4.3. Then:
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ILTω � Γ ⇒ Δ iff LKω � f(Γ) ⇒ f(Δ).

Proof. Similar to Theorem 3.5. We use Lemma 4.5. �

Lemma 4.8. Let f be the mapping defined in Definition 4.3. For any

i ∈ ω, any propositional variable p in LILTω and any formula α in LILTω ,

p ∈ V (Xiα) iff pj ∈ V (f(Xiα)) for some j ∈ ω.

Proof. Similar to Lemma 3.6. By induction on α. We show only the

following case for the induction step.

Case (α ≡ Gβ). We obtain:

p ∈ V (XiGβ)

iff p ∈ V (Xiβ)

iff pj ∈ V (f(Xiβ)) for some j ∈ ω (by induction hypothesis)

iff pj ∈ V (
∧

{f(Xi+kβ) | k ∈ ω}) for some j ∈ ω

iff pj ∈ V (f(XiGβ)) for some j ∈ ω (by the definition of f).

�

Lemma 4.9. Let f be the mapping defined in Definition 4.3. For any

formulas α and β in LILTω ,

if V (f(α)) ⊆ V (f(β)), then V (α) ⊆ V (β).

Proof. Similar to Lemma 3.7. We use Lemma 4.8. �

Theorem 4.10 (Craig interpolation theorem for ILTω). For any for-

mulas α and β, if ILTω � α ⇒ β, then there exists a formula γ such that

1. ILTω � α ⇒ γ and ILTω � γ ⇒ β,

2. V (γ) ⊆ V (α) ∩ V (β).

Proof. Similar to Theorem 3.8. We use Theorem 4.7, Lemmas 4.9 and

4.4, and the Craig interpolation theorem for LKω. �
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.5 Paraconsistent next-time LTL

We introduce a paraconsistent extension PLTx of LTx. The logic PLTx

is regarded as a modified fragment of the sequent calculus for the para-

consistent LTL proposed in [11]. The language of PLTx is obtained from

that of LTx by adding a paraconsistent negation connective ∼ similar to

the strong negation connective in Nelson’s paraconsistent logic N4 [1]. The

negation connective ∼ in N4 and PLTx is regarded as paraconsistent, i.e.,

the formula of the form (∼α ∧ α)→β is not an axiom scheme of N4 and

PLTx.

Definition 5.1 (PLTx). PLTx is obtained from LTx by adding the

initial sequents of the form: for any propositional variable p,

Xi∼p ⇒ Xi∼p Xi∼� ⇒ ⇒ Xi∼⊥

and adding the logical inference rules of the form:

Xiα,Γ ⇒ Δ

Xi∼∼α,Γ ⇒ Δ
(∼∼left)

Γ ⇒ Δ,Xiα

Γ ⇒ Δ,Xi∼∼α
(∼∼right)

Xiα,Γ ⇒ Δ

Xi∼(α→β),Γ ⇒ Δ
(∼→left1)

Xi∼β,Γ ⇒ Δ

Xi∼(α→β),Γ ⇒ Δ
(∼→left2)

Γ ⇒ Δ,Xiα Γ ⇒ Δ,Xi∼β

Γ ⇒ Δ,Xi∼(α→β)
(∼→right)

Xi∼α,Γ ⇒ Δ Xi∼β,Γ ⇒ Δ

Xi∼(α ∧ β),Γ ⇒ Δ
(∼ ∧ left)

Γ ⇒ Δ,Xi∼α

Γ ⇒ Δ,Xi∼(α ∧ β)
(∼ ∧ right1)

Γ ⇒ Δ,Xi∼β

Γ ⇒ Δ,Xi∼(α ∧ β)
(∼ ∧ right2)

Xi∼α,Γ ⇒ Δ

Xi∼(α ∨ β),Γ ⇒ Δ
(∼ ∨ left1)

Xi∼β,Γ ⇒ Δ

Xi∼(α ∨ β),Γ ⇒ Δ
(∼ ∨ left2)

Γ ⇒ Δ,Xi∼α Γ ⇒ Δ,Xi∼β

Γ ⇒ Δ,Xi∼(α ∨ β)
(∼ ∨ right)

Xi∼α,Γ ⇒ Δ

Xi∼¬α,Γ ⇒ Δ
(∼¬left) Γ ⇒ Δ,Xi∼α

Γ ⇒ Δ,Xi∼¬α
(∼¬right)

Xi∼α,Γ ⇒ Δ

∼Xiα,Γ ⇒ Δ
(∼Xleft)

Γ ⇒ Δ,Xi∼α

Γ ⇒ Δ,∼Xiα
(∼Xright).
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The sequents of the form Xiα ⇒ Xiα for any formula α are provable in

cut-free PLTx.

An expression α ↔ β means α ⇒ β and β ⇒ α. Then, the following

sequents are provable in cut-free PLTx: for any formulas α and β,

1. ∼∼α ↔ α,

2. ∼(α ∧ β) ↔ ∼α ∨ ∼β,

3. ∼(α ∨ β) ↔ ∼α ∧ ∼β,

4. ∼(α→β) ↔ α ∧ ∼β,

5. ∼¬α ↔ α,

6. ∼Xα ↔ X∼α.

In the following, we introduce a translation of PLTx into LTx, and by

using this translation, we show a theorem for embedding PLTx into LTx.

A similar translation has been used by Vorob’ev [24], Gurevich [6], and

Rautenberg [22] to embed Nelson’s three-valued constructive logic [1, 20]

into intuitionistic logic.

Definition 5.2. Let Φ be a non-empty set of propositional variables

and Φ′ be the set {p′ | p ∈ Φ} of propositional variables. The language

LPLTx (the set of formulas) of PLTx is defined using Φ, �,⊥, ∼, ¬,→,∧,∨
and X. The language LLTx of LTx is obtained from LPLTx by adding Φ′

and deleting ∼.

A mapping f from LPLTx to LLTx is defined inductively by

1. for any p ∈ Φ, f(p) := p and f(∼p) := p′ ∈ Φ′,

2. f(�) := � where � ∈ {�,⊥},

3. f(α � β) := f(α) � f(β) where � ∈ {∧,∨,→},

4. f(�α) := �f(α) where � ∈ {¬,X},

5. f(∼�) := ⊥,

6. f(∼⊥) := �,

7. f(∼∼α) := f(α),
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8. f(∼¬α) := f(α),

9. f(∼Xα) := Xf(∼α),

10. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),

11. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β),

12. f(∼(α→β)) := f(α) ∧ f(∼β).

Lemma 5.3. Let Γ and Δ be sets of formulas in LPLTx , and f be the

mapping defined in Definition 5.2. Then:

1. if PLTx � Γ ⇒ Δ, then LTx � f(Γ) ⇒ f(Δ).

2. if LTx − (cut) � f(Γ) ⇒ f(Δ), then PLTx − (cut) � Γ ⇒ Δ.

Proof. We show only (1) below.

• (1) : By induction on the proofs P of Γ ⇒ Δ in PLTx. We distinguish

the cases according to the last inference of P , and show some cases.

1. Case (Xi∼p ⇒ Xi∼p):

The last inference of P is of the form: Xi∼p ⇒ Xi∼p. In this case, we

obtain the required fact LTx � f(Xi∼p) ⇒ f(Xi∼p), since f(Xi∼p)

coincides with Xip′ by the definition of f .

2. Case (∼→left): The last inference of P is of the form:

Γ ⇒ Δ,Xiα Γ ⇒ Δ,Xi∼β

Γ ⇒ Δ,Xi∼(α→β)
(∼→left).

By induction hypothesis, we have: LTx � f(Γ) ⇒ f(Δ), f(Xiα) and

LTx � f(Γ) ⇒ f(Δ), f(Xi∼β) where f(Xiα) and f(Xi∼β) respec-

tively coincide with Xif(α) and Xif(∼β) by the definition of f . Then,

we obtain:

....
f(Γ) ⇒ f(Δ),Xif(α)

....
f(Γ) ⇒ f(Δ),Xif(∼β)

f(Γ) ⇒ f(Δ),Xi(f(α) ∧ f(∼β))
(∧left)

where Xi(f(α) ∧ f(∼β)) coincides with f(Xi∼(α→β)) by the defini-

tion of f .
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3. Case (∼Xleft): The last inference of P is of the form:

Xi∼α,Γ ⇒ Δ

∼Xiα,Γ ⇒ Δ
(∼Xleft).

By induction hypothesis, we have: LTx � f(Xi∼α), f(Γ) ⇒ f(Δ)

where f(Xi∼α) coincides with f(∼Xiα) by the definition of f .

�

Theorem 5.4 (Cut-elimination for PLTx). The rule (cut) is admissible

in cut-free PLTx.

Proof. By using Lemma 5.3. �

Theorem 5.5 (Embedding from PLTx into LTx). Let Γ and Δ be sets

of formulas in LPLTx , and f be the mapping defined in Definition 5.2. Then:

PLTx � Γ ⇒ Δ iff LTx � f(Γ) ⇒ f(Δ).

Proof. By using Lemma 5.3. �

Lemma 5.6. Let f be the mapping defined in Definition 5.2. For any

propositional variable p in LPLTx , and any formula α in LPLTx ,

1. p ∈ V (α) iff q ∈ V (f(α)) for some q ∈ {p, p′},

2. p ∈ V (∼α) iff q ∈ V (f(∼α)) for some q ∈ {p, p′}.

Proof. By (simultaneous) induction on α.

• Base step. For the item 1, we have: p ∈ V (p) and p = f(p) ∈ V (f(p))

by the definition of f . For the item 2, we have: p ∈ V (∼p) and p′ =

f(∼p) ∈ V (f(∼p)) by the definition of f .

• Induction step. We show some cases.

1. Case (α ≡ �). For the item 1, this case holds since p ∈ V (�) and

q ∈ V (f(�)) do not hold. For the item 2, this case is similar to the

case above.

2. Case (α ≡ ∼β). For the item 1, we obtain: p ∈ V (∼β) iff q ∈
V (f(∼β)) for some q ∈ {p, p′} (by induction hypothesis for 2). For

the item 2, we obtain:
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p ∈ V (∼∼β)

iff p ∈ V (β)

iff q ∈ V (f(β)) for some q ∈ {p, p′} (by induction hypothesis for 1)

iff q ∈ V (f(∼∼β)) for some q ∈ {p, p′} (by the definition of f).

3. Case (α ≡ ¬β). For the item 1, we obtain:

p ∈ V (¬β)
iff p ∈ V (β)

iff q ∈ V (f(β)) for some q ∈ {p, p′} (by induction hypothesis for 1)

iff q ∈ V (¬f(β)) for some q ∈ {p, p′}
iff q ∈ V (f(¬β)) for some q ∈ {p, p′} (by the definition of f).

For the item 2, we obtain:

p ∈ V (∼¬β)
iff p ∈ V (β)

iff q ∈ V (f(β)) for some q ∈ {p, p′} (by induction hypothesis for 1)

iff q ∈ V (f(∼¬β)) for some q ∈ {p, p′} (by the definition of f).

4. Case (α ≡ β ∧ γ). For the item 1, we obtain:

p ∈ V (β ∧ γ)

iff p ∈ V (β) or p ∈ V (γ)

iff [r ∈ V (f(β)) for some r ∈ {p, p′}] or [s ∈ V (f(γ)) for some

s ∈ {p, p′}] (by induction hypothesis for 1)

iff q ∈ V (f(β) ∧ f(γ)) for some q ∈ {p, p′}
iff q ∈ V (f(β ∧ γ)) for some q ∈ {p, p′} (by the definition of f).

For the item 2, we obtain:

p ∈ V (∼(β ∧ γ))

iff p ∈ V (∼β) or p ∈ V (∼γ)

iff [r ∈ V (f(∼β)) for some r ∈ {p, p′}] or [s ∈ V (f(∼γ)) for some

s ∈ {p, p′}] (by induction hypothesis for 2)

iff q ∈ V (f(∼β) ∨ f(∼γ)) for some q ∈ {p, p′}
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iff q ∈ V (f(∼(β ∧ γ))) for some q ∈ {p, p′} (by the definition of f).

�

Lemma 5.7. Let f be the mapping defined in Definition 5.2. For any

formulas α and β in LPLTx , if V (f(α)) ⊆ V (f(β)), then V (α) ⊆ V (β).

Proof. Suppose p ∈ V (α). Then, we obtain q ∈ V (f(α)) for some

q ∈ {p, p′} by Lemma 5.6. By the assumption, we obtain q ∈ V (f(β)) for

some q ∈ {p, p′}, and hence obtain p ∈ V (β) by Lemma 5.6. �

Theorem 5.8 (Craig interpolation theorem for PLTx). For any for-

mulas α and β, if PLTx � α ⇒ β, then there exists a formula γ such that

1. PLTx � α ⇒ γ and PLTx � γ ⇒ β,

2. V (γ) ⊆ V (α) ∩ V (β).

Proof. Similar to Theorem 3.8. We use Theorems 5.5 and 3.8 and

Lemma 5.7. �

.6 Paraconsistent infinitary LTL

We introduce a paraconsistent extension PILTω of ILTω. The language of

PILTω is obtained from that of ILTω by adding ∼.

Definition 6.1 (PILTω). PILTω is obtained from ILTω by adding the

initial sequents of the form: for any propositional variable p,

Xi∼p ⇒ Xi∼p Xi∼� ⇒ ⇒ Xi∼⊥

adding the logical inference rules {(∼∼left),(∼∼right),(∼→left1),(∼→left2),

(∼¬left), (∼¬right), (∼Xleft), (∼Xright)} in Definition 5.1, and adding the

logical inference rules of the form:

{ Xi+j∼α,Γ ⇒ Δ }j∈ω
Xi∼Gα,Γ ⇒ Δ

(∼Gleft)
Γ ⇒ Δ,Xi+k∼α

Γ ⇒ Δ,Xi∼Gα
(∼Gright)

Xi+k∼α,Γ ⇒ Δ

Xi∼Fα,Γ ⇒ Δ
(∼Fleft)

{ Γ ⇒ Δ,Xi+j∼α }j∈ω
Γ ⇒ Δ,Xi∼Fα

(∼Fright)
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{ Xi∼α,Γ ⇒ Δ }α∈Θ
Xi∼(

∧
Θ),Γ ⇒ Δ

(∼∧
left)

Γ ⇒ Δ,Xi∼α (α ∈ Θ)

Γ ⇒ Δ,Xi∼(
∧

Θ)
(∼∧

right)

Xi∼α,Γ ⇒ Δ (α ∈ Θ)

Xi∼(
∨

Θ),Γ ⇒ Δ
(∼∨

left)
{ Γ ⇒ Δ,Xi∼α }α∈Θ
Γ ⇒ Δ,Xi∼(

∨
Θ)

(∼∨
right)

where Θ denotes a non-empty countable set of formulas.

The sequents of the form Xiα ⇒ Xiα for any formula α are provable

in cut-free PILTω. An expression ∼Γ means the set {∼γ | γ ∈ Γ}. The

following sequents are provable in cut-free PILTω: for any formulas α, β,

and any non-empty countable set Θ of formulas,

1. ∼Gα ↔ F∼α,

2. ∼Fα ↔ G∼α,

3. ∼(
∧

Θ) ↔ ∨
(∼Θ),

4. ∼(
∨

Θ) ↔ ∧
(∼Θ).

Definition 6.2. Let Φ be a non-empty set of propositional variables

and Φ′ be the set {p′ | p ∈ Φ} of propositional variables. The language

LPILTω (the set of formulas) of PILTω is defined using Φ, �,⊥, ∼, ¬,→,
∧
,∨

,G,F and X. The language LILTω of ILTω is obtained from LPILTω by

adding Φ′ and deleting ∼.

A mapping f from LPILTω to LILTω is defined inductively by

1. for any p ∈ Φ, f(p) := p and f(∼p) := p′ ∈ Φ′,

2. f(�) := � where � ∈ {�,⊥},

3. f(�α) := �f(α) where � ∈ {¬,X},

4. f(α→β) := f(α)→f(β),

5. f(�Θ) := �f(Θ) where � ∈ {∧,
∨} and Θ: a non-empty countable set

of formulas,

6. f(∼�) := ⊥,

7. f(∼⊥) := �,

8. f(∼∼α) := f(α),
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9. f(∼¬α) := f(α),

10. f(∼(α→β)) := f(α) ∧ f(∼β),

11. f(∼∧
Θ) :=

∨
f(∼Θ) where Θ: a non-empty countable set of formu-

las,

12. f(∼∨
Θ) :=

∧
f(∼Θ) where Θ: a non-empty countable set of formu-

las,

13. f(∼Xα) := Xf(∼α),

14. f(∼Gα) := Ff(∼α),

15. f(∼Fα) := Gf(∼α).

Lemma 6.3. Let Γ and Δ be sets of formulas in LPILTω , and f be the

mapping defined in Definition 6.2. Then:

1. if PILTω � Γ ⇒ Δ, then ILTω � f(Γ) ⇒ f(Δ).

2. if ILTω − (cut) � f(Γ) ⇒ f(Δ), then PILTω − (cut) � Γ ⇒ Δ.

Proof.

• (1) : By induction on the proofs P of Γ ⇒ Δ in PILTω. We distinguish

the cases according to the last inference of P , and show only the following

case.

Case (∼Gleft): The last inference of P is of the form:

{ Xi+j∼α,Γ ⇒ Δ }j∈ω
Xi∼Gα,Γ ⇒ Δ

(∼Gleft).

By induction hypothesis, we have: ILTω � f(Xi+j∼α), f(Γ) ⇒ f(Δ)

for any j ∈ ω, where f(Xi+j∼α) coincides with Xi+jf(∼α) by

the definition of f . Then, we obtain:

....
{ Xi+jf(∼α), f(Γ) ⇒ f(Δ) }j∈ω

XiFf(∼α), f(Γ) ⇒ f(Δ)
(Fleft)

where XiFf(∼α) coincides with f(Xi∼Gα) by the definition

of f .
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• (2) : By induction on the proofs Q of f(Γ) ⇒ f(Δ) in ILTω. We

distinguish the cases according to the last inference of Q, and show only

the following case.

Case (Gleft): The last inference of Q is (Gleft).

1. Subcase (1): The last inference of Q is of the form:

Xi+kf(α), f(Γ) ⇒ f(Δ)

XiGf(α), f(Γ) ⇒ f(Δ)
(Gleft)

where Xi+kf(α) and XiGf(α) respectively coincide with

f(Xi+kα) and f(XiGα) by the definition of f . By induc-

tion hypothesis, we have: PILTω � Xi+kα,Γ ⇒ Δ, and

hence obtain the required fact:

....
Xi+kα,Γ ⇒ Δ

XiGα,Γ ⇒ Δ
(Gleft).

2. Subcase (2): The last inference of Q is of the form:

Xi+kf(∼α), f(Γ) ⇒ f(Δ)

XiGf(∼α), f(Γ) ⇒ f(Δ)
(Gleft)

where Xi+kf(∼α) and XiGf(∼α) respectively coincide with

f(Xi+k∼α) and f(Xi∼Fα) by the definition of f . By in-

duction hypothesis, we have: PILTω � Xi+k∼α,Γ ⇒ Δ,

and hence obtain the required fact:

....
Xi+k∼α,Γ ⇒ Δ

Xi∼Fα,Γ ⇒ Δ
(∼Fleft).

�

Theorem 6.4 (Cut-elimination for PILTω). The rule (cut) is admissi-

ble in cut-free PILTω.

Proof. By using Lemma 6.3. �
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Theorem 6.5 (Embedding from PILTω into ILTω). Let Γ and Δ be

sets of formulas in LPILTω , and f be the mapping defined in Definition 6.2.

Then:

PILTω � Γ ⇒ Δ iff ILTω � f(Γ) ⇒ f(Δ).

Proof. By using Lemma 6.3. �

Lemma 6.6. Let f be the mapping defined in Definition 6.2. For any

propositional variable p in LPILTω , and any formula α in LPILTω ,

1. p ∈ V (α) iff q ∈ V (f(α)) for some q ∈ {p, p′},

2. p ∈ V (∼α) iff q ∈ V (f(∼α)) for some q ∈ {p, p′}.
Proof. Similar to Lemma 5.6. �

Lemma 6.7. Let f be the mapping defined in Definition 6.2. For any

formulas α and β in LPLTx , if V (f(α)) ⊆ V (f(β)), then V (α) ⊆ V (β).

Proof. Similar to Lemma 5.7. We use Lemma 6.6. �

Theorem 6.8 (Craig interpolation theorem for PILTω). For any for-

mulas α and β, if PILTω � α ⇒ β, then there exists a formula γ such

that

1. PILTω � α ⇒ γ and PILTω � γ ⇒ β,

2. V (γ) ⊆ V (α) ∩ V (β).

Proof. Similar to Theorem 4.10. We use Theorems 6.5 and 4.10 and

Lemma 6.7. �

.7 Maksimova separation

We can show, in a similar way as in the previous sections, the following

Craig interpolation theorem for the {�,⊥}-free fragments of LTx, ILTω,

PLTx and PILTω.

Theorem 7.1 (Craig interpolation theorem for the {�,⊥}-free frag-

ments). Let L be the {�,⊥}-free fragment of LTx, the {�,⊥}-free fragment

of ILTω, the {�,⊥}-free fragment of PLTx or the {�,⊥}-free fragment of

PILTω. Suppose L � α ⇒ β for any {�,⊥}-free formulas α and β. If

V (α) ∩ V (β) �= ∅, then there exists a formula γ such that
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1. L � α ⇒ γ and L � γ ⇒ β,

2. V (γ) ⊆ V (α) ∩ V (β).

If V (α) ∩ V (β) = ∅, then
3. L � ⇒ ¬α or L � ⇒ β.

Using this theorem, we can show the following Maksimova separation

theorem for LTx, ILTω, PLTx and PILTω.

Theorem 7.2 (Maksimova separation theorem for the LTL variants).

Let L be the {�,⊥}-free fragment of LTx, the {�,⊥}-free fragment of

ILTω, the {�,⊥}-free fragment of PLTx or the {�,⊥}-free fragment of

PILTω. Suppose V (α1, α2) ∩ V (β1, β2) �= ∅ for any {�,⊥}-free formulas

α1, α2, β1 and β2. If L � α1 ∧ β1 ⇒ α2 ∨ β2, then either L � α1 ⇒ α2 or

L � β1 ⇒ β2.

Proof. Suppose V (α1, α2)∩V (β1, β2) �= ∅ and L � α1 ∧ β1 ⇒ α2 ∨ β2.

Then, we have: L � α1, β1 ⇒ α2, β2, and hence have: L � α1,¬α2 ⇒ ¬β1, β2.

Thus, we obtain: L � α1 ∧ ¬α2 ⇒ ¬β1 ∨ β2. By Theorem 7.1 (3), we ob-

tain:

L � ⇒ ¬(α1 ∧ ¬α2) or L � ⇒ ¬β1 ∨ β2.

We thus obtain the required fact:

L � α1 ⇒ α2 or L � β1 ⇒ β2

by:

⇒ ¬(α1 ∧ ¬α2)

....
α1 ⇒ α1

α1 ⇒ α2, α1

....
α2 ⇒ α2

α2, α1 ⇒ α2
α1 ⇒ α2,¬α2

α1 ⇒ α2, α1 ∧ ¬α2

¬(α1 ∧ ¬α2), α1 ⇒ α2

α1 ⇒ α2
(cut)

or

⇒ ¬β1 ∨ β2

....
β1 ⇒ β1

β1 ⇒ β1, β2

¬β1, β1 ⇒ β2

....
β2 ⇒ β2

β2, β1 ⇒ β2

¬β1 ∨ β2, β1 ⇒ β2

β1 ⇒ β2
(cut)

�
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.8 Remarks

In the following, it is explained that Craig interpolation theorem holds for a

bounded-time version BLT[l] of LTω. The system BLT[l] was called BLTL

(bounded linear-time temporal logic) in [10]. A paraconsistent extension

PBLT[l] of BLT[l] can be defined similarly, and the Craig interpolation

theorem for PBLT[l] can be shown in a similar way. It can also be shown

that Maksimova separation theorem holds for the constant-free versions of

these logics. The detail of these results is not explained in the following

since such results can be obtained similarly as in the previous sections.

Let l be a fixed positive integer, and ωl be the set {i ∈ ω | i ≤ l}.
The system BLT[l] is obtained from LTω by replacing the inference rules

{(Gleft), (Gright), (Fleft), (Fright)} with the inference rules of the form:

for any k ∈ ωl,

Xi+kα,Γ ⇒ Δ

XiGα,Γ ⇒ Δ
(Gleftl)

{ Γ ⇒ Δ,Xi+jα }j∈ωl

Γ ⇒ Δ,XiGα
(Grightl)

{ Xi+jα,Γ ⇒ Δ }j∈ωl

XiFα,Γ ⇒ Δ
(Fleftl)

Γ ⇒ Δ,Xi+kα

Γ ⇒ Δ,XiFα
(Frightl)

and adding the inference rules of the form:

Xlα,Γ ⇒ Δ

Xi+lα,Γ ⇒ Δ
(Xleft)

Γ ⇒ Δ,Xlα

Γ ⇒ Δ,Xi+lα
(Xright).

The inference rules presented above correspond to the following Hilbert-

style axioms:

1. Gα ↔ α ∧Xα ∧X2α ∧ · · · ∧Xlα,

2. Fα ↔ α ∨Xα ∨X2α ∨ · · · ∨Xlα,

3. Xi+lα ↔ Xlα.

Since the axioms 1 and 2 correspond to the finite versions of the follow-

ing axioms in ILTω:

1. Gα ↔ ∧
i∈ω Xiα,

2. Fα ↔ ∨
i∈ω Xiα.
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Thus, BLT[l] is regarded as a finite approximation of LTω. Note that BLT[l]

is embeddable into LK since G and F in BLT[l] are expressed using ∧ and

∨ in LK based on a modified mapping f . By using this fact, we can obtain

the Craig interpolation theorem for BLT[l].

.9 Conclusions

In this paper, the Craig interpolation theorem for the next-time only frag-

ment LTx of a Gentzen-type sequent calculus LTω for LTL was proved

using a theorem for embedding LTx into a sequent calculus LK for clas-

sical logic. The Craig interpolation theorem for the infinitary extension

ILTω of LTω was also proved using a theorem for embedding ILTω into a

sequent calculus LKω for countable infinitary logic. Moreover, the Craig

interpolation theorem for the paraconsistent extensions PLTx and PILTω

of LTx and ILTω, respectively, was proved using some theorems for embed-

ding PLTx and PILTω into LTx and ILTω, respectively. The Maksimova

separation theorem for (the constant-free fragments of) LTx, ILTω, PLTx

and PILTω was obtained as a corollary of the (constant-free version of)

Craig interpolation theorem.

The result for LTx, i.e., the next-time LTL, is not a new result of this

paper, but the results for ILTω, PLTx and PILTω are new results of this

paper. The proposed embedding-based proof method for the logics under

consideration is also a new contribution of this paper. It is known that

Maehara’s method [15, 23] is useful to obtain a syntactical proof of Craig

interpolation theorem. Maehara’s method may not work for ILTω since an

infinite partition of a finite sequent in ILTω cannot be considered. It is also

known that Maehara’s method requires cut-elimination. But, the proposed

method does not require cut-elimination. This is a merit of the proposed

method.

A theorem for semantically embedding the semantics for LTx (ILTω)

into the semantics for classical logic (the countable infinitary logic, respec-

tively) can similarly be shown. Thus, an embedding-based “semantical”

proof of the Craig interpolation theorems for LTx and ILTω can also be ob-

tained. Moreover, the proposed method can straightforwardly be applied

to the first-order versions and to the intuitionistic versions, although such

a result is omitted here. In conclusion, our new method is useful for show-
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ing Craig interpolation and Maksimova separation theorems for some LTL

variants.
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