
Schedae Informaticae Vol. 23 (2014): 57–67
doi: 10.4467/20838476SI.14.005.3022

Fast Optimization of
Multithreshold Entropy Linear Classifier

Rafa l Józefowicz1 and Wojciech Marian Czarnecki2
1Google Inc.

e-mail: rafjoz@gmail.com
2Faculty of Mathematics and Computer Science

Jagiellonian University
ul. Lojasiewicza 6, 30-389 Kraków

e-mail: wojciech.czarnecki@uj.edu.pl

Abstract. Multithreshold Entropy Linear Classifier (MELC) is a density based

model which searches for a linear projection maximizing the Cauchy-Schwarz

Divergence of dataset kernel density estimation. Despite its good empirical

results, one of its drawbacks is the optimization speed. In this paper we an-

alyze how one can speed it up through solving an approximate problem. We

analyze two methods, both similar to the approximate solutions of the Kernel

Density Estimation querying and provide adaptive schemes for selecting a cru-

cial parameters based on user-specified acceptable error. Furthermore we show

how one can exploit well known conjugate gradients and L-BFGS optimizers

despite the fact that the original optimization problem should be solved on the

sphere. All above methods and modifications are tested on 10 real life datasets

from UCI repository to confirm their practical usability.

Keywords: multithreshold classifier, entropy, approximation, optimization.

1. Introduction

Many methods of speeding up the kernel density estimator’s (KDE) querying process
has been proposed in the literature [6, 12, 14]. As optimization problem introduced
in Multithreshold Entropy Linear Classifier [5] is closely related to the equations of
KDE it appears natural that similar techniques can be used to simplify its compu-
tations with a bounded error. Importance of such reductions comes from the high

58

(quadratic) complexity of the evaluation of functions required during training of
this model which makes it hard to use for any dataset with more than a thousand
points. In this paper we investigate two such approaches, first – sorting and discard-
ing, which ignores computations of similarities between points that are too far away
to have big impact on the function’s value, second – binning, which smooths the func-
tion construction in order to heavily reduce amount of unique points. Both these
methods are introduced in an adaptive manner so the optimization process have
fixed error bound despite many different linear projections being analyzed during
the training phase. We also show a very simple method which enables to use a wide
range of optimization algorithms even though proposed model requires optimization
with a specific constraints (sphere bounded).

2. Multithreshold Entropy Linear Classifier

Multithreshold Entropy Linear Classifier (MELC [5]) has been recently proposed
as an information theoretic approach for building model from the multithreshold
linear family [1]. It’s core idea is to find a linear operator v (with unit norm) such
that kernel density estimations of projected classes’ training samples maximize the
Cauchy-Schwarz Divergence (DCS [9]). Let us recall the equation of DCS in order to
find the core computational bottleneck which appears in MELC optimization

DCS(f−, f+) = 2H×2 (f−, f+)−H2(f−)−H2(f+),

for f± = JvTX±K being a kernel density estimator of vTX± with Silverman’s rule [11],
thus from the definition of Renyi’s quadratic entropy, Renyi’s quadratic cross entropy
and the fact that ip×(f, g) =

∫
fg we have

DCS(f−, f+) = −2 log ip×(f−, f+) + log ip×(f−, f−) + log ip×(f+, f+).

As whole DCS function is composed of ip× evaluations, in the rest of our paper we fo-
cus purely on the ip×, which we expand using Gaussian kernel density estimation [5]
and denote ip×(v) = ip×(JvTX−K, JvTX+K).

ip×(v) =
1√

2πV (v)|X||Y |
∑

x,y

exp

(
−〈v, x− y〉

2

2V (v)

)
,

where V (v) is a sum of each classes estimated variances using Silverman’s rule [11].

In an obvious way, naive computation of ip× is O(N2), where N =
max{|X−|, |X+|} due to the summation over all possible pairs (x, y). In the fol-
lowing sections we focus on methods which reduce this computational bottleneck
while still preserving given approximation of ip× value.

59

3. Reduction of ip× computational complexity

Sorting and discarding

Let us begin with the very simple conception of computing values of only those (x, y)
pairs which are close enough to have an impact on the value of ip×. If we assume
that points projections are sorted (which can be done in general in O(N logN)1)
we can search the dataset in linear time and identify for each point x indices of first
and last point which are at most at distance T from x. Following theorem shows
what T to choose in order to obtain at most ε error.

Theorem 1 Using adaptive sorting and discarding with distance threshold in each
iteration of at least

√
max

{
0,−V (v) ln

(
2(εp)2πV (v)

)}
,

where V (v) is a sum of each classes estimated variances, leads to the computation
of the ip× function with at most ε error, assuming that at most fraction of p points
is located closer than T .

Proof. We assume that |〈v, x−y〉| ≥ T for NT pairs of points which are being ignored
during computation of ip× so −〈v, x− y〉2 ≤ −T 2, thus

1√
2πV (v)|X||Y |

∑

x,y

exp

(
−〈v, x− y〉

2

2V (v)

)
≤

1√
2πV (v)|X||Y |

∑

x,y

exp

(
− T 2

2V (v)

)
=

NT√
2πV (v)|X||Y |

exp

(
− T 2

2V (v)

)
.

If we look for an ε approximation of non-regularized MELC objective we put 0 ≤
p = NT /(|X||Y |) ≤ 1 and consequently

p
1√

2πV (v)
exp

(
− T 2

2V (v)

)
≤ ε,

thus

exp

(
− T 2

2V (v)

)
≤ ε

p

√
2πV (v)

T 2 ≥ −2V (v) ln
(
ε
p

√
2πV (v)

)
,

obviously if ln
(
ε
p

√
2πV (v)

)
> 0 then any T satisfies this inequality (as it can

only happen if we choose very big acceptable error ε), so for simplicity we add the

1In fact for iterative optimization techniques points ordering does not change much between
subsequent calls so after initial sorting it can be done in linear time using insertion sort.

60

maximum of this value with 0.

T ≥
√

max
{

0,−2V (v) ln
(
ε
p

√
2πV (v)

)}
=

√
max

{
0,−V (v) ln

(
2(εp)2πV (v)

)}
.

Binning

While sorting and discarding technique is quite easy to implement and analyze its
practical speedup might be limited for densely packed datasets. In such cases it
might be more valuable to perform a binning of our projected points, so those located
near each other are approximated by their empirical mean. Such an approach works
well for densely packed datasets which makes it a complementary approach to the
previous one.

Let us assume that we have some partitioning of the R =
⋃k
i=1 ai where each ai

is an interval. We define a binning operator as b(x) = mean{x ∈ vTX∩ai(x)}, where
x ∈ ai(x). We use following notation for simplicity 〈v, x〉b = b(〈v, x〉). Similarly to
the previous strategy, in order to preserve good approximation, bins width (B =
maxi |ai|) needs to be adapted in each iteration and the exact equation is given in
the following theorem.

Theorem 2 Using adaptive binning technique with bin width in each iteration at
most √

−2V (v) ln
(

max
{

0, 1− ε
√

2πV (v)
})
,

where V (v) is a sum of each classes estimated variances, leads to the computation
of the ip× function with at most ε error.

Proof. We assume that |〈v, x− y〉 − (〈v, x〉b − 〈v, y〉b)| ≤ B, so

∣∣∣∣∣ip
×(v)− 1√

2πV (v)|X||Y |
∑

x,y

exp

(
− (〈v, x〉b − 〈v, y〉b)2

2V (v)

)∣∣∣∣∣ =

∣∣∣∣∣
1√

2πV (v)|X||Y |
∑

x,y

[
exp

(
−〈v, x− y〉

2

2V (v)

)
− exp

(
− (〈v, x〉b − 〈v, y〉b)2

2V (v)

)]∣∣∣∣∣ ≤

∣∣∣∣∣
1√

2πV (v)|X||Y |
∑

x,y

[
exp (0)− exp

(
− B2

2V (v)

)]∣∣∣∣∣ =

∣∣∣∣
1√

2πV (v)

[
1− exp

(
− B2

2V (v)

)]∣∣∣∣ .

61

Let us now assume that we are given some acceptable error ε ≥ 0. We will show
how small bins have to be used based on our dataset and current projection.

∣∣∣∣
1√

2πV (v)

[
1− exp

(
− B2

2V (v)

)]∣∣∣∣ ≤ ε,

but exp
(
− B2

2V (v)

)
≤ 1, so

1√
2πV (v)

[
1− exp

(
− B2

2V (v)

)]
≤ ε,

thus

exp

(
− B2

2V (v)

)
≥ 1− ε

√
2πV (v).

Naturally if 1− ε
√

2πV (v) < 0 then any B satisfies this inequality (similarly to the
sorting and discarding method, it may only happen if we choose very large acceptable
error ε) so we introduce maximum function here

− B2

2V (v)
≥ ln

(
max

{
0, 1− ε

√
2πV (v)

})
,

B ≤
√
−2V (v) ln

(
max

{
0, 1− ε

√
2πV (v)

})
.

Figure 1 shows how these two bounds behave with increasing size of the accept-
able error. In particular one can see that both methods have very similar growth
(up to the maximization/minimization symmetry) with changing ε. As a result, due
to the fact that binning is much more aggressive technique we should expect that
using these bounds as the actual bin width/discarding threshold will lead to much
greater reduction of the computational complexity when using binning.

Fig. 1. Plots of the values of the discarding threshold (on the left) and bin width
(on the right) as the function of the acceptable error ε.

62

4. Out of sphere optimization

Now we are going to show, that MELC objective function can be efficiently optimized
in the whole Rd space by adding some custom regularization term. The importance
of this result is the fact that it enables us to use vast amount of existing optimiza-
tion techniques (such as Adaptive gradient descent, Conjugate Gradients, BFGS,
L-BFGS etc.) without adapting them to the sphere constraints. The second impor-
tant aspect is the fact that this modification does not involve adding any additional
constants which have to be fitted. Following theorem describes modified objective
function.

Theorem 3 Given arbitrary sets X−, X+ ⊂ Rd and corresponding DCS(v) =
DCS(JvTX−K, JvTX+K) function we have:

d := max
‖v‖=1

DCS(v) = max
v

DCS(v)− (‖v‖2 − 1)2

and
{v : ‖v‖ = 1 ∧DCS(v) = d} = {v : DCS(v)− (‖v‖2 − 1)2 = d}.

Proof. According to [5], DCS is scale invariant so for any v ∈ Rd, c ∈ R+

DCS(v) = DCS(cv).

As a result also

DCS(v)− (‖v‖2 − 1)2 = DCS(cv)− (‖v‖2 − 1)2,

but as −(‖v‖2 − 1)2 ≤ 0 and −(‖v‖2 − 1)2 = 0 ⇐⇒ ‖v‖ = 1 we have that
DCS(v)− (‖v‖2− 1)2 is maximized for v with norm 1 and that it is equal to DCS(v).
As a result sets of solutions of both problems are identical.

Consequently we can apply any advanced optimization technique which is not
designed to work on the sphere to optimize DCS criterion. In particular we can use
L-BFGS [3] instead of more complex and less popular RBFGS [10] and previously
proposed [5] less efficient – gradient descent on sphere method. At the same time
the norm of the candidate solution will stay close to 1 so we will not suffer from
numerical problems [5].

It is worth noting that despite similarity to the L2 regularization [13] of the
additive loss function (or weight decay from neural networks) this additional terms
serves no regularization purposes nor it affects the actual function value. It only
guides the gradient based optimizers towards more informative regions of the state
space.

From the practical point of view we also need a gradient of the new function but
thanks to the additivity of derivative operator we get

∇
[
DCS(v)− (‖v‖2 − 1)2

]
= [∇DCS(v)]− 4v(〈v, v〉 − 1),

and we can use any optimization software able to maximize a function given (f,∇f).

63

Tab. 1. Mean ratio of exp calls between approximated technique and original
method during optimizations.

Method CG L-BFGS-B
name bin dist bin dist

australian 0.11 0.44 0.11 0.45
breast-cancer 0.10 0.46 0.10 0.46
diabetes 0.21 0.56 0.22 0.54
fourclass 0.19 0.51 0.19 0.49
german.numer 0.15 0.47 0.19 0.46
heart 0.29 0.47 0.26 0.47
ionosphere 0.25 0.55 0.24 0.54
liver-disorders 0.29 0.65 0.31 0.67
sonar 0.32 0.53 0.29 0.50
splice 0.19 0.44 0.16 0.43

5. Evaluation

We evaluate proposed approximations on 10 datasets from UCI repository [2] and
libSVM’s repository [4, 7]. Both DCS and approximations are coded in Python us-
ing numpy and scipy [8]. We use scipy’s optimization module to perform training
of all models using two optimization techniques – Conjugate Gradients (CG) and
L-BFGS-B [3]. Each experiment is performed in cross validation manner with mul-
tiple starting points (randomly selected, but constant across methods to achieve
comparable results) due to the convergence of MELC optimization to local optima.
We analyze γ hyperparameter of DCS in [0.1, 0.5, 1.0, 1.5, 2.0] and acceptable error
ε ∈ [0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5]. Similarly to the original paper we use Bal-
anced Accuracy (BAC2) as the measure of classification correctness due to MELC
highly balanced formulation.

First, we investigate how big is mean reduction of computations using each of the
approximating schemes. Table 1 reports mean ratio of exp function calls (which is
equivalent to number of pairs analyzed in each ip× evaluation when optimizing whole
DCS function and its gradient) in given method to the original implementation.

One can easily notice that sorting and discarding method (denoted as ”dist”)
roughly halves the number of analyzed pairs, while binning (denoted as ”bin”) re-
duces it 3–10 times. It is an obvious consequence of the fact that binning is much
more aggressive method. It appears that strength of reduction depends only on the
dataset, not on the optimization algorithm used which suggests, that projections for
which particular level of possible reduction are uniformly distributed over the space
of all projections. These effects are also heavily dependent3 on the choice of γ and ε

2BAC = 1
2

(
TP

TP+FN
+ TN

TN+FP

)

3We do not include the exact values in the Table for better readability.

64

which is the obvious consequence of Theorems 1 and 2 saying that with increasing
variance (which is proportional to γ2) the reduction strength decreases superlinearly.

The set of heat maps in Figure 2 shows differences between BAC obtained by the
original DCS and each approximation for a given dataset and γ, ε hyperparameters
pair. In general, up to few isolated cases errors are on the level of 0.5% − 3%. For
small γ values errors introduced by the approximation are significantly higher and
for sonar and splice datasets can grow to even 10%. Fortunately, these are very
rare phenomena. Even more interesting is the fact that for many experiments we

Fig. 2. Comparison of the cross validation BAC scores between given approxi-
mated strategy (two top rows sorting and discarding, two bottom ones binning),
γ hyperparameter of DCS (x-axis), accepted error ε (y-axis). Positive values (and
corresponding red colors) represent decrease in BAC score while negative values and
corresponding blue colors – increase after using approximated method.

actually noticed increase in the BAC score (bluish elements). This might be the
consequence of more rough evaluation of the function (and gradient) values leading
to optimization less prone to falling into local maxima. Our hypothesis is that it
acts like a regularization helping to train MELC model.

Analysis of the number of iterations of each optimization method required to
converge (see Table 2) shows that both approximations significantly simplify the
problem. It is important to notice that the number of iterations is not the number
of DCS function evaluations (as both Conjugate Gradients and L-BFGS-B evaluate
it multiple times in each iteration, especially during line searches). Consequently,
number of iterations cannot be used as a measure of optimization speed but it says
much about the complexity of the function being maximized. This seems to confirm

65

Tab. 2. Number of optimization methods’ iterations.

Method CG L-BFGS-B
name bin DCS dist bin DCS dist

australian 4 36 22 11 39 37
breast-cancer 4 35 8 6 39 14
diabetes 3 30 20 18 36 29
fourclass 4 12 10 6 15 14
german.numer 7 60 32 7 58 38
heart 3 40 19 12 34 20
ionosphere 5 600 216 18 384 152
liver-disorders 4 30 22 22 43 30
sonar 4 262 115 15 139 100
splice 4 92 26 14 65 41

our claim that approximation works similar to the regularization and thus it reduces
small irregularities of the error surface due to the removal of small elements from
the ip× internal summation.

Experiments also showed importance on the regularization technique added to
perform out of sphere optimization. During maximization of DCS in sonar and
german datasets, norms of v rapidly grew to over 1000 if we turn off this modification
and still use CG/L-BFGS-B. As a result the optimization problem became extremely
hard and we needed tens of thousands DCS evaluation in order to converge. Adding
regularizing term reduced the norm to nearly 1 and number of required function
calls by two orders of magnitude.

6. Conclusions

In this paper we proposed two simple approximation schemes for faster computation
of MELC objective function and its gradient. We proved that in order to achieve
constant error bound during optimization one needs a specific adaptive strategy for
each of them and gave a simple, closed form equations for setting required parameters
based on the user-specified acceptable level of error in the ip× function value. We
also showed how one can easily change the objective function in order to use wide
range of existing optimizers while at the same time still work near the unit sphere
which, as described in the MELC theory [5], is important from the numerical point
of view.

66

During extensive evaluation we confirmed that such approach is valid in terms
of reducing the mean number of exp calls by even an order of magnitude while
not sacrificing the resulting classifiers accuracy. In fact the experiments suggest
that proposed method acts like some kind of regularization which might not only
simplify the optimization problem but also slightly increase the obtained results.

7. References

[1] Anthony M., Partitioning points by parallel planes, Discrete mathematics 282
(1), 2004, pp. 17–21.

[2] Blake C., Merz Ch.J., {UCI} repository of machine learning databases, 1998.

[3] Byrd R.H., Lu P., Nocedal J., Zhu C., A limited memory algorithm for bound
constrained optimization, SIAM Journal on Scientific Computing 16 (5), 1995,
pp. 1190–1208.

[4] Chang C.C., Lin C.J., Libsvm: A library for support vector machines,
ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 2011,
pp. 27:1–27:27.

[5] Czarnecki W.M., Tabor J., Multithreshold entropy linear classifier, arXiv
preprint arXiv:1408.1054, 2014.

[6] Elgammal A., Duraiswami R., Davis L.S., Efficient kernel density estimation
using the fast gauss transform with applications to color modeling and tracking,
IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (11), 2003,
pp. 1499–1504.

[7] Ho T. K., Kleinberg E.M., Building projectable classifiers of arbitrary complex-
ity, Pattern Recognition, 1996., IEEE Proceedings of the 13th International
Conference on, 2, 1996, pp. 880–885.

[8] Jones E., Oliphant T., Peterson P., Scipy: Open source scientific tools for
python, http://www. scipy. org/, 2001.

[9] Principe J.C., Information theoretic learning: Rényi’s entropy and kernel per-
spectives, Springer Science & Business Media, New York, USA, 2010.

[10] Qi C., Gallivan K.A., Absil P.A. Riemannian bfgs algorithm with applications,
Recent advances in optimization and its applications in engineering, Springer,
2010, pp. 183–192.

[11] Silverman B.W., Density estimation for statistics and data analysis, Mono-
graphs on Statistics and Applied Probability 26, CRC Press, 1986.

67

[12] Silverman B.W., Algorithm as 176: Kernel density estimation using the fast
fourier transform, Applied Statistics, 1982, pp. 93–99.

[13] Vapnik V., The nature of statistical learning theory, Springer, New York,
USA, 2000.

[14] Yang C., Duraiswami R., Gumerov N.A., Davis L., Improved fast gauss trans-
form and efficient kernel density estimation, Proceedings of the Ninth IEEE
International Conference on Computer Vision, 2003, pp. 664–671.

