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Abstract

This paper presents a study of the approximation properties of modified Szasz-Mirakyan
operators for functions from exponential weight spaces. We present theorems giving the degree
of approximation by these operators using a modulus of continuity.
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Streszczenie

W artykule badamy aproksymacyjne wtasnosci zmodyfikowanych operatoréw typu Szésza-
-Mirakyana dla funkcji z wyktadniczych przestrzeni wagowych. Przedstawiamy twierdzenia
podajace rzad aproksymacji funkcji przez operatory tego typu, wykorzystujac modut ciggltosci.
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1. Introduction

Let us denote the set of all real-valued functions continuous on R, =
[0;0) by C(Ry) . In paper [6] we investigated Szdsz-Mirakyan type operators
defined as follows

© v 2k .
B (i) = | S0 B f (555), x>0 1)
(), x=0
and
1 2k+v
Anp(x) = (nx)

I,(nx) 22T (k+ DI'(k +v + 1)

where I is the gamma function and /, the modified Bessel function defined by

[ee}

ZZk+v

I,(z) = kZO 22k+v(k+ DIk +v + 1)

Approximation properties of these operators in exponential weight spaces were
studied. Such spaces were denoted by

E, = {f € C(Ry): wy f is uniformly continuous and bounded on ]RO},
where w,, is the exponential weight function defined as follows
wy(x) = e P¥, peRy )

forx € R,.
In the spaces we introduced the norm

I£1l, = sup{wy, ()If (X)]: x € Ro} 3)

and we established ([6], Theorem 2.1) that operators L}, are linear, positive,
bounded and transform the space E), into Ey,.
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In the present paper, we shall prove theorems giving a degree of
approximation of functions from E, by these operators. We use the weighted
modulus of continuity of the first and the second order defined as follows,

w(f,Ep; t) = sup{llanfll,: h € [0,t]} (4)

and
w?(f,Ept) = sup{”Aif”p: h € [0, t]} 5)
respectively, where

Apf(x) =fle+h) = f(x), AFf(x) = f(x+2h) = 2f(x +h) + f(x)

for x, h € R,.

The note was inspired by the results of [8, 9] which investigate
approximation problems for integral operators defined in weighted spaces. The
considered method of proving the main theorems is also found in papers [1-4, 10].

2. Auxiliary results

The preliminary results, which we immediately obtained from papers [5-7]
and definition (1), are recalled below.
Lemma 2.1 ([5], Lemma 8)
For all v € Ry there exists a positive constant M (v) such that for all n € N and
x € Ry, we have

Iy1(nx)
I, (nx)

L1, (nx) _

< M(V), nx IV(TX)

1‘ < M(v).

Through elementary calculations we get
Lemma 2.2 ([6], Lemma 2.2)
ForallneN,v,p € Ryandx € R,

nx I nx
v(1,x) =1, L%(tx) = v+1 (%)

n+p L(nx)’
V(2 ) = nx \?I,,,(nx) 2nx I, (nx)
n(t ,x) - + I + )2 I ]
n+p/ Lmx) (n+p)? L,(nx)
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L’,’l(t—x,x)zx( e M 1),

n+p L(nx)
v D) — n \* 1,4, (nx) 2n I,44(nx)
Ln((t - x)z, x) - xZ <(7’l + p) Iv(nx) B n+ p Iv(nx) * 1)
2nx  I,41(nx)
(n+p)? I,(nx)

Lemma 2.3 ([6], Lemma 2.5)
For all v,p € R,y there exists a positive constant M(v,p) such that for all n € N,
we have

Ly L < MG,

An obvious consequence of the above lemma and definition (3) is

Theorem 2.4 ([6], Theorem 2.1)

For all v,p € R, there exists a positive constant M(v,p) such that for all n € N
and f € Ey, we have

1L (f5 )l < M, DIIf -

Applying Lemma 2.1 and Lemma 2.2, we obtain

Lemma 2.5

For all v,p € R, there exists a positive constant M(v,p) such that for all n € N
and x € Ry, we have

(= )% )] < M, p) 2D,

Lemma 2.6 ([6], Lemma 2.6)
For all v,p € R, there exists a positive constant M (v, p) such that for all n € N

and x € R, we have
m (ﬂ . x) XG4 D
"\ w0 '

w, (x) <M(v,p)
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3. Approximation theorems

The following theorems estimate the weighted error of approximation for
functions belonging to the spaces Ezlf = {f EE,f, " w f0) € Ep}, where f®
is denoted the i-th derivative of f.

Theorem 3.1
For all v,p € R, there exists a positive constant M (v, p) such that for all n € N,
x € Ry and g € EL, we have

, x(x + 1)
wy () |y (g5 x) — g < M, p)llg'll, /T
Theorem 3.2

For all v,p € Ry there exists a positive constant M (v, p) such that for all n € N,
X€ERyandf € Ey, we have

wp CILY (5 %) = F(OI < M, p)w | f, Ep; /—x(x: =)

The proof for the above theorems is analogous to the proof of Theorem 4 and
Theorem 5 which are detailed in paper [5].

Theorem 3.2 implies the following corollary.

Corollary 3.3

If v,p E Ry and f € E,,, then for all x € R,

lim {L5,(f; x) = £ ()} = 0.

Moreover, the above convergence is uniform on every set [x,,x,] with 0 < x; <
Xy.

Remark 3.4

The above result can be achieved in a different way; see [7] for more details.

Analogous with papers [8, 9], we define operators Hy, to estimate the error
of approximation by the second moduli of continuity (5).

Hy (f;x) = Ly (f; )= f (Ly (&%) + f (%) (6)

forv,p € Ry, f € E, and x € R,. By using Lemma 2.2 we obtain
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HY (5 0) = La(f3 ) = f (522000 o ().

n+p L(nx)
Observe that the operators are linear. Moreover, Lemma 2.2 allows us to write
HY(1;x) =1, Hy(t—x;x)=0. (7)
Lemma 3.5
For all v,p € R, there exists a positive constant M (v, p) such that for all n € N,

x € Ry and g € E2, we have

1
wplHY(g:) — g(O1 < MO llg T 20t

Proof. Let x € Ry and g € ES be fixed. Through the use of the Taylor formula we
can write

t
900 - g0 = (£ =g + | (€= w)g"@w) du
X
for t > 0. By applying the linearity of H;, and (7) we derive
|H (g x) — g0 = |H(g(t) — g(x); )| = |1 (f{(t — wg"@)du; x| (8)
Furthermore, the definition of H;, implies
t
HY, <f (t—uw)g"(w)du; x)
g t LY (t;x)
=Ly ( f (¢t - u)g”(u)du;X> - f (Ln(t;x) —w)g"(W)du
X X

Estimating (8), we have

|Hn (g; %) — g (0l

<13, (i e - wg @aul;x) + |f,f¥1(t;x)(L¥l(t: x) —u)g"(wdu.

Since
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1
<z llg"llp(t~ x)%(eP* + ePt)

t
f (t — u)g"(u)du
and

1 v
< 19"y (L6 2) — )% (e + ePHC)

LY (tx)
f (L% ) — w)g"(w)du
X

IA

||g”||p(L’,’l(t —x; x))zepx(l + epL}’l(t—x;x))

M, p)llg"ll, (L4 (t — x; %)) P

IA
N| RN =

we get

wy, (%) |Hy (g5 x) — g ()|
1 1 — )2
< S llg L ((t = 2% 2) + 5 119wy COLy <(twp (’3 ;x>

1 " v 2
+SM@,plg I, (Li(t — x;x))

Applying Holder’s inequality to the term LY (t — x; x) and Lemmas 2.5, 2.6, we
obtain the desired estimation.

Theorem 3.6
For all v,p € R, there exists a positive constant M(v,p) such that for all n € N,
X € Ry and f € E,, we have

wp|Ln (f; %) = f ()

<MW, p)w?| f,E,; /@ + o(f, Ep; ILY,(t — x; %)]).

Proof. Let x € R, and f;, be the second order Steklov mean of f € E,, i.e.

h h
frn(x) =%f2f2{2f(x+s+t)—f(x+2(s+t))}dsdt, x € Ry, h > 0.
0 Jo

Notice that
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h h
4 (2 (2 2
£ = o0 =33 | [ *d2f s
o Jo
By definitions (3) and (5), we get the following estimations

If = full, < @?(f, Ep; h)
and since

1
VG = 1 (8852f (1) — A3 ()
we can write

9
Ifillp < = @?(f, Eyi h).

The above inequalities imply that the Steklov mean fj, and f;" belong to E,,.
Moreover, by linearity of LY, and connection (6), we have

|Ln(f5 %) — f ()]
< Hy(If = fuli ) + 1f () = fu O + [Hy (fn; X)) = fr ()]
+|f(Lh (X)) = f(0)]-

Applying the above estimation, Theorem 2.1 and Lemma 3.5, we conclude that

wp ()| Ly (f x) = f ()]
S wpOHR(f = fal; ) + wyp (D1 f () — fr(l
+ wp, () H, (fns 2) = fu (Ol + wp | f (L3 (85 6)) = £ ()|

1
S ME,DIf = full, + M@, DIf Il g+ 1)

+w, I (L (50) = £00)
< M(V, p)wZ(f’ Ep; h) <1 + l@)

h2
+o(f, Ep; IL%,(t = x;0)1),

L4 (nx) x(x+1)

Ly(nx)

where LY, (t — x;x) = x — x. Substituting h = , we get the assertion

of our theorem.

The author would like to thank the referees for their helpful remarks which greatly improved the
exposition of the paper.
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