TECHNICAL TRANSACTIONS

CZASOPISMO TECHNICZNE

FUNDAMENTAL SCIENCES | NAUKI PODSTAWOWE

3-NP/2014

MONIKA HERZOG*

THE DEGREE OF APPROXIMATION OF FUNCTIONS FROM EXPONENTIAL WEIGHT SPACES

RZĄD APROKSYMACJI FUNKCJI Z WYKŁADNICZYCH PRZESTRZENI WAGOWYCH

Abstract

This paper presents a study of the approximation properties of modified Szász-Mirakyan operators for functions from exponential weight spaces. We present theorems giving the degree of approximation by these operators using a modulus of continuity.

Keywords: linear positive operators, Bessel function, modulus of continuity, degree of approximation

Streszczenie

W artykule badamy aproksymacyjne własności zmodyfikowanych operatorów typu Szásza--Mirakyana dla funkcji z wykładniczych przestrzeni wagowych. Przedstawiamy twierdzenia podające rząd aproksymacji funkcji przez operatory tego typu, wykorzystując moduł ciągłości.

Słowa kluczowe: dodatni operator liniowy, funkcja Bessela, moduł ciągłości, rząd aproksymacji

Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology; mherzog@pk.edu.pl.

1. Introduction

Let us denote the set of all real-valued functions continuous on $\mathbb{R}_0 = [0; \infty)$ by $C(\mathbb{R}_0)$. In paper [6] we investigated Szász-Mirakyan type operators defined as follows

$$L_n^{\nu}(f;x) = \begin{cases} \sum_{k=0}^{\infty} q_{n,k}^{\nu}(x) f\left(\frac{2k}{n+p}\right), & x > 0; \\ f(0), & x = 0 \end{cases}$$
 (1)

and

$$q_{n,k}^{\nu}(x) = \frac{1}{I_{\nu}(nx)} \frac{(nx)^{2k+\nu}}{2^{2k+\nu}\Gamma(k+1)\Gamma(k+\nu+1)'}$$

where Γ is the gamma function and I_{ν} the modified Bessel function defined by

$$I_{\nu}(z) = \sum_{k=0}^{\infty} \frac{z^{2k+\nu}}{2^{2k+\nu}\Gamma(k+1)\Gamma(k+\nu+1)}.$$

Approximation properties of these operators in exponential weight spaces were studied. Such spaces were denoted by

$$E_p = \{ f \in C(\mathbb{R}_0) : w_p f \text{ is uniformly continuous and bounded on } \mathbb{R}_0 \},$$

where w_p is the exponential weight function defined as follows

$$w_n(x) = e^{-px}, \ p \in \mathbb{R}_0 \tag{2}$$

for $x \in \mathbb{R}_0$.

In the spaces we introduced the norm

$$||f||_p = \sup\{w_p(x)|f(x)|: x \in \mathbb{R}_0\}$$
 (3)

and we established ([6], Theorem 2.1) that operators L_n^{ν} are linear, positive, bounded and transform the space E_p into E_p .

In the present paper, we shall prove theorems giving a degree of approximation of functions from E_p by these operators. We use the weighted modulus of continuity of the first and the second order defined as follows,

$$\omega(f, E_p; t) = \sup\{\|\Delta_h f\|_p \colon h \in [0, t]\}$$

$$\tag{4}$$

and

$$\omega^{2}(f, E_{p}; t) = \sup \left\{ \|\Delta_{h}^{2} f\|_{p} : h \in [0, t] \right\}$$
 (5)

respectively, where

$$\Delta_h f(x) = f(x+h) - f(x), \quad \Delta_h^2 f(x) = f(x+2h) - 2f(x+h) + f(x)$$

for $x, h \in \mathbb{R}_0$.

The note was inspired by the results of [8, 9] which investigate approximation problems for integral operators defined in weighted spaces. The considered method of proving the main theorems is also found in papers [1-4, 10].

2. Auxiliary results

The preliminary results, which we immediately obtained from papers [5-7] and definition (1), are recalled below.

Lemma 2.1 ([5], Lemma 8)

For all $v \in \mathbb{R}_0$ there exists a positive constant M(v) such that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$, we have

$$\left|\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}\right| \le M(\nu), \quad nx \left|\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1\right| \le M(\nu).$$

Through elementary calculations we get

Lemma 2.2 ([6], Lemma 2.2)

For all $n \in \mathbb{N}$, $v, p \in \mathbb{R}_0$ and $x \in \mathbb{R}_0$

$$L_n^{\nu}(1,x) = 1, \ L_n^{\nu}(t,x) = \frac{nx}{n+p} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)},$$

$$L_n^{\nu}(t^2,x) = \left(\frac{nx}{n+p}\right)^2 \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + \frac{2nx}{(n+p)^2} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)},$$

$$\begin{split} L_n^{\nu}(t-x,x) &= x \left(\frac{n}{n+p} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1 \right), \\ L_n^{\nu}((t-x)^2;x) &= x^2 \left(\left(\frac{n}{n+p} \right)^2 \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} - \frac{2n}{n+p} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + 1 \right) \\ &+ \frac{2nx}{(n+p)^2} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}. \end{split}$$

Lemma 2.3 ([6], Lemma 2.5)

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$, we have

$$||L_n^{\nu}(1/w_p;\cdot)||_p \leq M(\nu,p).$$

An obvious consequence of the above lemma and definition (3) is

Theorem 2.4 ([6], Theorem 2.1)

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$ and $f \in E_p$, we have

$$||L_n^{\nu}(f;\cdot)||_p \le M(\nu,p)||f||_p.$$

Applying Lemma 2.1 and Lemma 2.2, we obtain

Lemma 2.5

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$, we have

$$|L_n^{\nu}((t-x)^2;x)| \le M(\nu,p)\frac{x(x+1)}{n}.$$

Lemma 2.6 ([6], Lemma 2.6)

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$, we have

$$w_p(x)\left|L_n^{\nu}\left(\frac{(t-x)^2}{w_n(t)};x\right)\right| \le M(\nu,p)\frac{x(x+1)}{n}.$$

3. Approximation theorems

The following theorems estimate the weighted error of approximation for functions belonging to the spaces $E_p^k = \{f \in E_p : f', f'', ..., f^{(k)} \in E_p\}$, where $f^{(i)}$ is denoted the *i*-th derivative of f.

Theorem 3.1

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$, $x \in \mathbb{R}_0$ and $g \in E_p^1$, we have

$$w_p(x)|L_n^{\nu}(g;x)-g(x)| \le M(\nu,p)||g'||_p \sqrt{\frac{x(x+1)}{n}}.$$

Theorem 3.2

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$, $x \in \mathbb{R}_0$ and $f \in E_p$, we have

$$w_p(x)|L_n^{\nu}(f;x)-f(x)| \leq M(\nu,p)\omega\left(f,E_p;\sqrt{\frac{x(x+1)}{n}}\right).$$

The proof for the above theorems is analogous to the proof of Theorem 4 and Theorem 5 which are detailed in paper [5].

Theorem 3.2 implies the following corollary.

Corollary 3.3

If $v, p \in \mathbb{R}_0$ and $f \in E_p$, then for all $x \in \mathbb{R}_0$

$$\lim_{n\to\infty} \{L_n^{\nu}(f;x) - f(x)\} = 0.$$

Moreover, the above convergence is uniform on every set $[x_1, x_2]$ with $0 \le x_1 < x_2$.

Remark 3.4

The above result can be achieved in a different way; see [7] for more details.

Analogous with papers [8, 9], we define operators H_n^{ν} to estimate the error of approximation by the second moduli of continuity (5).

$$H_n^{\nu}(f;x) = L_n^{\nu}(f;x) - f(L_n^{\nu}(t;x)) + f(x) \tag{6}$$

for $v, p \in \mathbb{R}_0$, $f \in E_p$ and $x \in \mathbb{R}_0$. By using Lemma 2.2 we obtain

$$H_n^{\nu}(f;x) = L_n^{\nu}(f;x) - f\left(\frac{nx}{n+p}\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}\right) + f(x).$$

Observe that the operators are linear. Moreover, Lemma 2.2 allows us to write

$$H_n^{\nu}(1;x) = 1, \quad H_n^{\nu}(t-x;x) = 0.$$
 (7)

Lemma 3.5

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in N$, $x \in \mathbb{R}_0$ and $g \in E_v^2$, we have

$$w_p|H_n^{\nu}(g;x) - g(x)| \leq M(\nu,p) \|g''\|_p \frac{x(x+1)}{n}.$$

Proof. Let $x \in \mathbb{R}_0$ and $g \in E_p^2$ be fixed. Through the use of the Taylor formula we can write

$$g(t) - g(x) = (t - x)g'(x) + \int_{x}^{t} (t - u)g''(u) du$$

for t > 0. By applying the linearity of H_n^{ν} and (7) we derive

$$|H_n^{\nu}(g;x) - g(x)| = |H_n^{\nu}(g(t) - g(x);x)| = \left|H_n^{\nu}\left(\int_x^t (t - u)g''(u)du;x\right)\right|. \tag{8}$$

Furthermore, the definition of H_n^{ν} implies

$$H_n^{\nu} \left(\int_x^t (t - u) g''(u) du; x \right)$$

$$= L_n^{\nu} \left(\int_x^t (t - u) g''(u) du; x \right) - \int_x^{L_n^{\nu}(t;x)} (L_n^{\nu}(t;x) - u) g''(u) du$$

Estimating (8), we have

$$|H_n^{\nu}(g;x) - g(x)| \le L_n^{\nu} \left(\left| \int_x^t (t-u)g''(u)du \right|; x \right) + \left| \int_x^{L_n^{\nu}(t;x)} (L_n^{\nu}(t;x) - u)g''(u)du \right|.$$

Since

$$\left| \int_{x}^{t} (t - u)g''(u) du \right| \le \frac{1}{2} \|g''\|_{p} (t - x)^{2} (e^{px} + e^{pt})$$

and

$$\begin{split} \left| \int_{x}^{L_{n}^{\nu}(t;x)} (L_{n}^{\nu}(t;x) - u) g''(u) du \right| &\leq \frac{1}{2} \|g''\|_{p} (L_{n}^{\nu}(t;x) - x)^{2} \left(e^{px} + e^{pL_{n}^{\nu}(t;x)} \right) \\ &\leq \frac{1}{2} \|g''\|_{p} \left(L_{n}^{\nu}(t - x;x) \right)^{2} e^{px} \left(1 + e^{pL_{n}^{\nu}(t - x;x)} \right) \\ &\leq \frac{1}{2} M(\nu, p) \|g''\|_{p} \left(L_{n}^{\nu}(t - x;x) \right)^{2} e^{px} \end{split}$$

we get

$$\begin{split} w_p(x)|H_n^{\nu}(g;x) - g(x)| \\ \leq & \frac{1}{2} \|g''\|_p L_n^{\nu}((t-x)^2;x) + \frac{1}{2} \|g''\|_p w_p(x) L_n^{\nu}\left(\frac{(t-x)^2}{w_p(t)};x\right) \\ & + \frac{1}{2} M(\nu,p) \|g''\|_p \left(L_n^{\nu}(t-x;x)\right)^2 \end{split}$$

Applying Hölder's inequality to the term $L_n^{\nu}(t-x;x)$ and Lemmas 2.5, 2.6, we obtain the desired estimation.

Theorem 3.6

For all $v, p \in \mathbb{R}_0$ there exists a positive constant M(v, p) such that for all $n \in \mathbb{N}$, $x \in \mathbb{R}_0$ and $f \in E_p$, we have

$$\begin{split} w_p | L_n^{\nu}(f;x) - f(x) | \\ \leq M(\nu,p) \omega^2 \left(f, E_p; \sqrt{\frac{x(x+1)}{n}} \right) + \omega \left(f, E_p; |L_n^{\nu}(t-x;x)| \right). \end{split}$$

Proof. Let $x \in \mathbb{R}_0$ and f_h be the second order Steklov mean of $f \in E_p$, i.e.

$$f_h(x) = \frac{4}{h^2} \int_0^{\frac{h}{2}} \int_0^{\frac{h}{2}} \left\{ 2f(x+s+t) - f(x+2(s+t)) \right\} ds dt, \quad x \in \mathbb{R}_0, h > 0.$$

Notice that

$$f(x) - f_h(x) = \frac{4}{h^2} \int_0^{\frac{h}{2}} \int_0^{\frac{h}{2}} \Delta_{s+t}^2 f(x) ds dt.$$

By definitions (3) and (5), we get the following estimations

$$||f - f_h||_p \le \omega^2(f, E_p; h)$$

and since

$$f_h''(x) = \frac{1}{h^2} \Big(8\Delta_{h/2}^2 f(x) - \Delta_h^2 f(x) \Big)$$

we can write

$$||f_h''||_p \le \frac{9}{h^2}\omega^2(f, E_p; h).$$

The above inequalities imply that the Steklov mean f_h and f_h'' belong to E_p . Moreover, by linearity of L_n^v and connection (6), we have

$$\begin{aligned} |L_n^{\nu}(f;x) - f(x)| & \leq H_n^{\nu}(|f - f_h|;x) + |f(x) - f_h(x)| + |H_n^{\nu}(f_h;x) - f_h(x)| \\ & + |f(L_n^{\nu}(t;x)) - f(x)|. \end{aligned}$$

Applying the above estimation, Theorem 2.1 and Lemma 3.5, we conclude that

$$\begin{split} w_{p}(x)|L_{n}^{\nu}(f;x) - f(x)| \\ &\leq w_{p}(x)H_{n}^{\nu}(|f - f_{h}|;x) + w_{p}(x)|f(x) - f_{h}(x)| \\ &+ w_{p}(x)|H_{n}^{\nu}(f_{h};x) - f_{h}(x)| + w_{p}(x)|f(L_{n}^{\nu}(t;x)) - f(x)| \\ &\leq M(\nu,p)||f - f_{h}||_{p} + M(\nu,p)||f_{h}^{\prime\prime}||_{p} \frac{x(x+1)}{n} \\ &+ w_{p}(x)|f(L_{n}^{\nu}(t;x)) - f(x)| \\ &\leq M(\nu,p)\omega^{2}(f,E_{p};h)\left(1 + \frac{1}{h^{2}}\frac{x(x+1)}{n}\right) \\ &+ \omega(f,E_{p};|L_{n}^{\nu}(t-x;x)|), \end{split}$$

where $L_n^{\nu}(t-x;x) = x \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - x$. Substituting $h = \sqrt{\frac{x(x+1)}{n}}$, we get the assertion of our theorem.

The author would like to thank the referees for their helpful remarks which greatly improved the exposition of the paper.

References

- [1] Becker M., Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J. 27, 1, 1978, 127-142.
- [2] Becker M., Kucharski D., Nessel R.J., *Global approximation theorems for the Szász-Mirakjan operators in exponential weight spaces*, Linear Spaces and Approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977), ISNM, vol. 40, Birkhäuser, Besel 1978, 319-333.
- [3] Durrmeyer J.L., *Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments*, Thèse de 3ème cycle. Faculté des Sciences Univ., Paris 1967.
- [4] Heilmann M., *Direct and converse results for operators of Baskakov-Durrmeyer type*, Approx. Theory Appl. **5**, 1, 1989, 105-127.
- [5] Herzog M., *Approximation of functions from exponential weight spaces by operators of Szász-Mirakyan type*, Comment. Math. **43**, 1, 2003, 77-94.
- [6] Herzog M., Approximation of functions of two variables from exponential weight spaces, Czasopismo Techniczne, 1-NP/2012, 3-10.
- [7] Herzog M., *A note on the convergence of partial Szász-Mirakyan type operators*, Ann. Univ. Pedagog. Crac. Stud. Math. **13**, 2014, 45-50.
- [8] Krech G., Some approximation results for operators of Szász-Mirakyan-Durrmeyer type, Math. Slovaca (in print).
- [9] Krech G., On the rate of convergence for modified gamma operators, Rev. Un. Mat. Argentina (in print).
- [10] Rempulska L., Thiel A., *Approximation of functions by certain nonlinear integral operators*, Lith. Math. J. **48**, 4, 2008, 451-462.

