TECHNICAL TRANSACTIONS

CZASOPISMO TECHNICZNE

FUNDAMENTAL SCIENCES | NAUKI PODSTAWOWE

3-NP/2014

MAGDALENA GRZECH*

SOME REMARKS ON NON-SEPARABLE GAPS IN $P(\omega)/FIN$

KILKA UWAG O LUKACH HAUSDORFFA I AUTOMORFIZMACH $P(\omega)/FIN$

Abstract

The Hausdorff gap is the well known example of a non-separable, increasingly ordered gap in $P(\omega)/fin$. In this paper new construction of a non-separable gap in $P(\omega)/fin$ is presented.

Keywords: Boolean algebra, Cech-Stone compactification, gap

Streszczenie

W artykule została przedstawiona nowa konstrukcja nierozdzielalnej luki w $P(\omega)$ /fin.

Słowa kluczowe: algebra Boole'a, uzwarcenie Cecha-Stone'a, luka

The author is responsible for the language in all paper.

Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Poland; magdag@pk.edu.pl.

Boolean algebra $P(\omega)/fin$ plays an important role in the foundations of mathematics. Many mathematical problems can be reduced to questions on properties of $P(\omega)/fin$. Notion, which is frequently used in investigation concerning $P(\omega)/fin$ is the notion of gap (cf. [1], [4]).

Let us begin by reviewing some basic facts and definitions. By ω the set of all natural numbers is denoted. The symbol *fin* stands for the ideal of all finite subsets of ω . The ideal determines the following equivalence relation:

For
$$A, B \subseteq \omega, A =_* B$$
 if and only if $A \div B \in fin$.

 $P(\omega)/fin$ is its factor algebra. An order in $P(\omega)/fin$ is defined as usual, namely:

$$A \subset B \text{ iff } A \backslash B \in \mathbf{fin}.$$

Let λ , κ be cardinals. A gap of type λ , κ) in the $P(\omega)/fin$ is a pair:

$$(\{A_{\gamma}: \gamma < \lambda\}, \{B_{\beta}: \beta < \kappa\})$$

of subsets of $P(\omega)$ /fin such that $A_{\gamma} \cap B_{\beta} = \emptyset$. If for every $\gamma_1 < \gamma_2 < \lambda$, $\beta_1 < \beta_2 < \kappa A_{\gamma_1} \subseteq A_{\gamma_2}$ and $B_{\beta_1} \subseteq B_{\beta_2}$, the gap is said to be increasingly ordered. An element $C \subseteq \omega$ fills (separates) the gap if $A_{\gamma} \subseteq C$ and $B_{\beta} \cap C = \emptyset$ for every $\gamma < \lambda$, $\beta < \kappa$. If there is no such an element, the gap is called non-separable. One can ask gaps of what type exist in $P(\omega)$ /fin.

A research concerning gaps in $(\omega)/fin$ is an important and deep line of investigation. Let us recall basic facts. It is easily proved that there are no non-separable gaps of type (ω, ω) . On the other hand Hausdorff constructed a non-separable gap of type (ω_1, ω_1) (cf. [2]). This gap, say $\mathcal{L} = (\{X_\alpha: \alpha < \omega_1\}, \{Y_\beta: \beta < \omega_1\})$, is increasingly ordered and $\{\gamma < \beta: \max X_\gamma \cap Y_\beta < k\}$ is finite for every $\beta < \omega_1$ and $k \in \omega$.

Under CH (the Continuum Hypothesis), there exist only gaps of type (ω_1, ω_1) . If $2^{\omega} > \omega_1$ and MA (the Martin Axiom) holds the each increasingly ordered gap f type λ , κ) with λ , $\kappa < 2^{\omega}$, $\lambda \neq \omega_1$ or $\kappa \neq \omega_1$ is separated ([5]).

The smallest cardinal number for which there exists a non-separable gap in $P(\omega)/fin$ is the bounding number **b** (cf. [6]). Remind that **b** is the size of the smallest unbounded family in ω^{ω} equipped with the following order: for $f, g \in \omega^{\omega}, f \leq_* g$ iff $\{n: f(n) > g(n)\} \in fin$.

We present another construction of an (unordered) gap of type $(2^{\omega}, 2^{\omega})$. The set F consist of all finite sequences $\underline{\varepsilon} = (\varepsilon_0, \varepsilon_1, ..., \varepsilon_n)$ such that:

$$\varepsilon_0 = 0, \, \varepsilon_{2n+1} = 2 \text{ and } \varepsilon_{2n+2} \in \{0, 1\}, \, n \in \omega.$$

Let

$$F_n = \{ \underline{\varepsilon} \in F : \ell(\underline{\varepsilon}) \le 2n \}$$

and

$$F = \{ \underline{\varepsilon} \in F : \ell(\underline{\varepsilon}) = 2n \text{ for some } n \in \omega \}.$$

Divide ω into two disjoint, infinite subsets *X* and *Y* and fix two functions *f* and g such that:

(*)
$$f: F \to X$$
 is a bijection and if $\underline{\varepsilon} \subseteq \underline{\rho}$ then $f(\underline{\varepsilon}) \le f(\underline{\rho})$.

(**)
$$g: \mathcal{F}_e \times \mathcal{F}_e \to Y$$
 is an injection and if $\underline{\varepsilon}^1 \subseteq \underline{\rho}^1, \underline{\varepsilon}^2 \subseteq \underline{\rho}^2$ then

$$g(\underline{\boldsymbol{\varepsilon}}^1,\underline{\boldsymbol{\varepsilon}}^2) \leq g(\underline{\boldsymbol{\rho}}^1,\underline{\boldsymbol{\rho}}^2).$$

We define two families of finite subsets $\{A(\underline{\varepsilon}): \underline{\varepsilon} \in F\}$, $\{B(\underline{\varepsilon}): \underline{\varepsilon} \in F\}$ by induction on the length of $\underline{\varepsilon}$.

For $\underline{\varepsilon}$ such that $\ell(\underline{\varepsilon}) = 1$ or $\ell(\underline{\varepsilon}) = 2$ put $A(\underline{\varepsilon}) = B(\underline{\varepsilon}) = \emptyset$. Assume that $\ell(\underline{\varepsilon}) = 3,4$. Then:

$$A_{(0,2,0)} = \{f((0)), f((0,2)), f((0,2,0))\}, A_{(0,2,1)} = \{f((0)), f((0,2)), f((0,2,1))\},$$

$$B_{(0,2,0)} = \{f((0,2,1))\}, B_{(0,2,1)} = \{f((0,2,0))\},$$

$$A_{(0,2,0,2)} = A_{(0,2,0)} \cup \{f((0,2,0,2))\}, A_{(0,2,1,2)} = A_{(0,2,1)} \cup \{f((0,2,1,2))\}$$

$$B_{(0,2,0,2)} = B_{(0,2,0)} \cup \{g((0,2,1,2), (0,2,0,2))\}, B_{(0,2,1,2)} = B_{(0,2,1)} \cup \{g((0,2,1,2), (0,2,0,2))\}$$

Assume inductively that for $n \ge 2$, we have defined families $\{A(\underline{\varepsilon}): \underline{\varepsilon} \in F_n\}$ and $\{B(\underline{\varepsilon}): \underline{\varepsilon} \in F_n\}$ satisfying the following conditions:

- 1. $A(\underline{\varepsilon}) \cap B(\underline{\varepsilon}) = \emptyset$ for every $\underline{\varepsilon} \in F_n$.
- 2. If $\underline{\varepsilon}$, $\underline{\rho} \in F_n$ and $\underline{\varepsilon}(k) \neq \underline{\rho}(k)$, for some $k \leq 2n$, then

$$A(\underline{\varepsilon}) \cap B(\underline{\rho}) \neq \emptyset$$
 and $B(\underline{\varepsilon}) \cap A(\underline{\rho}) \neq \emptyset$.

- 3. If $\underline{\varepsilon}$, $\underline{\rho} \in F_n$ and $\underline{\varepsilon} \subseteq \underline{\rho}$, then $A(\underline{\varepsilon}) \subseteq A(\underline{\rho})$ and $B(\underline{\varepsilon}) \subseteq B(\underline{\rho})$.
- 4. If $\underline{\varepsilon}$, $\underline{\rho} \in F_n$ and $\underline{\varepsilon}(k) \neq \underline{\rho}(k)$, let $\ell = \min \{k : \underline{\varepsilon}(k) \neq \underline{\rho}(k)\}$. Then $\max A(\underline{\varepsilon}) \cap B(\underline{\rho}) = f(\underline{\varepsilon}|_{\ell})$, $\max B(\underline{\varepsilon}) \cap B(\underline{\rho}) = f(\underline{\varepsilon}|_{\ell-1})$, $\max A(\underline{\varepsilon}) \cap A(\underline{\rho}) = f(\underline{\varepsilon}|_{\ell-1})$. For $\underline{\varepsilon} \in F_n$ put:

$$A(\underline{\varepsilon} \wedge 0) = A(\underline{\varepsilon}) \cup \{f(\underline{\varepsilon} \wedge 0)\}, A(\underline{\varepsilon} \wedge 1) = A(\underline{\varepsilon}) \cup \{f(\underline{\varepsilon} \wedge 1)\},$$

$$B(\underline{\varepsilon} \wedge 0) = B(\underline{\varepsilon}) \cup \{f(\underline{\varepsilon} \wedge 1)\}, B(\underline{\varepsilon} \wedge 1) = B(\underline{\varepsilon}) \cup \{f(\underline{\varepsilon} \wedge 1)\},$$

$$A(\underline{\varepsilon} \wedge 02) = A(\underline{\varepsilon} \wedge 0) \cup \{f(\underline{\varepsilon} \wedge 02)\}, A(\underline{\varepsilon} \wedge 12) = A(\underline{\varepsilon} \wedge 1) \cup \{f(\underline{\varepsilon} \wedge 12)\},$$

$$B(\underline{\varepsilon} \land 02) = B(\underline{\varepsilon} \land 0) \cup \{g(\underline{\varepsilon} \land 02, \underline{\varepsilon} \land 12)\}, B(\underline{\varepsilon} \land 12) = B(\underline{\varepsilon} \land 1) \cup \{g(\underline{\varepsilon} \land 02, \underline{\varepsilon} \land 12)\}.$$

It is obvious that the family F_{n+1} satisfies conditions (1) and (3).

For (2), let $\underline{\rho}$, $\underline{\varepsilon} \in F_{n+1}$. If $\ell(\underline{\rho}) = \ell(\underline{\varepsilon})$ or $\ell(\underline{\rho}) = 2n+1$, $\ell(\underline{\varepsilon}) = 2n+2$, the condition follows from the definition. Suppose that $\ell(\underline{\rho}) = k < 2n+1 \le \ell(\underline{\varepsilon})$. Let $l = \min \{k: \underline{\varepsilon}_k \neq \underline{\rho}_k\}$. Then $\underline{\sigma} = \underline{\varepsilon}|l = \underline{\rho}|l$ and $\emptyset \neq A(\underline{\sigma})^{\wedge}\underline{\rho}_l \cap B(\underline{\sigma} \wedge \underline{\varepsilon}_l) = A(\underline{\rho}) \cap B(\underline{\varepsilon})$. (The remaining cases can be checked in the same way.)

To check the assumption (4), note that $A(\underline{\varepsilon} \land i) \cap B(\underline{\varepsilon} \land j) = A(\underline{\varepsilon} \land i2) \cap B(\underline{\varepsilon} \land j2)$, for $i, j \in \{0, 1\}, i \neq j$. Since f satisfies the condition (*), it follows that $\max A(\underline{\varepsilon} \land i) \cap B(\underline{\varepsilon} \land j) = f(\underline{\varepsilon} \land i)$. Moreover $A(\underline{\varepsilon} \land i) \cap A(\underline{\varepsilon} \land j) = A(\underline{\varepsilon} \land i2) \cap A(\underline{\varepsilon} \land j2) = A(\underline{\varepsilon})$, thus

$$\max A(\underline{\varepsilon} \land i) \cap A(\underline{\varepsilon} \land j) = f(\underline{\varepsilon}).$$

If
$$\ell(\underline{\rho}) = k < 2n + 1 \le \ell(\underline{\varepsilon})$$
 and $\underline{\sigma} = \underline{\varepsilon} | \boldsymbol{l} = \underline{\rho} | \boldsymbol{l}$, $\underline{\rho}_{l} \neq \underline{\varepsilon}_{l}$ then

$$\max A(\underline{\sigma} \land \underline{\rho}_{i}) \cap B(\underline{\sigma} \land \underline{\varepsilon}_{i}) = \max A(\underline{\rho}) \cap B(\underline{\varepsilon}) = f(\underline{\rho}|I).$$

(The remaining cases can be checked in the same way.) This finishes the inductive construction. Let X be the family of all sequences x: $\omega \rightarrow \{0, 1, 2\}$ which satisfy the conditions:

$$x(0) = 0, x(2n + 1) = 2, x(2n + 2) \in \{0, 1\}.$$

Then

$$\underline{A}(x) = \mathbf{U}_{n \in \omega} A(x|n), \underline{B}(x) = \mathbf{U}_{n \in \omega} B(x|n)$$

are infinite subsets of ω .

It is easy to check that for $x, y \in X$, if $x \neq y$ then:

$$\underline{A}(x) \cap \underline{B}(x) = \emptyset, \underline{A}(x) \cap \underline{B}(y) \neq \emptyset, \underline{A}(x) \cap \underline{A}(y) \in \mathbf{fin} \text{ and } \underline{B}(x) \cap \underline{B}(y) \in \mathbf{fin}.$$

Theorem 1 The gap $\mathcal{L} = (\{\underline{A}(x): x \in X\}, \{\underline{B}(x): x \in X\})$ satisfies the following condition: for every uncountable set $Y \subseteq X$, $\mathcal{L}_Y = (\{\underline{A}(x): x \in Y\}, \{\underline{B}(x): x \in Y\})$ is non-separable.

Proof. Suppose that for $Y = \{x_\alpha : \alpha < \kappa\} \subseteq X$, $\omega < \kappa \le 2^\omega$, there exists a C which separeates the gap \mathcal{L}_Y . Let $s_\alpha = \underline{A}(x_\alpha) \setminus C$, $t_\alpha = \underline{B}(x_\alpha) \cap C$.

Then s_{α} , t_{α} are finite subsets of ω and since $\underline{A}(x_{\alpha}) \cap \underline{B}(x_{\alpha}) = \emptyset$, it follows that $s_{\alpha} \cap t_{\alpha} = \emptyset$. Δ -lemma implies that there exist an uncountable set $\Gamma \subseteq \kappa \Gamma \subset \kappa$ and finite sets s, t such that for all $\alpha \in \gamma$, $s_{\alpha} = s$ and $t_{\alpha} = t$.

If α , $\beta \in \Gamma$ and $\alpha \neq \beta$ then $\emptyset = s_{\alpha} \cap t_{\beta} = s \cap t = s_{\alpha} \cap t_{\alpha} = \emptyset$, a contradiction. This finishes the proof.

References

- [1] Comfort W.W., Negrepontis S., *The theory of ultrfilters*, Springer Verlag, New York 1974.
- [2] Hausdorff Summen von Mengen *F*₁, Fund. Math. 26, 1936, 241-255.
- [3] Hechler S., *On existence of certain cofinal subsets of*, Axiomatic Set Theory, T. Jech (ed.), Proc. Symp. Pure Math. vol. 13 II, 1974, 155-173.
- [4] Jech T., Set Theory, Academic Press, New York et al., 1978.
- [5] Kunen K., *Weak P-points in N**, Colloq. Math. soc. Jano's Bolyai 23, Topology, Budapest 1978, 741-749.
- [6] Rothberger F., *Une remarque concernant l'hipotése du continu*, Fund. Math. 31, 1939, 224-226.