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SOME REMARKS ON NON-SEPARABLE GAPS IN P(ω)/FIN 
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A b s t r a c t

The Hausdorff gap is the well known example of a non-separable, increasingly ordered gap in 
P(ω)/fin. In this paper new construction of a non-separable gap in P(ω)/fin is presented. 
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Boolean algebra P(ω)/fin plays an important role in the foundations of mathematics. Many 
mathematical problems can be reduced to questions on properties of P(ω)/fin. Notion, which is 
frequently used in investigation concerning P(ω)/fin is the notion of gap (cf. [1], [4]). 

Let us begin by reviewing some basic facts and definitions. By w the set of all natural 
numbers is denoted. The symbol fin stands for the ideal of all finite subsets of w. The ideal 
determines the following equivalence relation: 

	 For A, B ⊆ w, A =* B if and only if A÷B ∈ fin.

P(ω)/fin is its factor algebra. An order in P(ω)/fin is defined as usual, namely:

	 A ⊆* B  iff A\B ∈ fin.

Let λ, k be cardinals. A gap of type λ, k) in the P(ω)/fin is a pair:

	 ({Ag: g < λ}, {Bb: b < k})

of subsets of P(ω)/fin such that Ag ∩ Bb =* ∅. If for every g1 < g2 < λ, b1 < b2 < k Ag1 ⊆* Ag2 and 
Bb1 ⊆* Bb2, the gap is said to be increasingly ordered. An element C ⊆ w fills (separates) the 
gap if Ag ⊆* C and Bb ∩ C =* ∅ for every g < λ, b < k. If there is no such an element, the gap 
is called non-separable. One can ask gaps of what type exist in P(ω)/fin.

A research concerning gaps in (ω)/fin is an important and deep line of investigation. Let us 
recall basic facts. It is easily proved that there are no non-separable gaps of type (w, w). On the 
other hand Hausdorff constructed a non-separable gap of type (w1, w1) (cf. [2]). This gap, say 
L = ({Xa: a < w1}, {Yb: b < w1}), is increasingly ordered and {g < b: max Xg ∩ Yb < k} is finite 
for every b < w1 and k ∈ w. 

Under CH (the Continuum Hypothesis), there exist only gaps of type (w1, w1). If 2
w > 

w1 and MA (the Martin Axiom) holds the each increasingly ordered gap f type λ, k) with λ,  
k < 2w, λ ≠ w1 or k ≠ w1 is separated ([5]).

The smallest cardinal number for which there exists a non-separable gap in P(ω)/fin is the 
bounding number b (cf. [6]). Remind that b is the size of the smallest unbounded family in 
ww equipped with the following order: for f, g ∈ ww, f ≤* g iff {n: f(n) > g(n)}∈ fin. 

We present another construction of an (unordered) gap of type (2w, 2w). 
The set F consist of all finite sequences e = (e0, e1, ..., en) such that: 

	 e0 = 0, e2n+1 = 2 and e2n+2 ∈ {0, 1}, n ∈ w.

Let 

	 Fn= {e ∈ F: ℓ(e) ≤ 2n}

and 

	 Fe= {e ∈ F: ℓ(e) = 2n for some n ∈ w}.

Divide w into two disjoint, infinite subsets X and Y and fix two functions f and g such that: 

	 (*) f: F → X is a bijection and if e ⊆ r then f(e) ≤ f(r). 

	 (**) g: Fe × Fe → Y is an injection and if e1 ⊆ r1, e2 ⊆ r2 then 
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	 g(e1,e2) ≤ g(r1, r2). 

We define two families of finite subsets {A(e): e ∈ F }, {B(e): e ∈ F} by induction on the 
lenght of e. 

For e such that ℓ(e) = 1 or ℓ(e) = 2 put A(e) = B(e) = ∅. 
Assume that ℓ(e) = 3,4. Then:

	 A(0,2,0) ={f((0)), f((0,2)), f((0,2,0))}, A(0,2,1) ={f((0)), f((0,2)), f((0,2,1))}, 

	 B(0,2,0) ={f((0,2,1))}, B(0,2,1) ={f((0,2,0))}, 

	 A(0,2,0,2) = A(0,2,0) ∪ {f((0,2,0,2))}, A(0,2,1,2) = A(0,2,1) ∪ {f((0,2,1,2))} 

	 B(0,2,0,2) = B(0,2,0) ∪ {g((0,2,1,2), (0,2,0,2))}, B(0,2,1,2) = B(0,2,1) ∪ {g((0,2,1,2), (0,2,0,2))} 

Assume inductively that for n ≥ 2, we have defined families {A(e): e ∈ Fn} and {B(e):  
e ∈ Fn} satisfying the following conditions: 
1.	 A(e) ∩ B(e) = ∅ for every e ∈ Fn. 
2.	 If e, r ∈ Fn and e(k) ≠ r(k), for some k ≤ 2n , then 

	 A(e) ∩ B(r) ≠ ∅ and B(e) ∩ A(r) ≠ ∅.

3.	 If e, r ∈ Fn and e ⊆ r , then A(e) ⊆ A(r) and B(e) ⊆ B(r). 
4. If e, r ∈ Fn and e(k) ≠ r(k), let l  = min {k: e(k) ≠ r(k)}. Then max A(e) ∩ B(r) = f(e|l ), max 

B(e) ∩ B(r) = f(e|l –1), max A(e) ∩ A(r) = f(e|l –1).
For e ∈ Fn put: 

	 A(e ^ 0) = A(e) ∪ {f(e ^ 0)}, A(e ^ 1) = A(e) ∪ {f(e ^ 1)}, 

	 B(e ^ 0) = B(e) ∪ {f(e ^ 1)}, B(e ^ 1) = B(e) ∪ {f(e ^ 1)}, 

	 A(e ^ 02) = A(e ^ 0) ∪ {f(e ^02)}, A(e ^ 12) = A(e ^ 1) ∪ {f(e ^ 12)},

	B(e ^ 02) = B(e ^ 0) ∪ {g(e ^ 02, e ^ 12)}, B(e ^ 12) = B(e ^ 1) ∪ {g(e ^ 02, e ^ 12)}. 

It is obvious that the family Fn+1 satisfies conditions (1) and (3). 
For (2), let r, e ∈ Fn+1. If ℓ(r) = ℓ(e) or ℓ(r) = 2n + 1, ℓ(e) = 2n + 2, the condition follows 

from the definition. Suppose that ℓ(r) = k < 2n + 1 ≤ ℓ(e). Let l = min {k: ek ≠ rk}. Then 
s = e|l = r|l and ∅ ≠ A(s)^rl) ∩ B(s ^ el) = A(r) ∩ B(e). (The remaining cases can be 
checked in the same way.)

To check the assumption (4), note that A(e ^ i) ∩ B(e ^ j) = A(e ^ i2) ∩ B(e ^ j2), for i, 
j ∈ {0, 1}, i ≠ j. Since f satisfies the condition (*), it follows that max A(e ^ i) ∩ B(e ^ j) = 
f(e ^ i). Moreover A(e ^ i) ∩ A(e ^ j) = A(e ^ i2) ∩ A(e ^ j2) = A(e), thus 

	 max A(e ^ i) ∩ A(e ^ j) = f(e). 

If ℓ(r) = k < 2n + 1 ≤ ℓ(e) and s = e|l = r|l, rl ≠ el then
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	 max A(s ^ rl) ∩ B(s ^el) = max A(r) ∩ B(e) = f(r|l). 

(The remaining cases can be checked in the same way.) This finishes the inductive construction.
Let X be the family of all sequences x: w →{0, 1, 2} which satisfy the conditions: 

	 x(0) = 0, x(2n + 1) = 2, x(2n + 2) ∈ {0, 1}. 

Then 

	 A(x) = Un∈w A(x|n), B(x) = Un∈w B(x|n)

are infinite subsets of w. 
It is easy to check that for x, y ∈ X, if x ≠ y then:

	 A(x) ∩ B(x) = ∅, A(x) ∩ B(y) ≠ ∅, A(x) ∩ A(y) ∈ fin and B(x) ∩ B(y) ∈ fin.

Theorem 1 The gap L = ({A(x): x ∈ X}, {B(x): x ∈ X}) satisfies the following condition: for 
every uncountable set Y ⊆ X, LY = ({A(x): x ∈ Y}, {B(x): x ∈ Y}) is non-separable. 

Proof. Suppose that for Y = {xa : a < k} ⊆ X, w < k ≤ 2w, there exists a  C which separeates 
the gap LY. Let sa = A(xa)\C, ta = B(xa) ∩ C. 

Then sa, ta are finite subsets of w and since A(xa) ∩ B(xa) = ∅, it follows that sa ∩ ta = ∅. 
Δ-lemma implies that there exist an uncountable set G ⊆ k Γ ⊂ κ and finite sets s, t such that 
for all a ∈ g , sa = s and ta = t. 
If a, b ∈ Γ and a ≠ b then ∅ = sa ∩ tb = s ∩ t = sa ∩ ta = ∅, a contradiction. This finishes 
the proof.
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