
* Ph.D. Krzysztof Schiff, e-mail: kschiff@pk.edu.pl, Department of Automatic Control and
Information Technology, Faculty of Electrical and Computer Engineering, Cracow University
of Technology.

KRZYSZTOF SCHIFF∗

ANT COLONY OPIMIZATION ALGORITHMS
FOR CLUSTERING PROBLEMS

ALGORYTMY MRÓWKOWE
DLA PROBLEMÓW KLASTERYZACJI

A b s t r a c t

The clustering problem is one of the main problems which can be encountered in a data analysis. This
problem can be modelled by means of a graph; finding clusters means finding cliques in the graph. Often
there is a need to find clusters (cliques) in a graph in different ways and to construct a list of clusters. This
paper describes two such ways, these can be stated as the cluster minimum covering problem and the vertex
cluster minimum partitioning problem. This paper describes new ant algorithms which were used in order
to make a list of clusters in both presented problems, and also discusses the results of their comparison.

Keywords: clustering, clique covering problem, clique vertex partitioning problem, ant algorithms

S t r e s z c z e n i e

Problem klasteryzacji jest jednym z często spotykanych problemów w analizie danych. Problem
klasteryzacji może być zamodelowany przy pomocy grafów i znajdowanie klasterów sprowadza się
wówczas do znajdowania klik w grafach. W tym artykule opisano dwa sposoby wyznaczania klasterów,
czyli klik w grafach, takich jak: problem pokrycia klastrami (klikami) grafu oraz problem wierzchołkowego
podziału grafu na klastry (kliki) oraz także przedstawiono dwa nowe algorytmy bazujące na zachowaniu
mrówek służące do wyznaczania klastrów (klik) dla obu problemów, a także dokonano porównania ich ze
znanymi algorytmami rozwiązującymi te problemy.

Słowa kluczowe: klasteryzacja, pokrycie klikami, wierzchołkowy podział na kliki, algorytm mrów

78

a) b)

1. Introduction

The clustering problem can be encountered in many optimisation problems, which are
often difficult – finding solutions to such problems takes a great deal of time. Clustering
techniques are used to shorten the time needed to find solutions to these problems. Data and
dependency between data can be modelled by means of a graph. These data can be grouped
into clusters according to the dependency of their characteristics. Finding clusters means
finding cliques in a graph. The clique covering problem and the vertex clique partitioning
problem are NP-difficult problems [1, 16]. Many papers have been devoted to clique problems
[6, 8–12, 18]. Ant algorithms have been used to find maximum cliques or to find all cliques
in a graph [2–5, 15]. The clique covering problem and the vertex clique partitioning problem
were solved by means of a neural network [7, 13] and a genetic algorithm [14, 17]. This paper
describes two new ant algorithms for the problems in question.

2. Models for cluster analysis

Let G = (V, E) be a graph, where V = {v1, v2, ..., vn} is a set of vertices in graph G and
E = {e1, e2, ..., em} is a set of edges m ≤ n2. Graph G = (V, E) is complete if each pair of its
vertices vi, vj ⊆V is connected by edge eij = {vi, vj} ⊆ E. The clique C is a subset of all vertices
which constitute the set V and which, when combined, constitute a complete graph. Clique C
is called the cluster. Clique C is maximal if it is not included in another clique. It is maximum
if this is a maximal clique and there is any other maximal clique in the graph with a higher
number of vertices than this maximum clique. Relations between objects and their features
and relations between features of different objects can be modelled by graphs or matrices.
Vertices can represent only objects or objects and features. Edges can represent the existence
of a common feature between two objects or the possession of a feature; this is shown in
Fig. 1a and in Fig. 1b, respectively. A value of 1 in each matrix represents an existence and
a value of 0 represents an absence.

Fig. 1. Matrices for cluster models

 a)
c\n 1 2 3 4 5 6
1 1 0 0 0 0 1
2 0 1 1 1 1 0
3 1 1 1 1 1 1
4 0 1 1 1 0 0
5 0 1 1 1 1 0
6 1 0 0 0 0 1

 b)
c\n 1 2 3 4 5 6
1 1 1 1 1 0 1
2 1 1 1 1 1 0
3 1 1 1 1 0 0
4 1 1 1 1 0 0
5 0 1 0 0 1 0
6 1 0 0 0 0 1

An object is represented by variable n in Fig. 1a. If there is a feature common to two
objects, a value of 1 is used, and if there is no common feature, a value 0 of is used in the

79

Fig. 2. Matrix: a) when the number of features is lower than the number of objects,
b) in the opposite case

matrix. The cluster which consists of objects {2, 3, 4, 5} means that objects 2, 3, 4 and
5 possess the same feature. If there is a need to investigate many features between many
objects, then for each of these features, a graph or matrix model should be built and for each
of these features in each of these models, a cluster analysis should be performed. This means
that a list of maximal cliques should be indicated.

An object is represented by variable n and a feature is represented by variable c in Fig. 1b.
Both are represented by a graph vertex, matrix column or matrix verse. If an object possesses
a feature c, a value of 1 is used, and if it does not possess feature c, a value of 0 is used in
the matrix at the crossing of the matrix column and matrix verse. A cluster which consists
of objects {1, 2, 3, 4} and features {1, 2, 3, 4} means that objects 1, 2, 3, 4 possess common
features 1, 2, 3 and 4. The graph shown in Fig. 1b can be used only in cases where the number
of objects and features is equal. If the number of objects and features is not equal, these
numbers have to be made equal. Either the verses of the matrix should be filled with a value
of 1 in cases where the number of objects is higher than the number of features, as shown in
Fig. 2a, or columns of the matrix should be filled with a value of 1 in the opposite case, as
shown in Fig. 2b; thus, both of these cases are transformed to the model shown in Fig. 1b.

A case in which the number of features is less than the number of objects is shown in
Fig. 2a. There are 5 features and 6 objects, so the 6th verse is filled with a value of 1; this
means that a common feature was added to all objects. A case in which the number of features
is greater than the number objects is shown in Fig. 2b. There are 6 features and 5 objects,
so the 6th column is filled with a value of 1; this means that an object was augmented with
features which are common to other objects. After the maximum clique has been indicated,
the added features or added objects are removed.

a) b) a)
c\n 1 2 3 4 5 6
1 1 0 0 0 0 1
2 0 1 1 1 1 0
3 1 1 1 1 1 1
4 0 1 1 1 1 0
5 0 1 1 1 1 0
6 1 1 1 1 1 1

 b)
c\n 1 2 3 4 5 6
1 1 1 1 1 0 1
2 1 1 1 1 1 1
3 1 1 1 1 0 1
4 1 1 1 1 0 1
5 0 1 0 0 1 1
6 1 0 0 0 0 1

If there is a need to perform a multi-feature cluster analysis, then for each of these features,
a cluster matrix and later, a cumulative matrix are created. Matrices for 4 different features of 6
objects are shown in Fig. 3a, b, c and d. There is matrix of 6 columns by 6 verses. Cumulative
matrices for a probability equal to 0.6 are shown in Fig. 4a; a probability equal to 0.8 is shown in
Fig. 4b. Matrices 4a and 4b have been obtained such that the number of features for each object in
all 4 matrices shown in Fig. 3a, b, c and d were added and divided by the number of matrices. Thus
the obtained average values of feature existence were compared with the value of probability and

80
a) b) a)
n\n 1 2 3 4 5 6
1 1 0 0 0 0 1
2 0 1 1 1 1 0
3 1 1 1 1 1 1
4 0 1 1 1 1 0
5 0 1 1 1 1 0
6 1 0 0 0 0 1

 b)
n\n 1 2 3 4 5 6
1 1 1 1 1 0 1
2 1 1 1 1 1 0
3 1 1 1 1 0 0
4 1 1 1 1 0 0
5 0 1 0 0 1 0
6 1 0 0 0 0 1

then, if the value of probability was lower than the average value of the existence of features,
a value of 1 was written as needed in the cumulative matrix. For example: there is a cellule at
the crossing of verse 2 and column 1 in all 4 matrices; in this cellule, a value of 1 is encountered
3 times in all 4 matrices. If the number 3 is divided by 4 (since there were 4 matrices), then the
number 0.75 is obtained. When the probability value is equal to 0.6, then in this cellule, a value
of 1 should be written as in Fig. 4a, but when the probability value is equal to 0.8, then in this
cellule, a value of 0 should be written as in Fig. 4b. A cumulative matrix for cluster analysis with
a probability of 0.6 is shown in Fig. 4a and with a probability of 0.8, is shown in Fig. 4b.

c) d) c)
n\n 1 2 3 4 5 6
1 1 0 0 0 0 1
2 0 1 0 1 1 0
3 1 0 1 0 1 1
4 0 1 0 1 1 0
5 0 1 1 1 1 0
6 1 0 0 0 0 1

 d)
n\n 1 2 3 4 5 6
1 1 0 1 1 0 1
2 0 1 1 1 1 0
3 1 1 1 1 0 0
4 1 1 1 1 1 1
5 0 1 0 1 1 0
6 1 0 0 1 0 1

Fig. 3. Matrices – for features a, b, c and d

a) b) a)
n\n 1 2 3 4 5 6
1 1 0 0 0 0 1
2 1 1 1 1 1 0
3 1 1 1 1 0 0
4 0 1 1 1 1 0
5 0 1 0 1 1 0
6 1 0 0 0 0 1

 b)
n\n 1 2 3 4 5 6
1 1 0 0 0 0 1
2 0 1 0 1 1 0
3 1 0 1 0 0 0
4 0 1 0 1 1 0
5 0 1 0 0 1 0
6 1 0 0 0 0 1

Fig. 4. Cumulative matrices

81

3. Two cluster problems

Set S = {C1, C2, ..., Ck} is a cover of the graph G, if all graph edges E(G) are covered by
edges of cliques Ci and:

 (1)

Where: k is the number of cliques (clusters).
If there is a set S of clusters in which each edge belongs to at least one cluster Ci,

1 ≤ i ≤ k, then S is a graph covered by clusters. The cardinality number of S is called the
cluster covering number of graph G and is marked by cc(G).

E G E Cii
k() = ()=∑ 1

Fig. 5. A graph for two problems

Fig. 7. A solution to the vertex clique partitioning problem

Fig. 6. A solution to the clique covering problem

 1 2

 3

 4 5

 6 7

 1 1 2

 3

 5
 4 5

 6 7

 1 2

 3

 4 5

 6 7

82

A set S of clusters in which each vertex belongs to exactly one element of S means
that for two different cliques Ci and Cj, 1 ≤ i ≤ k, 1 ≤ j ≤ k, i ≠ j, there are no common
vertices. V(Ci) ∩ V(Cj) = ∅ is called a graph vertex partitioning on clusters. The cardinality
number of S is called the clique vertex partitioning number of graph G and is marked by
cwp(G).

Definition: minimum clique (cluster) covering problem in a graph
A minimum number of maximal cliques is searched for in graph G = (V, E) such that each

graph edge has two of its ends in at least one clique; in other words, a set S with a minimum
number cc(G) is searched for.

Definition: minimum clique (cluster) vertex partitioning problem in graph
A minimum number of maximal cliques is searched for in graph G = (V, E) such that each

graph vertex belongs to exactly one clique; in other words, a set S with minimum number
cwp(G) is searched for.

Differences between these two problems were shown in Figs. 6 and 7 as a different
kind of solution for an example of the graph presented in Fig. 5. This means a solution
to the clique covering problem and a solution to the vertex clique partitioning problem,
respectively.

4. Ant algorithms for cluster problems

The solution to the minimum cluster covering problem is a list of maximal cliques.
There should be no repetitions within the list. Each of these maximal cliques is
constructed by ants for each graph edge. The pseudo-code of the ant algorithm is shown as
algorithm 1.

The solution for the minimum vertex partitioning problem is a list of maximal cliques.
Each of these maximal cliques is constructed by ants in a current graph structure, which is
obtained from the preceding graph structure by removing its edges and vertices. The pseudo-
code of the ant algorithm was shown as algorithm 2.

Maximal cliques were determined in both algorithms. In general, a maximal clique
is created by vertices which are neighbours, this means that each pair of vertices from
a clique are connected by an edge. A maximal clique is created so that at first, one and
then another vertex is selected from the neighbours of the first selected vertex; then the
third vertex is selected from the neighbours of the first two selected vertices and so on,
until there is no vertex among the neighbours of the vertices already selected. The order
in which these vertices are selected influences the size of the created maximal clique.
The size of the clique depends on the vertex selection sequence; thus it is important to
know which vertices should be selected, and in which sequence, in order to obtain the
maximal clique. Since there are so many possible selection sequences, there is no way to
check them all out; this is why ant algorithms are used to select vertices and to create the
maximal clique.

83
A l g o r i t h m 1

Cluster covering procedure

Repeat for each graph edge
 while (there is a cycle to repeat)

 while (there is an ant which has not yet worked)
 while (the clique has not been completed)

 include one of the vertices next to the maximal clique with probability p
 remember the best solution which was found by all ants in one cycle
 remember the best solution which has been found so far in all cycles
 update pheromone trails
 include the clique on the list

A l g o r i t h m 2

Cluster vertex partitioning procedure

while (there is a cycle to repeat)
 while (there is an ant which has not yet worked)
 while (the clique has not been completed)
 include one of the vertices next to the maximal clique with probability p
 remember the best solution which was found by all ants in one cycle
 remember the best solution which has been found so far in all cycles
 update pheromone trails
 remove vertices and edges which participated in the last clique from the graph
 include the clique on the list

A l g o r i t h m 3

Maximum clique (cluster) procedure

C = ∅
N = ∅
select a first vertex vi ∈ V
C = C + {vi}
N = N + all {vj : (vj, vi) ∈ E}
while N ≠ ∅ do
 select a vertex vi ∈N with probability p(i)
 C = C + {vi}
 N = N + all {vj : (vi, vj) ∈ E}
end while
return C

84

In the ant algorithm, which would be called the ALG algorithm later in this paper
and which is presented in paper [4], a vertex is included in the maximal cluster with
probability:

 (2)

In the ant algorithm, which would be called the NALG algorithm later in this paper and
which is presented in this paper, a vertex is included in the maximal cluster with probability:

 (3)

This probability depends on the pheromone trail and on the desire for vertex selection
expressed by the formula:

 (4)

where: dj is a vertex degree, i.e., the number of edges adjacent to vertex j.
After all ants have worked in each cycle, some of the pheromone evaporates at rate r

according to expression τ = rτ. On all vertices which, taken together, constitute the maximal
clique, a pheromone is deposited – this pheromone quantity is expressed as

 (4.4)

where: cs is the size of the maximal clique.

5. Experiments

Tests were conducted for both of the ant algorithms, ALG and NALG, mentioned above
and for two problems which have been taken into consideration: the minimum clique covering
problem and the minimum vertex partitioning problem.

The first test was conducted for the minimum clique covering problem for a constant
number of vertices n = 100 and for different graph densities q = {0.1, 0.3, 0.5, 0.7, 0.9}
with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and a constant

p j
t

t
j
x

j
x

v j

()
[]

[]
=
∑ εCandidates

p
n
n

j N

j N
j

j j

j jj Ni

i

i

=
∈

∉

∈∑
τ

τ

α β

α β ,

,

for

for which not0

n
d d

d d
j Nj

j j

j jj
m i= ∈
=∑ ()

,
1

∆τ =
+

−
1

1 cs cs
cs
best

best

85

number of ants m = 30. Average values from 100 measurements are shown in Table 1.
It is advantageous to use the NALG algorithm rather than the ALG, since there is a positive
difference over the entire range of graph density {0.1, 0.3, 0.5, 0.7, 0.9}.

T a b l e 1

Covering: number of cliques as a function of graph density

q 0.1 0.3 0.5 0.7 0.9
ALG 306.2 948.9 2184.8 3402.8 4450.0

NALG 306.0 761.4 1975.1 3369.3 4449.7
ALG – NALG 0.2 187.5 209.7 33.5 0.3

The second test was also conducted for the minimum clique covering problem, but for
a different number of vertices n = {50, 100, 150, 200, 250} and for a constant graph density
q = 0.5 with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and
a constant number of ants m = 30. Average values from 100 measurements are shown in
Table 2. It is advantageous to use the NALG algorithm rather than the ALG, since there is
a positive difference over the entire range of graph vertices {50, 100, 150, 200, 250}.

T a b l e 2

Covering: number of cliques as a function of the number of vertices

n 50 100 150 200 250
ALG 390.9 1975.1 5150.5 9446.8 15489

NALG 457.5 2184.8 5397.5 9688.2 15654.8
ALG – NALG 66.6 209.7 247 241.4 165.8

The third test was conducted for the minimum vertex clique partitioning problem, for
a constant number of vertices n = 100 and for a different graph density q = {0.1, 0.3, 0.5,
0.7, 0.9} with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and
a constant number of ants m = 30. Average values from 100 measurements are shown in
Table 3. It is advantageous to use the NALG algorithm rather than the ALG, since there is
a positive difference over the entire range of graph density {0.1, 0.3, 0.5, 0.7, 0.9}.

T a b l e 3

Vertex partitioning: number of cliques as a function of graph density

q 0.1 0.3 0.5 0.7 0.9
ALG 42.58 27.1 17.78 12.53 6.8

NALG 42.47 26.8 17.61 12.45 6.69
ALG – NALG 0.11 0.3 0.17 0.08 0.11

86

The last test was conducted for the minimum vertex clique partitioning problem, but for
a different number of vertices n = {50, 100, 150, 200, 250} and for a constant graph density
q = 0.5 with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and
a constant number of ants m = 30. Average values from 100 measurements are shown in
Table 4. It is advantageous to use the NALG algorithm rather than the ALG, since there is
a positive difference over the entire range of graph vertices {50, 100, 150, 200, 250}.

T a b l e 4

Vertex partitioning: number of cliques as a function
of the number of vertices

n 50 100 150 200 250
ALG 11.95 17.78 24.44 30.2 35.33

NALG 11.91 17.61 24.11 29.76 34.52
ALG – NALG 0.04 0.17 0.33 0.44 0.81

6. Conclusion

The NALG algorithm described in this paper was compared with the previously elaborated
ALG algorithm. It has been shown that the NALG algorithm has a permanent advantage over
the ALG, since it obtained lists of clusters in both problems taken into consideration shorter
than those obtained by the already elaborated ALG for a broad range of graph density and
number of graph vertices.

R e f e r e n c e s

[1] Garey M., Johnson D., Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, New York 1979.

[2] Ponce J., Ponce E., Padilla F., Padilla A., Ant Colony Algorithm for Clustering through
of Cliques, 2006.

[3] Ponce J., Ponce E., Padilla F., Padilla A., Ochoa A., Algoritmo De Colonia De
Hormigas Para El Problema Del Clique Máximo Con Un Optimizador Local K-Opt,
Hífen, Uruguaiana, Vol. 30, No. 58, Brasil 2006.

[4] Fenet S., Solnon C., Searching for Maximum Cliques with Ant Colony Optimization
EvoWorkshops 2003, LNCS 2611, 2003, 236-245.

[5] Xu X., Ma J., Lee J., An Improved Ant Colony Optimization for the Maximum Clique
Problem, IEEE Third International Conference on Natural Computation, 2007.

[6] Bron C., Kerbosh J., Finding all cliques of an undirected graph, Association of
Computer Machine, 16, 1973, 575-577.

87

[7] Wang J., Xu X., Tsng Z., Bi W., Chen X., Li Y., A New Neural Network Algorithm for
Clique Vertex-Partition Problem, Yin F., Wang J., Guo C. (Ed.): ISNN 2004, LNCS
3173, Springer-Verlag, Berlin 2004, 425-29.

[8] Kellerman E., Determination of keyword conflict, IBM Technical Disclosure Bulletin
16, 1973, 544-546.

[9] Behrisch M., Taraz A., Efficiently covering complex networks with cliques of similar
vertices, TCS: Theory of Computer Science 355, 2006, 37-47.

[10] Cazals F., Karnade C., An algorithm for reporting maximal c-cliques, Theory of
Computer Science 349, 2005, 484-490.

[11] Gramm J., Guo J., Huffner F., Niedermeier R., Data reduction and exact algorithms for
clique cover, ACM J. Exp. Algorith. 13, 2.2–2.15, 2009.

[12] Tseng C., Siewiorek D., IEEE Trans. CAD 5, 379 (1986).
[13] Harmanani H., A Parallel Neural Networks Algorithm for the Clique Partitioning

Problem, IJCA, Vol. 9, No. 2, 2002
[14] Little P., Rylander B., Problem Partitioning in Hybrid Genetic Algorithms, Proceedings

of the 5th WSEAS Int. Conf. on circuits, systems, electronics, control and signal
processing, Dallas, USA, November 1–3, 2006

[15] Rizzo J., An Ant System Algorithm for Maximum Clique, The Pennsylvania State
University, Master Thesis, 2003.

[16] Orlin J., Contentment in graph theory: covering graphs with cliques, Mathematics 39,
1977, 406-424.

[17] Snyers D., Clique Partitioning Problem and Genetic Algorithms in Albrecht R.F.(eds.),
Artificial Neural Nets and Genetic Algorithms Springer-Verlag, 1993.

[18] Tseng C., Sieworek D., Facet: A Procedure for the Automated Synthesis of Digital
Systems, Proceeding of the 20th ACM/IEEE Design Automated Conf., 1983, 490-496.

