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A b s t r a c t

The clustering problem is one of the main problems which can be encountered in a data analysis. This 
problem can be modelled by means of a graph; finding clusters means finding cliques in the graph. Often 
there is a need to find clusters (cliques) in a graph in different ways and to construct a list of clusters. This 
paper describes two such ways, these can be stated as the cluster minimum covering problem and the vertex 
cluster minimum partitioning problem. This paper describes new ant algorithms which were used in order 
to make a list of clusters in both presented problems, and also discusses the results of their comparison.
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S t r e s z c z e n i e

Problem klasteryzacji jest jednym z często spotykanych problemów w analizie danych. Problem 
klasteryzacji może być zamodelowany przy pomocy grafów i znajdowanie klasterów sprowadza się 
wówczas do znajdowania klik w grafach. W tym artykule opisano dwa sposoby wyznaczania klasterów, 
czyli klik w grafach, takich jak: problem pokrycia klastrami (klikami) grafu oraz problem wierzchołkowego 
podziału grafu na klastry (kliki) oraz także przedstawiono dwa nowe algorytmy bazujące na zachowaniu 
mrówek służące do wyznaczania klastrów (klik) dla obu problemów, a także dokonano porównania ich ze 
znanymi algorytmami rozwiązującymi te problemy.

Słowa kluczowe: klasteryzacja, pokrycie klikami, wierzchołkowy podział na kliki, algorytm mrów
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a) b)

1. Introduction

The clustering problem can be encountered in many optimisation problems, which are 
often difficult – finding solutions to such problems takes a great deal of time. Clustering 
techniques are used to shorten the time needed to find solutions to these problems. Data and 
dependency between data can be modelled by means of a graph. These data can be grouped 
into clusters according to the dependency of their characteristics. Finding clusters means 
finding cliques in a graph. The clique covering problem and the vertex clique partitioning 
problem are NP-difficult problems [1, 16]. Many papers have been devoted to clique problems 
[6, 8–12, 18]. Ant algorithms have been used to find maximum cliques or to find all cliques 
in a graph [2–5, 15]. The clique covering problem and the vertex clique partitioning problem 
were solved by means of a neural network [7, 13] and a genetic algorithm [14, 17]. This paper 
describes two new ant algorithms for the problems in question. 

2. Models for cluster analysis

Let G = (V, E) be a graph, where V = {v1, v2, ..., vn} is a set of vertices in graph G and  
E = {e1, e2, ..., em} is a set of edges m ≤ n2. Graph G = (V, E) is complete if each pair of its 
vertices vi, vj ⊆V is connected by edge eij = {vi, vj} ⊆ E. The clique C is a subset of all vertices 
which constitute the set V and which, when combined, constitute a complete graph. Clique C 
is called the cluster. Clique C is maximal if it is not included in another clique. It is maximum 
if this is a maximal clique and there is any other maximal clique in the graph with a higher 
number of vertices than this maximum clique. Relations between objects and their features 
and relations between features of different objects can be modelled by graphs or matrices. 
Vertices can represent only objects or objects and features. Edges can represent the existence 
of a common feature between two objects or the possession of a feature; this is shown in 
Fig. 1a and in Fig. 1b, respectively. A value of 1 in each matrix represents an existence and 
a value of 0 represents an absence. 

Fig. 1. Matrices for cluster models

 a) 
c\n 1 2 3 4 5 6 
1 1 0 0 0 0 1 
2 0 1 1 1 1 0 
3 1 1 1 1 1 1 
4 0 1 1 1 0 0 
5 0 1 1 1 1 0 
6 1 0 0 0 0 1 

 b) 
c\n 1 2 3 4 5 6 
1 1 1 1 1 0 1 
2 1 1 1 1 1 0 
3 1 1 1 1 0 0 
4 1 1 1 1 0 0 
5 0 1 0 0 1 0 
6 1 0 0 0 0 1 

An object is represented by variable n in Fig. 1a. If there is a feature common to two 
objects, a value of 1 is used, and if there is no common feature, a value 0 of is used in the 
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Fig. 2. Matrix: a) when the number of features is lower than the number of objects, 
b) in the opposite case

matrix. The cluster which consists of objects {2, 3, 4, 5} means that objects 2, 3, 4 and 
5 possess the same feature. If there is a need to investigate many features between many 
objects, then for each of these features, a graph or matrix model should be built and for each 
of these features in each of these models, a cluster analysis should be performed. This means 
that a list of maximal cliques should be indicated. 

An object is represented by variable n and a feature is represented by variable c in Fig. 1b. 
Both are represented by a graph vertex, matrix column or matrix verse. If an object possesses 
a feature c, a value of 1 is used, and if it does not possess feature c, a value of 0 is used in 
the matrix at the crossing of the matrix column and matrix verse. A cluster which consists 
of objects {1, 2, 3, 4} and features {1, 2, 3, 4} means that objects 1, 2, 3, 4 possess common 
features 1, 2, 3 and 4. The graph shown in Fig. 1b can be used only in cases where the number 
of objects and features is equal. If the number of objects and features is not equal, these 
numbers have to be made equal. Either the verses of the matrix should be filled with a value 
of 1 in cases where the number of objects is higher than the number of features, as shown in 
Fig. 2a, or columns of the matrix should be filled with a value of 1 in the opposite case, as 
shown in Fig. 2b; thus, both of these cases are transformed to the model shown in Fig. 1b. 

A case in which the number of features is less than the number of objects is shown in 
Fig. 2a. There are 5 features and 6 objects, so the 6th verse is filled with a value of 1; this 
means that a common feature was added to all objects. A case in which the number of features 
is greater than the number objects is shown in Fig. 2b. There are 6 features and 5 objects, 
so the 6th column is filled with a value of 1; this means that an object was augmented with 
features which are common to other objects. After the maximum clique has been indicated, 
the added features or added objects are removed.

a) b) a) 
c\n 1 2 3 4 5 6 
1 1 0 0 0 0 1 
2 0 1 1 1 1 0 
3 1 1 1 1 1 1 
4 0 1 1 1 1 0 
5 0 1 1 1 1 0 
6 1 1 1 1 1 1 

 b) 
c\n 1 2 3 4 5 6 
1 1 1 1 1 0 1 
2 1 1 1 1 1 1 
3 1 1 1 1 0 1 
4 1 1 1 1 0 1 
5 0 1 0 0 1 1 
6 1 0 0 0 0 1 

If there is a need to perform a multi-feature cluster analysis, then for each of these features, 
a cluster matrix and later, a cumulative matrix are created. Matrices for 4 different features of 6 
objects are shown in Fig. 3a, b, c and d. There is matrix of 6 columns by 6 verses. Cumulative 
matrices for a probability equal to 0.6 are shown in Fig. 4a; a probability equal to 0.8 is shown in 
Fig. 4b. Matrices 4a and 4b have been obtained such that the number of features for each object in 
all 4 matrices shown in Fig. 3a, b, c and d were added and divided by the number of matrices. Thus 
the obtained average values of feature existence were compared with the value of probability and 
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a) b) a) 
n\n 1 2 3 4 5 6 
1 1 0 0 0 0 1 
2 0 1 1 1 1 0 
3 1 1 1 1 1 1 
4 0 1 1 1 1 0 
5 0 1 1 1 1 0 
6 1 0 0 0 0 1 

 b) 
n\n 1 2 3 4 5 6 
1 1 1 1 1 0 1 
2 1 1 1 1 1 0 
3 1 1 1 1 0 0 
4 1 1 1 1 0 0 
5 0 1 0 0 1 0 
6 1 0 0 0 0 1 

then, if the value of probability was lower than the average value of the existence of features, 
a value of 1 was written as needed in the cumulative matrix. For example: there is a cellule at 
the crossing of verse 2 and column 1 in all 4 matrices; in this cellule, a value of 1 is encountered 
3 times in all 4 matrices. If the number 3 is divided by 4 (since there were 4 matrices), then the 
number 0.75 is obtained. When the probability value is equal to 0.6, then in this cellule, a value 
of 1 should be written as in Fig. 4a, but when the probability value is equal to 0.8, then in this 
cellule, a value of 0 should be written as in Fig. 4b. A cumulative matrix for cluster analysis with 
a probability of 0.6 is shown in Fig. 4a and with a probability of 0.8, is shown in Fig. 4b.

c) d) c) 
n\n 1 2 3 4 5 6 
1 1 0 0 0 0 1 
2 0 1 0 1 1 0 
3 1 0 1 0 1 1 
4 0 1 0 1 1 0 
5 0 1 1 1 1 0 
6 1 0 0 0 0 1 

 d) 
n\n 1 2 3 4 5 6 
1 1 0 1 1 0 1 
2 0 1 1 1 1 0 
3 1 1 1 1 0 0 
4 1 1 1 1 1 1 
5 0 1 0 1 1 0 
6 1 0 0 1 0 1 

Fig. 3. Matrices – for features a, b, c and d

a) b) a) 
n\n 1 2 3 4 5 6 
1 1 0 0 0 0 1 
2 1 1 1 1 1 0 
3 1 1 1 1 0 0 
4 0 1 1 1 1 0 
5 0 1 0 1 1 0 
6 1 0 0 0 0 1 

 b) 
n\n 1 2 3 4 5 6 
1 1 0 0 0 0 1 
2 0 1 0 1 1 0 
3 1 0 1 0 0 0 
4 0 1 0 1 1 0 
5 0 1 0 0 1 0 
6 1 0 0 0 0 1 

Fig. 4. Cumulative matrices



81

3. Two cluster problems

Set S = {C1, C2, ..., Ck} is a cover of the graph G, if all graph edges E(G) are covered by 
edges of cliques Ci and: 

  (1)

Where: k is the number of cliques (clusters).
If there is a set S of clusters in which each edge belongs to at least one cluster Ci,  

1 ≤ i ≤ k, then S is a graph covered by clusters. The cardinality number of S is called the 
cluster covering number of graph G and is marked by cc(G).

E G E Cii
k( ) = ( )=∑ 1

Fig. 5. A graph for two problems

Fig. 7. A solution to the vertex clique partitioning problem

Fig. 6. A solution to the clique covering problem
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A set S of clusters in which each vertex belongs to exactly one element of S means  
that for two different cliques Ci and Cj, 1 ≤ i ≤ k, 1 ≤ j ≤ k, i ≠ j, there are no common 
vertices. V(Ci) ∩ V(Cj) = ∅ is called a graph vertex partitioning on clusters. The cardinality 
number of S is called the clique vertex partitioning number of graph G and is marked by 
cwp(G).

Definition: minimum clique (cluster) covering problem in a graph 
A minimum number of maximal cliques is searched for in graph G = (V, E) such that each 

graph edge has two of its ends in at least one clique; in other words, a set S with a minimum 
number cc(G) is searched for. 

Definition: minimum clique (cluster) vertex partitioning problem in graph 
A minimum number of maximal cliques is searched for in graph G = (V, E) such that each 

graph vertex belongs to exactly one clique; in other words, a set S with minimum number 
cwp(G) is searched for. 

Differences between these two problems were shown in Figs. 6 and 7 as a different 
kind of solution for an example of the graph presented in Fig. 5. This means a solution 
to the clique covering problem and a solution to the vertex clique partitioning problem, 
respectively. 

4. Ant algorithms for cluster problems

The solution to the minimum cluster covering problem is a list of maximal cliques.  
There should be no repetitions within the list. Each of these maximal cliques is 
constructed by ants for each graph edge. The pseudo-code of the ant algorithm is shown as  
algorithm 1.

The solution for the minimum vertex partitioning problem is a list of maximal cliques. 
Each of these maximal cliques is constructed by ants in a current graph structure, which is 
obtained from the preceding graph structure by removing its edges and vertices. The pseudo-
code of the ant algorithm was shown as algorithm 2.

Maximal cliques were determined in both algorithms. In general, a maximal clique 
is created by vertices which are neighbours, this means that each pair of vertices from 
a clique are connected by an edge. A maximal clique is created so that at first, one and 
then another vertex is selected from the neighbours of the first selected vertex; then the 
third vertex is selected from the neighbours of the first two selected vertices and so on, 
until there is no vertex among the neighbours of the vertices already selected. The order 
in which these vertices are selected influences the size of the created maximal clique.  
The size of the clique depends on the vertex selection sequence; thus it is important to 
know which vertices should be selected, and in which sequence, in order to obtain the 
maximal clique. Since there are so many possible selection sequences, there is no way to 
check them all out; this is why ant algorithms are used to select vertices and to create the 
maximal clique. 
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A l g o r i t h m  1

Cluster covering procedure

Repeat for each graph edge
    while (there is a cycle to repeat)

         while (there is an ant which has not yet worked)
             while (the clique has not been completed) 

              include one of the vertices next to the maximal clique with probability p
         remember the best solution which was found by all ants in one cycle
    remember the best solution which has been found so far in all cycles
    update pheromone trails
    include the clique on the list

A l g o r i t h m  2

Cluster vertex partitioning procedure

while (there is a cycle to repeat)
         while (there is an ant which has not yet worked)
             while (the clique has not been completed) 
              include one of the vertices next to the maximal clique with probability p
         remember the best solution which was found by all ants in one cycle
   remember the best solution which has been found so far in all cycles
   update pheromone trails
   remove vertices and edges which participated in the last clique from the graph
   include the clique on the list

A l g o r i t h m  3

Maximum clique (cluster) procedure

C = ∅
N = ∅
select a first vertex vi ∈ V
C = C + {vi}
N = N + all {vj : (vj, vi) ∈ E}
while N ≠ ∅ do
   select a vertex vi ∈N with probability p(i)
   C = C + {vi}
   N = N + all {vj : (vi, vj) ∈ E}
end while
return C
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In the ant algorithm, which would be called the ALG algorithm later in this paper  
and which is presented in paper [4], a vertex is included in the maximal cluster with 
probability:

  (2)

In the ant algorithm, which would be called the NALG algorithm later in this paper and 
which is presented in this paper, a vertex is included in the maximal cluster with probability:

  (3)

This probability depends on the pheromone trail and on the desire for vertex selection 
expressed by the formula: 

  (4)

where: dj is a vertex degree, i.e., the number of edges adjacent to vertex j. 
After all ants have worked in each cycle, some of the pheromone evaporates at rate r 

according to expression τ = rτ. On all vertices which, taken together, constitute the maximal 
clique, a pheromone is deposited – this pheromone quantity is expressed as

  (4.4)

where: cs is the size of the maximal clique.

5. Experiments 

Tests were conducted for both of the ant algorithms, ALG and NALG, mentioned above 
and for two problems which have been taken into consideration: the minimum clique covering 
problem and the minimum vertex partitioning problem. 

The first test was conducted for the minimum clique covering problem for a constant 
number of vertices n = 100 and for different graph densities q = {0.1, 0.3, 0.5, 0.7, 0.9} 
with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and a constant 
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number of ants m = 30. Average values from 100 measurements are shown in Table 1.  
It is advantageous to use the NALG algorithm rather than the ALG, since there is a positive 
difference over the entire range of graph density {0.1, 0.3, 0.5, 0.7, 0.9}.

T a b l e  1

Covering: number of cliques as a function of graph density

q 0.1 0.3 0.5 0.7 0.9
ALG 306.2 948.9 2184.8 3402.8 4450.0

NALG 306.0 761.4 1975.1 3369.3 4449.7
ALG – NALG 0.2 187.5 209.7 33.5 0.3

The second test was also conducted for the minimum clique covering problem, but for 
a different number of vertices n = {50, 100, 150, 200, 250} and for a constant graph density 
q = 0.5 with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and 
a constant number of ants m = 30. Average values from 100 measurements are shown in 
Table 2. It is advantageous to use the NALG algorithm rather than the ALG, since there is 
a positive difference over the entire range of graph vertices {50, 100, 150, 200, 250}. 

T a b l e  2

Covering: number of cliques as a function of the number of vertices

n 50 100 150 200 250
ALG 390.9 1975.1 5150.5 9446.8 15489

NALG 457.5 2184.8 5397.5 9688.2 15654.8
ALG – NALG 66.6 209.7 247 241.4 165.8

The third test was conducted for the minimum vertex clique partitioning problem, for 
a constant number of vertices n = 100 and for a different graph density q = {0.1, 0.3, 0.5, 
0.7, 0.9} with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and 
a constant number of ants m = 30. Average values from 100 measurements are shown in 
Table 3. It is advantageous to use the NALG algorithm rather than the ALG, since there is 
a positive difference over the entire range of graph density {0.1, 0.3, 0.5, 0.7, 0.9}.

T a b l e  3

Vertex partitioning: number of cliques as a function of graph density

q 0.1 0.3 0.5 0.7 0.9
ALG 42.58 27.1 17.78 12.53 6.8

NALG 42.47 26.8 17.61 12.45 6.69
ALG – NALG 0.11 0.3 0.17 0.08 0.11
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The last test was conducted for the minimum vertex clique partitioning problem, but for 
a different number of vertices n = {50, 100, 150, 200, 250} and for a constant graph density 
q = 0.5 with a constant evaporation rate r = 0.99, a constant number of cycles lc = 50 and 
a constant number of ants m = 30. Average values from 100 measurements are shown in 
Table 4. It is advantageous to use the NALG algorithm rather than the ALG, since there is 
a positive difference over the entire range of graph vertices {50, 100, 150, 200, 250}.

T a b l e  4

Vertex partitioning: number of cliques as a function 
of the number of vertices

n 50 100 150 200 250
ALG 11.95 17.78 24.44 30.2 35.33

NALG 11.91 17.61 24.11 29.76 34.52
ALG – NALG 0.04 0.17 0.33 0.44 0.81

6. Conclusion

The NALG algorithm described in this paper was compared with the previously elaborated 
ALG algorithm. It has been shown that the NALG algorithm has a permanent advantage over 
the ALG, since it obtained lists of clusters in both problems taken into consideration shorter 
than those obtained by the already elaborated ALG for a broad range of graph density and 
number of graph vertices. 
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