
REPORTS ON MATHEMATICAL LOGIC
49 (2014), 79–97
doi:10.4467/20842589RM.14.005.2275

Jerzy MYCKA

RECURSIVELY ENUMERABLE SETS

AND WELL-ORDERING OF THEIR

ENUMERATIONS

A b s t r a c t. We will introduce the special kind of the order

relations into recursively enumerable sets and prove that they can

be used to distinguish (albeit in a non-constructive way) between

recursive and non-recursive sets.

.1 Introduction

Considering sets of natural numbers from the computational point of view

we distinguish as the main class of sets the collection of recursively enu-

merable sets. However, inside this class we can see the crucial difference

which lies between recursive and non-recursive sets.

In this paper we use ordinal numbers to indicate recursiveness of sets.

We do not employ ordinals in the way which was used to create hierarchies

of natural functions (as can be found in the papers [3], [7]), but instead we

Received 4 March 2014

80 JERZY MYCKA

introduce well-order relations according to the method of an enumeration of

a set. This gives us a precise criterion, which recognises between recursive

and non-recursive sets.

This method can be seen as very natural: if the main characteristic of

recursively enumerable sets is given by the fact that they can be listed then

the precise level of their computability has to be bound to the degree of the

order (or disorder) of their enumeration. The most natural way to measure

such kind of complexity would be given by ordinal numbers.

This direction of research is justified by results: we can use ordinal

numbers to distinguish recursive and non-recursive recursively enumerable

sets. Additionally we can present that many properties of such orderings

can be computably (or relatively computably) tested.

The article is written in the self-explanatory way. First we recall funda-

mental notions of computability and ordinal numbers. In the next section

we introduce a special kind of well-order and define an order type for recur-

sively enumerable sets. Then we present some properties of such orders and

finally we give the main result, which states that non-recursive recursively

enumerable sets have their ordinal (according to the mentioned relation)

equal to ω2.

.2 Fundamental notions

Let us start with some useful notation (cf. [1]), which will be used in the

following definitions. Let F be a class of functions, F ⊆ F be a given subset

of functions from F, and O ⊆ ∪k∈N{O ∶ Fk → F} be a set of operators. The

inductive closure A of F for O is the smallest set containing F , such that

if f1, . . . , fk ∈ A are in the domain of the k-ary O ∈ O, then O(f1, . . . , fk) ∈
A. When presented together with O, the inductive closure A = [F ;O]
is called a function algebra. Usually we write members of F and O not

enclosed by parenthesis, but these two sets will be separated in definitions

by a semicolon.

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 81

.Rudiments of theory of computable functions and sets

Let us consider the class F of partial functions over Nk, k ≥ 1, where N =
{0,1,2, . . .}. Important examples of functions in F are: the zero function

z, z(x) = 0; the successor function s given by s(x) = x + 1; and the set of

projection functions uni , where for 1 ≤ i ≤ n we have uni (x1, . . . , xn) = xi.
From this moment we will write x⃗ to designate an arbitrary sequence x⃗ =
x1, . . . , xn.

We consider the composition operators cm, such that for every g ∶ Nm →
N, h1, . . . , hm ∶ Nn → N, the function cm(g, h1, . . . , hm) ∶ Nn → N is given by

cm(g, h1, . . . , hm)(x⃗) = g(h1(x⃗), . . . , hm(x⃗)).

We also use the primitive recursion operator p, which for every given

g ∶ Nn → N and h ∶ Nn+2 → N, sets

p(g, h)(x⃗,0) = g(x⃗) and p(g, h)(x⃗, y + 1) = h(x⃗, y,p(g, h)(x⃗, y)).

Definition 2.1. The class PRIM of primitive recursive functions is

given by the function algebra

PRIM = [z, s, uni ; cm,p].

We can also introduce the operator µ of unbounded minimalisation

defined in the following way: for any function f ∶ Nk+1 → N in F we can

find the new function µy(f) given as below:

µy(f)(x⃗) =
= min{y ∶ f(x⃗, y) = 0 and (∀z < y)f(x⃗, z) is defined and not equal to 0}.

Let us indicate that this operator is the origin of partiality (i.e. a prop-

erty of being not everywhere defined) of partial recursive functions intro-

duced in the following definition.

Definition 2.2. The class PREC of partial recursive functions is given

by the following function algebra

PREC = [z, s, uni ; c,p, µ].

82 JERZY MYCKA

We can restrict the class PREC by imposition of the additional con-

dition of totality of its members (i.e. all functions should be everywhere

defined). In this case we obtain the set REC of (total) recursive functions.

Sometimes we would like to use wider sets of functions admitting recog-

nition of members of some (freely chosen) set A ⊆ N, i.e. adding the char-

acteristic function KA of this set A to basic functions.

Definition 2.3. The class PRECA of partial functions is given as fol-

lows

PRECA = [z, s, uni ,KA; c,p, µ].

Analogously, RECA is defined as the subset of total functions from PRECA.

Functions from PRECA (RECA) are called partial A-recursive (respec-

tively A-recursive) functions.

In this paper we are interested in sets rather than functions, so we need

some additional ideas from the field of computability theory.

Definition 2.4. A set A ⊆ N is called a recursive set iff there exists

a function KA ∶ N→ N,KA ∈ REC such that

KA(x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ A,
0 x /∈ A.

A set A ⊆ N is called a recursively enumerable set iff A is the empty set

or there exists a function fA ∶ N→ N, fA ∈ REC such that

fA(N) = A.

Let us add the special notion of an index function for a set A and its

function fA ∈ REC:

indexfA(x) =
⎧⎪⎪⎨⎪⎪⎩

0 x /∈ A,
1 +mini{i ∶ fA(i) = x} x ∈ A.

It can be observed that for fA ∈ REC the function indexfA is in RECA.

We will add a few useful results concerning recursive and recursively

enumerable sets (the most comprehensive surveys can be found in [4], [6]).

First we present a few different characterisations of recursively enumerable

sets.

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 83

Lemma 2.5. A set A ⊆ N is recursively enumerable iff A is the domain

of some partial recursive function f ∶ N→ N, f ∈ PREC iff A is the range of

some partial recursive function g ∶ N → N, g ∈ PREC iff A is the empty set

∅ or A is the finite set or A is the range of some one-to-one total recursive

function h ∶ N→ N, h ∈ REC.

We should note that in the last case of the above lemma we use one-to-

one functions, which is a rarely used but an equivalent modification of the

standard definition (cf. [8]).

There are important connections between recursive and recursively enu-

merable sets. The obvious consequence of Definition 2.4 can be stated

simply as the following lemma.

Lemma 2.6. Every recursive set is recursively enumerable.

However these two classes are not identical, we can present examples of

sets which are recursively enumerable and not recursive; the most typical

example is the set K = {x ∈ N ∶ φx(x) is defined}, where φi is a computable

enumeration of all one-argument functions from PREC. Another fruitful

observation which gives conditions for a recursively enumerable set to be

recursive is presented in Kleene’s theorem.

Theorem 2.7. A set A ⊆ N is recursive iff A and its complement Ā

are recursively enumerable.

Let us hint at another property which also guarantees that infinite re-

cursively enumerable set is recursive.

Lemma 2.8. Let A be infinite recursively enumerable set, then A is

recursive iff there exists the increasing function fA ∶ N → N such that fA ∈
REC and fA(N) = A.

.Basic facts about ordinal numbers

Let us recall a few basic facts about ordinal numbers. Because ordinal

numbers are strongly connected with sets (in fact they are some specific

sets), we need to use some fundamental notions of set theory.

We will consider sets as they are described by Zermelo-Fraenkel axioms

(see e.g. [2]). We are not interested in axiomatic systems here, so we only

informally present what is needed using ideas taken from [5].

84 JERZY MYCKA

Sets are collections of elements, which are themselves sets. So we have

to start our constructions with a crucial element of the empty set ∅. A set

y will be called a transitive set iff for every x ∈ y we have x ⊂ y. This means

that any transitive set has as its elements all members of its elements. Now

let us introduce a relation of partial order ≤y on a set y as the relation

satisfying for all x1, x2, x3 ∈ y the following conditions: 1) x1 ≤y x1 (reflex-

ivity); 2) x1 ≤y x2 and x2 ≤y x1 imply x1 = x2 (antisymmetry); 3) x1 ≤y x2

and x2 ≤y x3 imply x1 ≤y x3 (transitivity). A relation of partial order ≤y is

linear iff every two elements of y are comparable, i.e. for every x1, x2 ∈ y we

have x1 ≤y x2 or x2 ≤y x1. We finally arrive to the most important property

- a set y is well-ordered iff y is a linearly ordered set and every subset of y

has a minimum, more formally:

(∀z ⊆ y)(∃x1 ∈ z)(∀x2 ∈ z) x1 ≤y x2.

We are ready to define ordinal numbers (sometimes simply called ordi-

nals).

Definition 2.9. An ordinal number is a transitive set y well-ordered

by the relation ∈̄ defined in the following way:

(∀x1, x2 ∈ y)[x1∈̄x2 ⇐⇒ (x1 = x2) or (x1 ∈ x2)].

Now we can present examples of ordinal numbers.

Example 2.10. Let us start with the simplest ordinal number ∅ and

call it 0̄. Now we can construct the finite ordinals 1̄ = {0̄} = {∅}, 2̄ = {0̄, 1̄} =
{∅,{∅}}, . . ., n̄ = {0̄, 1̄, . . . , n − 1} = {∅,{∅}, . . . ,{∅,{∅}, . . . } . . .}

²
n−1

}.

The first infinite ordinal is denoted as ω = {0̄, . . . , n̄, . . .}, we can proceed

further with some examples of infinite ordinals, e.g. {0̄, . . . , n̄, . . . , ω}.

From this moment we will use the first Greek letters to denote ordinal

numbers. To obtain more clear picture of ordinals we will add a short

explanation about operations defined on ordinal numbers. The very first

one is the successor of an ordinal which can be defined as follows: S(α) =
α ∪ {α}. This operation can be used to distinguish two kinds of ordinal

numbers: α is called a successor ordinal iff there exists an ordinal β such

that α = S(β); α ≠ 0̄ is called a limit ordinal iff α is not a successor ordinal.

We can see that ω is the first limit ordinal.

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 85

In the following sections, where it will not lead to any confusion we will

identify natural numbers n ∈ N with their ordinal counterparts n̄ ∈ ω and

vice versa.

Usually we can define new operations on ordinals using inductive defi-

nitions based on the observation that every ordinal number is 0, a successor

ordinal S(α) or a limit ordinal β, in the latter case β is the least upper

bound of all its predecessors (in this sense ω is the least upper bound of

0̄, 1̄, . . . , n̄, . . .), which is equal to the union of all these predecessors. Let us

present definitions of this kind for addition, multiplication and exponenti-

ation (γ is a limit ordinal number):

α + 0̄ = α,

α + S(β) = S(α + β),
α + γ = ⋃

δ<γ
(α + δ);

α ⋅ 0̄ = 0̄,

α ⋅ S(β) = α ⋅ β + α,
α ⋅ γ = ⋃

δ<γ
(α ⋅ δ);

α0̄ = 1̄,

αS(β) = αβ ⋅ α,
αγ = ⋃

δ<γ
(αδ).

Using these operations we can construct the next ordinal numbers (still

having the countable list of elements). Let us start with some simple ex-

amples: ω + 1 = {0̄, . . . , n̄, . . . , ω}, ω + 2 = {0̄,n̄, . . . , ω, ω + 1} and then

we can obtain ω + ω = ω ⋅ 2 = {0̄, . . . , n̄, . . . , ω, ω + 1, . . . , ω + k, . . .}. Now we

can repeat the same process to build ω ⋅ 3, ω ⋅ 4 and so on to we can reach

ω ⋅ω = ω2. We can continue to build higher powers ω3, ω4 and even finding

ωω, but still we could proceed with such new ordinals as ωω
ω
, ωω

⋰
ω

. As the

next stage we can use the ordinal number ε0 obtained from the sequence

of such towers of powers and having the property ωε0 = ε0. This is not the

end of the road: we can consider next ordinal numbers reaching the first

uncountable ordinal ω1 and finding much more of ordinals in the further

(infinite) stages.

However we need only relatively short initial segment of ordinals placed

below ε0. For such small ordinal numbers we will use the special notation

for their description: namely Cantor normal form. Every non-zero ordinal

number α < ε0 can be uniquely written as

ωβ1 ⋅ c1 + ωβ2 ⋅ c2 +⋯ + ωβk ⋅ ck,

where k, c1, c2, . . . , ck are natural numbers, β1 > β2 > . . . > βk ≥ 0 are ordinals

and β1 < α.

Now we can use ordinals to measure order type of natural sets which

are well-ordered.

86 JERZY MYCKA

Definition 2.11. Let A ⊆ N be a set equipped with some well-ordering

relation ≤A. We will call the ordinal α order type of ⟨A,≤A⟩ iff there exists

one-to-one function f ∶ A→ α preserving order i.e such that for any x, y ∈ A

x ≤A y ⇐⇒ f(x)∈̄f(y).

Example 2.12. Let us start with a simple example. We will introduce

for the whole set N the following order

x ≤1 y ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x is an odd number and y is an even number,

or x, y are both odd and x ≤ y,
or x, y are both even and x ≤ y.

It is simple to observe that ≤1 is a well-order. The set N could be listed in

that order as follows

1,3, . . . ,2i + 1, . . . ,0,2,4, . . . ,2j,

Now let us define the function f ∶ N→ ω ⋅ 2:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

x−1
2 for x odd,

ω + x
2 for x even;

such a function is clearly one-to-one and preserves the order in the sense

given in Definition 2.11, so the structure ⟨N,≤1⟩ has the order type ω ⋅ 2.

Now let us consider the set A ⊆ N containing only non-zero powers of

prime numbers A = {pni ∶ i ∈ N, n ∈ N − {0}}, where pi = i-th prime number

counting indexes of primes from zero, i.e. p0 = 2, p1 = 3, p2 = 5, etc. We will

equip the set A with the order relation ≤2:

pni ≤2 p
m
j ⇐⇒

⎧⎪⎪⎨⎪⎪⎩

i < j (i.e. pi < pj)
or i = j and n ≤m.

The set A in that order appears as follows

{2,4, . . . ,2i, . . . ,3,9, . . . ,3k, . . . , . . . , pj , p
2
j , . . . , p

n
j , . . . , . . .}.

We construct the function between A and ω2 in the following manner

g(pni) = ω ⋅ i + (n − 1).

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 87

We could verify that g is one-to-one function from A to ω2 such that

pni ≤2 p
m
j ⇐⇒ g(pni)∈̄g(pnj),

hence ⟨A,≤2⟩ has order type ω2.

It is important to add that for every well-ordered set ⟨A,≤A⟩ there exists

a one-to-one function from A onto some ordinal α which preserves the order

(see [2]). This means that every well-ordered set has an order type.

.3 Order in recursively enumerable sets

Let us start with a description how we will introduce order relations into

recursively enumerable sets. Let us emphasise that from that point we will

restrict our attention only to infinite recursively enumerable sets.

Our motivation is based on the simple characterisation of Lemma 2.8:

the simplest kind of recursively enumerable sets (i.e. recursive sets) can

have all members of such sets computably listed as an increasing sequence.

However the more complicated pattern of listing is connected with non-

recursive sets.

In this section we will prove computability of many ingredients of well-

order inside recursively enumerable sets. Moreover using the following lem-

mas we will be able to present Corollary 3.11, which is the basis for a sepa-

ration of recursive and non-recursive recursively enumerable sets by means

of ordinal numbers.

The first result is a consequence of Lemma 2.8.

Lemma 3.1. Let us consider recursively enumerable, non-recursive set

A ⊆ N. Then for every one-to-one function fA ∶ N → N such that fA(N) =
A,f ∈ REC we have:

¬∃x0∀(x ≥ x0)[fA(x + 1) > fA(x)].

Proof. We will use reductio ad absurdum. Let us assume that there is

some function gA ∶ N→ N such that gA ∈ REC, gA(N) = A and

∃x1∀(x ≥ x1)[gA(x + 1) > gA(x)].

88 JERZY MYCKA

Then there exists x0 ≥ x1 such that

∀(x ≥ x0)[gA(x + 1) > gA(x)] and ∀(x < x0)[g(x) < g(x0)].

We can construct the following function g′A ∶ N ×N→ N:

g′A(y,0) = min{gA(z) ∶ z ≤ y};

g′A(y, x + 1) =
⎧⎪⎪⎨⎪⎪⎩

min{gA(z) > g′A(y, x) ∶ z ≤ y} x + 1 ≤ y,
gA(x + 1) x + 1 > y.

It is clear that g′A is defined by operations of recursion and bounded mini-

malisation on recursive functions, so g′A itself is recursive. According to this

definition g′′A(x) = g′A(x0, x) is a strictly increasing function as the function

of x (where x0 is taken from our assumption). Moreover g′′A(N) = A because

g′′ differs from gA only by a permutation of finite number of values. Hence

A is a recursive set - the contradiction. ◻

The above observation suggests that difficulty of a recursively enumer-

able set A is connected with the order of elements in the sequence generated

by the function fA ∈ REC such that fA(N) = A. For recursively enumer-

able sets which are recursive we have simply increasing sequence, when for

non-recursive recursively enumerable sets the pattern is more complicated.

Inspired by this fact we can introduce the specific relation for elements of

recursively enumerable sets.

Definition 3.2. Let A be an infinite recursively enumerable set and

fA ∈ REC satisfies fA(N) = A, fA is one-to-one. Then we can define levels

of A (with respect to fA) in the following way:

L0
fA

= {x0
0, . . . , x

0
i , . . .},

where its members are given as follows

x0
0 = fA(0),

x0
i+1 = min{y ∈ A ∶ y > x0

i and indexfA(y) > indexfA(x0
i)};

and the higher levels are defined recursively

Lj+1
fA

= {xj+1
0 , . . . , xj+1

i , . . .},

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 89

where its members are given analogously

xj+1
0 = min{y ∈ A ∶ y /∈

j

⋃
k=0

LkfA},

xj+1
i+1 = min{y ∈ A ∶ y /∈

j

⋃
k=0

LkfA and y > xj+1
i and indexfA(y) > indexfA(x

j+1
i)}.

Such a construction does not need to have infinitely many levels. It is

possible to have LjfA = ∅ for all j greater then some given k ∈ N. It is also

possible that on the last non-empty level the number of elements is finite.

Let us prove that this construction of levels is sufficient to exhaust all

elements of the recursively enumerable set A.

Lemma 3.3. Let A ⊆ N be a recursively enumerable set and fA ∈ REC

a one-to-one function that satisfies fA(N) = A. Then

A = ⋃
i∈ω
LifA .

Proof. It is sufficient to observe that every x ∈ A is equal to fA(y) for

some y ∈ N and we cannot start more than y + 1 levels on our way through

the segment (fA(0), . . . , fA(y)). Let us use the auxiliary sequence of levels

defined as M i
fA

= ⋃j∈{0,...,i}LjfA , then our x must belong to My
fA

.

In this way for every y ∈ N we obtain

{fA(0), . . . , fA(y)} ⊆My
fA

= ⋃
j∈{0,...,y}

LjfA .

Taking unions of both sides for all y ∈ ω we obtain

A ⊆ ⋃
j∈ω

LjfA .

Since it is obvious from the definition of LjfA that every LjfA ⊆ A, we finally

have A = ⋃i∈ω LifA . ◻
We will analyse the basic computational properties of such orders.

Lemma 3.4. Let A be recursively enumerable set such that A = fA(N),

where fA is a one-to-one recursive function, than the function

KfA(i, x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ LifA ,
0 x /∈ LifA

is A-recursive.

90 JERZY MYCKA

Proof. Let us observe that the first test involves checking whether

x ∈ A, which is obviously done by the A-recursive function KA. Then in

positive case (x ∈ A) we need to check successively x ∈ L0
fA
, . . . , x ∈ LifA . But

every such process is clearly computable. First we need to compare x with

the increasing sequence of elements x0
k from L0

fA
only to the first moment

when x0
k ≥ x. But elements x0

k of L0
fA

can be computably generated by an

enumeration of increasing values from fA(0), fA(1), If x0
k = x then the

answer is negative, otherwise, for some k, we have x0
k > x and we start the

second stage of the test.

In the same manner we compare x with the next elements x1
k taken from

L1
fA

. For this purpose we restart our listing of fA(0), fA(1), . . . but this

time we remember which elements were marked as belonging to L0
fA

. Now

we start with the first element fA(k1) which is smaller than its predecessor

fA(k1−1) and we construct the increasing sequence from generated elements

of f(A), which does not belong to the initial part of L0
fA

. We will proceed

only to the moment where x ≥ x1
k (in necessary cases we have to enhance

the computed initial segment of L0
fA

but always only about some finite

sequence of values).

We deal analogously with the next sequences taken from L2
fA
, . . . Li−1

fA
.

If in all these cases the answer is negative then we compare x with the

sequence taken from LifA to the moment when x ≥ xik for some k. If we have

x = xik then the final answer is positive, otherwise the answer is negative

one.

We will describe this process more formally. Let us create - adding them

successively on next stages - sets SifA and start them all empty except S0
fA

=
{fA(0)}. Now for any element fA(m) do the following test: if fA(m) >
maxS0

fA
then fA(m) is in L0

fA
and modify S0

fA
= S0

fA
∪ {fA(m)}, if not

then check fA(m) > maxS1
fA

(we take max∅ = −1) and in the positive case

do S1
fA

= S1
fA
∪ {fA(m)} otherwise continue for S2

fA
, . . . , SmfA . The element

fA(m) has to be added to one of these finite sets. In this way we can have

the initial segment of any LifA of any needed finite length. Simultaneously

checking fA(m) = x we are able to find for any x ∈ A its level.

It is important to observe that we can generate recursively elements

from LkfA by choosing increasing sequences from the sequence fA(0), . . . ,
fA(k), Hence checks for x on the different levels LifA are recursive,

because always executed only finite number of times.

Because all described operations can be translated into appropriate re-

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 91

cursive functions and the first step is A-recursive so the function KfA is

A-recursive too.

Let us observe that if we want to check whether x ∈ A belongs to some

non- existent level LjfA then this element would be found on the earlier

stage of the construction and we would obtain the negative (i.e. correct)

answer. ◻

For future use let us add some modification of KfA , namely

K∗
fA

(i, x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ LjfA for any j ≤ i,
0 otherwise;

such function can be defined by the operation of simple recursion on i from

the function KfA :

K∗
fA

(0, x) =KfA(0, x),
K∗
fA

(i + 1, x) =K∗
fA

(i, x) +KfA(i + 1, x).

From this description we obtain the following corollary.

Corollary 3.5. The function K∗
fA

is A-recursive.

Now we are ready to give the definition of the mentioned above relation.

Definition 3.6. Let A ⊆ N be an infinite recursively enumerable set

with a one-to-one recursive function fA such that fA(N) = A. Then we will

define the relation ≤fA⊆ A ×A for x ∈ LifA ⊆ A, y ∈ LjfA ⊆ A in the following

manner

x ≤fA y ⇐⇒ (i < j) or (i = j and x ≤ y).

To confirm that ≤fA is a partial order it is enough to substitute the

relation ≤fA into respective conditions for reflexivity, antisymmetry, transi-

tivity and check their obvious validity. It is also quite clear that every two

elements of A are comparable by ≤fA : they are either on different levels

LifA , L
j
fA
, i ≠ j or they are on the same level and can be compared through

the standard relation ≤. Moreover, we can prove the minimum property

for every subset of A. First let us observe that every subset B ⊆ A can be

divided into its levels LiB,fA = B∩LifA for i ∈ N. Some of these levels can be

empty but the non-empty levels are ordered by the standard well-ordered

relation ⟨N,≤⟩ on their indexes. So we can find the level Li0B,fA with the

92 JERZY MYCKA

minimal index given by i0 and every element of Li0B,fA is earlier (by the

definition of ≤fA) than any element from the rest of levels LjB,fA . Inside the

level Li0B,fA all elements are ordered by the usual relation ≤ (accordingly to

the definition of ≤fA) and consequently we can find the minimal element

in this subset and, moreover, this element is minimal for the whole set B.

These remarks give us the following consequence.

Theorem 3.7. The relation ≤fA for recursively enumerable set A ⊆ N
with a one-to-one recursive function fA such that fA(N) = A is a relation

of well-order.

Hence, using the above theorem and the mentioned property that every

well-ordered set has its order type we can obtain the fundamental corollary.

Corollary 3.8. Every infinite recursively enumerable set A with the

order ≤fA induced by a one-to-one recursive function fA such that fA(N) =
A has order type.

Definition 3.2 is constructed by using the levels LifA of the set A. It

would be helpful to determine in what sense we can compute some indexes

of given element.

Lemma 3.9. Let us denote by lfA , ifA ∶ N → N and vfA ∶ N × N → N
such functions that

lfA(x) =
⎧⎪⎪⎨⎪⎪⎩

j + 1 x ∈ LjfA ,
0 x /∈ A;

vfA(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x x ∈ LifA and

there exist exactly j elements x0, . . . , xj−1

such that ∀(0 ≤ k < j)[xk ∈ LifA and xk < x],
undefined otherwise;

ifA(x) =
⎧⎪⎪⎨⎪⎪⎩

0 x /∈ A,
j + 1 x ∈ LifA ⊆ A and vfA(i, j) = x.

Then the functions lfA , ifA are A-recursive, vfA is partial A-recursive

function, and, moreover, the order ≤fA (precisely: the characteristic func-

tion of this relation) is A-recursive.

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 93

Proof. It is sufficient to use the above defined function KfA and the

characteristic function KA of the set A to obtain:

lfA(x) =
⎧⎪⎪⎨⎪⎪⎩

0 KA(x) = 0,

1 + µy[KfA(y, x) = 1] otherwise.

Because the µ-operation is total in this context (if x ∈ A then there must be

some level containing x) this definition uses only recursive and A-recursive

(KA,KfA) components, so lfA is A-recursive too.

Now we will use the above result to obtain a straightforward conse-

quence about ≤fA . We will rewrite Definition 3.6 using A-recursive (or

recursive) functions in the following way: This can be done in the following

way:

K≤fA (x, y)=
⎧⎪⎪⎨⎪⎪⎩

1 x ≤fA y
0 otherwise

=
⎧⎪⎪⎨⎪⎪⎩

1 (lfA(x) < lfA(y)) ∨ (lfA(x) = lfA(y) ∧ x ≤ y),
0 otherwise.

The above expression can be simply transformed into more formal (and

less readable) form built from A-recursive and recursive functions, which

guarantees that ≤fA is A-recursive.

In the next step let us indicate that vfA(i, j) gives j-th element from the

increasing sequence built on the level LifA . The first step in a construction

of vfA is an analysis where we can find the smallest elements v′fA(i) of the

consecutive levels LifA . Of course v′fA(0) = fA(0); now we can find the

smallest element on the level Li+1
fA

as the first not included in the previous

levels L0
fA
, . . . , LifA , hence

v′fA(i + 1) = fA(µy[fA(y) /∈ L0
fA
∪ . . . ∪LifA]) = fA(µy[K

∗
fA

(i, fA(y)) = 0]).

In this way we have defined the partial A-recursive function v′fA - its par-

tiality is due to possibility that the set A with regard to ≤fA could have

only finite number of k non-empty levels, A-recursiveness is implied by only

recursive and A-recursive functions used in this definition done by means

of the µ-operation.

Having found the first elements on the all existing levels we can proceed

with the further elements on the same levels by a simple enumeration:

vfA(i,0) = v′fA(i),
vfA(i, j + 1) = µy[y ∈ LifA and y > vfA(i, j)]

= µy[KfA(i, y) = 1 and y > vfA(i, j)].

94 JERZY MYCKA

Once again we should note a possibility of partiality: either some level

LifA does not exists, then vfA(i,0) and consequently all vfA(i, j) for j > 0

are undefined or the last level has only finite number of members, then

minimalisation become undefined after finite number of steps. So, the above

method gives the function vfA as a partial A-recursive function.

The next useful function ifA(x) gives the index of x ∈ A on its proper

level. Hence ifA(x) informs us how far is x from the beginning of its level

lfA(x) ≠ 0. We can describe the computation of ifA in the following way

which can be simply coded as a formal recursive definition. First we will

check by KA whether x is in A, if not the answer is 0; otherwise we will

find the smallest i such that x ∈ LifA and later we will find the smallest j

such that vfA(i, j) = x. ◻
With these functions we can define (partial) functions and (total) pred-

icates which describe properties of elements of A with respect to the order

≤A.

Lemma 3.10. Let sfA ∶ N → N be a partial function such that sfA(x)
is the immediate successor of x with respect to the order ≤A; lifA ∶ N →
N be a partial function such that lifA(x) is the next limit number after

x with respect to ≤fA. Let KsfA
(x, y) be a (total) characteristic function

of the relation ‘y is the immediate successor of x’ and KlifA
(x, y) be a

(total) characteristic function of the relation ‘y is the the first limit number

after x’ (both with respect to ≤fA). Then sfA , lifA are partial A-recursive,

KsfA
,KlifA

are A-recursive.

Proof. Let us start with a construction of KsfA
(x, y). We have to test

whether both x, y are in A. If the answer is positive then we will check

lfA(x) = lfA(y). If indeed x, y are on the same level we have to do that

last test ifA(x) + 1 = ifA(y). We give the result 1 for KsfA
(x, y) if that

condition is satisfied.

For Kli(x, y) we will proceed in the similar way. We start by checking

x, y ∈ A, then in this condition is satisfied we have to see whether lfA(x)+1 =
lfA(y) and vfA(lfA(y),0) = y.

The above descriptions guarantee that KsfA
and KlifA

are A-recursive.

Now to define sfA , lifA we can simply write:

sfA(x) = µy∈A[KsfA
(x, y) = 1],

lifA(x) = µy∈A[KlifA
(x, y) = 1],

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 95

we will check the inside condition only in the case when KA(y) = 1. Of

course, such the definitions give us partial A-recursive functions. ◻

We can add that finding ‘the root’ x of any given element y of A i.e.

the least element of ⟨A,≤fA⟩ or the least limit element of ⟨A,≤fA⟩ such

that y = s(. . . s
´¹¹¹¹¸¹¹¹¹¹¶

k

(x) . . .) is A-recursive operation too. We can simply define

rfA(x) = vfA(lfA(x) − 1,0) + 1 for x ∈ A and rfA(x) = 0 otherwise. It is

equally simple to define A-recursive predecessor for x ∈ A:

pfA(x) =
⎧⎪⎪⎨⎪⎪⎩

x x = rfA(x),
vfA(lfA(x) − 1, ifA(x) − 2) otherwise.

Now we can add the more fundamental consequence of our previous

considerations.

Corollary 3.11. For any recursively enumerable set A and its one-to-

-one function fA ∈ REC we have the following restriction:

⟨A,≤fA⟩ ≤ ω2.

Proof. It suffices to define the function h from ⟨A,≤fA⟩ into ω2 in this

simple way:

h(x) = ω ⋅ (lfA(x) − 1) + ifA(x) − 1.

◻

Let us informally observe that we have obtained results guaranteeing

that the order of an infinite recursively enumerable set A given by ⟨A,≤fA⟩
has to be less than ω2. Now we will proceed with an analysis of restrictions

on the orders ⟨A,≤fA⟩ generated by recursiveness and non-recursiveness.

.4 Ordinal numbers of recursively enumerable sets

Up to this moment we have not got any absolute mapping of recursively

enumerable sets into ordinals: we have got only ordinal number for a set

A relatively to a function fA ∈ REC, fA(N) = A used to introduce well-

ordering into recursively enumerable A. Let us improve this situation. As

in the previous section we will consider only infinite recursively enumerable

sets.

96 JERZY MYCKA

Definition 4.1. Let us consider the class FA of functions fA ∈ REC

such that fA(N) = A and the enumerable class OrdA of order types for

all well-orderings ⟨A,≤fA⟩. Then we will call the least element of OrdA
recursive ordinal of the recursively enumerable set A and we will denote it

by α(A).

This definition is correct because each set of ordinals has always the

least element. We can start to analyse properties of α(A) for different sets.

Lemma 4.2. Any infinite recursively enumerable set A is recursive if

and only if α(A) = ω.

Proof. (⇐) This is obvious: α(A) = ω means there is the function

fA ∈ REC such that fA is an increasing function, hence A is recursive.

(⇒) If A is recursive then there is the recursive increasing function fA
such that fA(N) = A, hence for an infinite set A, α(A) has to be equal ω.

◻

Let us observe, that according to our constructions in the above case

we have the only one level L0
fA

.

Lemma 4.3. If a recursively enumerable set for some fA ∈ REC has the

order type of ⟨A,≤fA⟩ equal to ω ⋅n+k, where n, k ∈ N, n ≠ 0 then α(A) = ω.

Proof. Because a recursively enumerable set A satisfying the above

condition can be divided into n + 1 levels and every level corresponds to

a recursive set we obtain A as the finite union of recursive sets. Of course

such A has to be recursive. ◻

We obtain immediately the important fact.

Corollary 4.4. Every non-recursive recursively enumerable set A has

to satisfy α(A) ≥ ω2.

We have proved that every non-recursive recursively enumerable set has

its recursive ordinal not less than ω2. However Corollary 3.11 gives us the

inequality α(A) ≤ ω2 for any recursively enumerable set A ⊆ N. Hence we

obtain the final result.

Theorem 4.5. A recursively enumerable set A is non-recursive if and

only if α(A) = ω2.

WELL-ORDERING OF ENUMERATIONS OF RECURSIVELY ENUMERABLE SETS 97

Proof. If A is non-recursive recursively enumerable set then Corollaries

4.4 and 3.11 gives α(A) = ω2. If A is recursively enumerable and α(A) = ω2

then α(A) > ω ⋅n+k for any n, k ∈ N and in that case A cannot be recursive.

◻

Let us recapitulate the obtained results: the above presented general-

isation of monotonicity of recursive functions generating recursively enu-

merable sets gives us the natural ordinal ω2. It seems possible to modify

functions ≤fA by regarding additional comparisons between roots of the

levels; we will consider this case in the next paper presenting a different

structure of ordinals for subsets of the class of recursively enumerable sets.

.References

[1] P. Clote, Handbook of Computability Theory, Studies in Logic and the Foundations

of Mathematics, Elsevier, 1999.

[2] T. Jech, Set Theory, Springer Monographs in Mathematics, Springer, 2006.

[3] G. Kreisel, On the interpretation of non-finitist proofs I, II, Journal of Symbolic

Logic 16,17 (1952), 241–267, 43–58.

[4] P. Odifreddi, Classical Recursion Theory, Studies in Logic and the Foundations of

Mathematics, North Holland, 1989.

[5] J. Roitman, Introduction to Modern Set Theory, Virginia Commonwealth Univer-

sity, 2011.

[6] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical

Logic, Springer, 1987.

[7] S. S. Wainer, A classification of the ordinal recursive functions, Archiv fur Mathe-

matische Logik und Grundlagenforschung 13:3–4 (1970), 136–153.

[8] R. Weber, Computability Theory, Student Mathematical Library, American Math-

ematical Society, 2012.

Institute of Mathematics

University of Maria Curie-Sk lodowska

pl. M. Curie-Sk lodowskiej 1

20-709 Lublin, Poland

jerzy.mycka@umcs.lublin.pl

