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.1 Introduction

We understand by an intuitionistic modal logic any subset of formulas in

a propositional language Lm endowed with a set of unary modal operators

M containing all the theorems of intuitionistic propositional logic Int, and

closed under the rules of Modus Ponens, substitution and the regularity rule

φ→ α/mφ→ mα, for each unary operator m ∈M . In the literature exist

several intuitionistic modal logics. There are logics with a necessity modal

operator �, as the basic intuitionistic modal logic IntK� (see [19] or [26]).

Extensions of IntK� was studied in [16], [19], [20], and [22]. Also we have

a basic intuitionistic modal logic IntK♦ in the language L♦, and defined

as the smallest logic to contains the axioms ♦(p ∨ q)↔ ♦p ∨ ♦q and ¬♦⊥.

Extensions of IntK♦ was studied in [12], [19], [20], and [26]. We can also

define a logic IntK�♦, with the modal operators � and ♦, as the smallest

logic in the language L�♦ containing both IntK� and IntK♦. Extensions

of IntK�♦ was studied in [1], [2], [14], [13], [19], and [20]. Just as Heyting

algebras are the algebraic counterpart of Int, Heyting algebras with modal

operators are the algebraic counterpart of the intuitionictic modal logics

IntK�, IntK♦ and IntK�♦.

It is known that the variety Hil of Hilbert algebras is the algebraic

semantic of the positive implicative fragment Int→ of the intuitionistic

propositional calculus Int (see [11], [18] or [24]). So, it is natural to ask

for the implicative reducts of some intuitionistic modal logics. Again here

we have multiple possibilities. For example, we can studied the fragments

{→,�} and {→,∨,♦} of the intuitionistic modal logics IntK� and IntK♦,

respectively. Another interesting possibility is to study some {→,∨,�,♦}-
fragments of IntK�♦, or the intuitionitic modal logic FS�♦ defined by

Fischer-Servi in [14]. In this paper we will start studying the algebraic

semantic of the {→,�}-fragment of the intuitionistic normal modal logic

IntK�. This fragment is denoted by IntK→� . The class of algebras associate

with IntK→� is the variety Hil� of Hilbert algebras with a necessity modal

operator �. We note that the variety of modal Tarski algebras studied in

[5] is the algebraic semantics of the {→,�}-fragment of the classical modal

logic K, and thus is a subvariety of Hil�.

The paper is organized as follows. In Section 2 we will recall the defi-

nitions and some basic properties of Hilbert algebras and we will recall the

topological representation and duality for Hilbert algebras developed in [9].
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Also, we will recall the relational semantic of the implicational fragment

of intuitionistic logic defined by R. Kirk in [21]. In Section 3 we will in-

troduce the Hilbert algebras with a unary operator �, or H�-algebras for

short. We will develop the topological representation and duality for H�-

algebras using the simplified representation given in [9]. In Section 4 we

shall characterize the H�-algebras that satisfy certain equations by means

of first-order conditions defined in the dual space. Each of these varieties

corresponds to an axiomatic extension of IntK→� . In Section 5 we will show

that some implicational modal logics are canonical. Finally, in Section 6,

we shall determine the simple and subdirectly irreducible algebras of some

varieties of H�-algebras.

.2 Preliminaries

In this section we will fix the terminology adopted in this paper.

Definition 2.1. [11] A Hilbert algebra is an algebra A = 〈A,→, 1〉 of

type (2, 0) such that the following axioms hold in A:

1. a→ a = 1,

2. 1→ a = a,

3. a→ (b→ c) = (a→ b)→ (a→ c),

4. (a→ b)→ ((b→ a)→ a) = (b→ a)→ ((a→ b)→ b).

The variety of Hilbert algebras is denoted by Hil. It is easy to see that

the binary relation ≤ defined in a Hilbert algebra A by a ≤ b if and only if

a→ b = 1 is a partial order on A with greatest element 1.

Given a Hilbert algebra A and a sequence a, a1, . . . , an ∈ A, we define:

(a1, . . . , an; a) =

{
a1 → a if n = 1,

a1 → (a2, . . . , an; a) if n > 1.

A subset F ⊆ A is an implicative filter or deductive system of A if

1 ∈ F , and if a, a → b ∈ F then b ∈ F . The set of all implicative filters of

a Hilbert algebra A is denoted by Fi (A). The implicative filter generated
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by a set X is 〈X〉 =
⋂
{F ∈ Fi(A) : X ⊆ F}. If X = {a}, then we write

〈a〉 = {b ∈ A : a ≤ b}. The implicative filter generated by a subset X ⊆ A

can be characterized as the set

〈X〉 = {a ∈ A : ∃ {a1, . . . , an} ⊆ X : (a1, . . . , an; a) = 1} .

Let F ∈ Fi(A) − {A}. We will say that F is irreducible if and only if

for any F1, F2 ∈ Fi(A) such that F = F1 ∩ F2, it follows that F = F1 or

F = F2. The set of all irreducible implicative filters of a Hilbert algebra A

is denoted by X(A). Let us recall that an implicative filter F is irreducible

iff for every a, b ∈ A such that a, b /∈ F there exists c /∈ F such that a, b ≤ c
(see [4], [11] or [24]). A subset I of A is called an order-ideal of A if b ∈ I
and a ≤ b, then a ∈ I, and for each a, b ∈ I there exists c ∈ I such that

a ≤ c and b ≤ c. The set of all order-ideals of A will denoted by Id(A).

The following is a Hilbert algebra analogue of Birkhoff’s Prime Filter

Lemma and it is proved in [6]. We note that in [21] is used a similar theorem

(see also [27]), but with the notion of a-maximal filter. It is not difficult

to check that every a-maximal filter is irreducible, but the converse is not

generally valid.

Theorem 2.2. Let A be a Hilbert algebra. Let F ∈ Fi(A) and let

I ∈ Id(A) such that F ∩ I = ∅. Then, there exists x ∈ X(A) such that

F ⊆ x and x ∩ I = ∅.

A bounded Hilbert algebra is a Hilbert algebra A with an element 0 ∈ A
such that 0→ a = 1, for every a ∈ A. The notation ¬a means a→ 0. The

variety of bounded Hilbert algebras is denoted by Hil0.

Lemma 2.3. Let A ∈ Hil0. Then,

1. If a ∈ x, then ¬a /∈ x, for every x ∈ X(A).

2. If ¬a /∈ y then there exists x ∈ X(A) such that y ⊆ x and a ∈ x, for

all y ∈ X(A).

Proof. (1) Suppose that ¬a ∈ x. So, a→ 0 ∈ x. As a ∈ x, we get that

0 ∈ x, which is impossible because x is a proper implicative filter. (2) This

is an immediate consequence of Theorem 2.2. �

For a partially ordered set 〈X,≤〉 and Y ⊆ X, let

[Y ) = {x ∈ X : ∃y ∈ Y : y ≤ x}
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and

(Y ] = {x ∈ X : ∃y ∈ Y : x ≤ y} .

If Y is the singleton {y}, then we write [y) and (y] instead of [{y}) and

({y}], respectively. We call Y an upset (resp. downset) if Y = [Y ) (resp.

Y = (Y ]). The set of all upset subsets of X is denoted by Up (X). It is

known that 〈Up (X) ,⇒≤, X〉 is a Hilbert algebra where the implication

⇒≤ is defined by

U ⇒≤ V = (U ∩ V c]c = {x : [x) ∩ U ⊆ V } (1)

for U, V ∈ Up (X).

An H-set or expanded Kripke frame (in the terminology of Kirk in [21])

is a triple 〈X,≤,K〉 where 〈X,≤〉 is a poset and ∅ 6= K ⊆ P (X). Every

H-set defines a structure HK (X) as follows:

HK (X) = {U ∈ P (X) : ∃W ∈ K and ∃V ⊆W (U = W ⇒≤ V )} . (2)

As is proved in [21] and [7] the triple HK (X) = 〈HK (X) ,⇒≤, X〉 is

a Hilbert algebra and a subalgebra of 〈Up (X) ,⇒≤, X〉. The algebra

HK (X) is called the dual Hilbert algebra of 〈X,≤,K〉.
Consider a pair 〈X,K〉 where X is a set and ∅ 6= K ⊆ P (X). We define

a relation ≤K⊆ X ×X by

x ≤K y iff ∀W ∈ K(x /∈W then y /∈W ). (3)

It is easy to see that ≤K is a reflexive and transitive relation. For each

Y ⊆ X, let

sat(Y ) =
⋂
{W : Y ⊆W & W ∈ K}

and

cl(Y ) =
⋂
{X −W : Y ∩W = ∅ & W ∈ K} .

When K is a basis of a topology T defined on X, the relation ≤K is the

specialization dual order of X, sat(Y ) is the saturation of Y , and cl(Y ) is

the closure of Y . We note that ≤K can be defined in terms of the operator cl

as follows: x ≤K y iff y ∈ cl({x}) = cl(x). If X is T0 then the relation ≤K is

a partial order. Moreover, if X is T0 then cl(Y ) = [Y )≤K , sat(Y ) = (Y ]≤K ,

and every open (resp. closed) subset is a downset (resp. upset) respect

to ≤K.
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Let X be a topological space. We recall that a subset Y ⊆ X is ir-

reducible provided for any closed subsets Y1 and Y2, if Y = Y1 ∪ Y2 then

Y = Y1 or Y = Y2. A topological space X is sober if, for every irreducible

closed set Y , there exists a unique x ∈ X such that cl(x) = Y . Notice that

a sober space is automatically T0. A topological space 〈X, T 〉 with a base

K we will denoted by 〈X, TK〉 or simply by 〈X,K〉. Recall that the relation

≤K defined in (3) is an order when the space is T0. From now on, for every

sober topological space 〈X,K〉 we shall write ≤ instead of ≤K.

Definition 2.4. [9] A Hilbert space or H-space is a topological space

〈X,K〉 such that:

H1. K is a base of open and compact subsets for the topology TK on X,

H2. For every A,B ∈ K, sat(A ∩Bc) ∈ K,

H3. 〈X,K〉 is sober.

Let A be a Hilbert algebra. Let us consider the poset 〈X(A),⊆〉 and

the mapping ϕ : X(A)→ Up (X(A)) defined by

ϕ(a) = {x ∈ X(A) : a ∈ x} .

In [8] it was proved that the family KA = {ϕ (a)c : a ∈ A} is a basis for

a topology TKA
and the pair 〈X(A),KA〉 is an H-space, called the dual

space of A. If A is a bounded Hilbert algebra, then ϕ(0) = ∅. So, X(A) =

ϕ(0)c ∈ KA and consequently the H-space 〈X (A) ,KA〉 is compact.

If 〈X,K〉 is an H-space, then for each x ∈ X, the set

ε (x) = {U ∈ D (X) : x ∈ U}

belongs to X (D (X)), where D(X) = {U : U c ∈ K}. Thus, the mapping

ε : X → X (D (X)) is well-defined and it is an homeomorphism between

the topological spaces 〈X,K〉 and
〈
X(D(X)),KD(X)

〉
.

Let A and B be Hilbert algebras. A mapping h : A → B is a semi-

homomorphism if h(1) = 1, and h(a → b) ≤ h(a) → h(b), for all a, b ∈ A.

A mapping h : A → B is a homomorphism if h is a semi-homomorphism

such that h(a) → h(b) ≤ h(a → b), for all a, b ∈ A. Note that a semi-

homomophism is a monotone map.
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Lemma 2.5. Let A and B be Hilbert algebras. Let h : A → B be a

semi-homomorphism. If x ∈ X(A), then (h(xc)] ∈ Id(B).

Proof. Assume that x ∈ X(A). Let a, b ∈ (h(xc)]. Then there exist

c, d /∈ x such that a ≤ h(c) and b ≤ h(d). Since x is irreducible, there exists

e /∈ x such that c, d ≤ e, and as h is monotonic, a ≤ h(e) and b ≤ h(e). So,

h(e) ∈ (h(xc)], and thus (h(xc)] is an order-ideal. �

We denote by HilS the category ofH-algebras and semi-homomorphisms

between Hilbert algebras. Similarly, we denote by HilH the category of H-

algebras and homomorphisms. Clearly, HilH is a subcategory at HilS.

Definition 2.6. Let 〈X1,K1〉 and 〈X2,K2〉 be H-spaces. Let us con-

sider a relation R ⊆ X1×X2. We say that R is an H-relation if R−1(U) ∈
K1, for every U ∈ K2, and R(x) is a closed subset of X2, for all x ∈ X1.

An H-relation R ⊆ X1×X2 is an H-functional relation if for each pair

(x, y) ∈ R, there exists z ∈ X1 such that x ≤ z and R(z) = [y).

SR (SRF) denote the category whose objects are H-spaces and whose

morphisms are H-relations (H-functional relations). By Theorem 3.5 and

Theorem 3.7 in [8] we have that the categories SR (SRF) and HilS ( HilH)

are dually equivalents.

.3 H�-algebras: representation and duality

In this section we shall define the Hilbert algebras with a modal operator

of necessity �.

Definition 3.1. A Hilbert algebra with a modal operator �, or H�-al-

gebra for short, is a pair A = 〈A,�〉 where A is a Hilbert algebra and � is a

semi-homomorphism defined on A, i.e., �1 = 1, and �(a→ b) ≤ �a→ �b,
for all a, b ∈ A.

We denote by Hil� the variety of H�-algebras. The variety Hil� corre-

spond to the {�,→}-reduct of the variety of Heyting algebras with a modal

operator � (see, for example [10]). Moreover, the variety of Tarski modal

algebras introduced in [5] is a subvariety of Hil�.

Let A, B ∈ Hil�. A map h : A → B is a �-semi-homomorphism

(�-homomorphism) if h is a semi-homomorphism (homomorphism) such
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that h(�a) = �(h(a)), for all a ∈ A. We denote by Hil�S the category of

H�-algebras with �-semi-homomorphisms and by Hil�H the category of

H�-algebras with �-homomorphisms.

LetX be a set andQ a binary relation defined onX. For each U ∈ P(X)

consider the set

�Q(U) = {x ∈ X : Q(x) ⊆ U}.

Example 3.2. [19] An intuitionistic modal Kripke frame is a relacional

structure F = 〈X,≤, Q〉, where 〈X,≤〉 is a poset, and Q is a binary relation

defined on X such that ≤ ◦Q ⊆ Q◦ ≤, where ◦ is the composition of

relations. It is easy to see that 〈Up (X) ,⇒≤,∩,∪,�Q, ∅, X〉 is a Heyting

algebra with a modal operator �. Thus, 〈Up (X) ,⇒≤,�Q, X〉 ∈ Hil�.

Definition 3.3. A triple 〈X,K, Q〉 is an H�-frame if 〈X,≤〉 is a poset

and (≤ ◦Q) ⊆ (Q◦ ≤), where ≤ is ≤K.

An H�-frame 〈X,K, Q〉 is a general H�-frame if:

1. sat(U ∩ V c) ∈ K, for every U, V ∈ K.

2. Q−1(U) ∈ K, for every U ∈ K.

Lemma 3.4. If F = 〈X,K, Q〉 is a general H�-frame, then

A(F) = 〈Up (X) ,⇒≤,�Q, X〉 ∈ Hil�,

and 〈D(X),�Q〉 is a subalgebra of A(F).

Proof. As 〈X,≤〉 is a poset, we have that 〈Up (X) ,⇒≤, X〉 is a Hilbert

algebra. We note that �Q(U) ∈ Up (X), for every U ∈ Up (X), be-

cause (≤ ◦Q) ⊆ (Q◦ ≤). Moreover, as �Q(U) = Q−1(U c)c we get that

�Q(U) ∈ D(X), because Q−1(U c) ∈ K for every U ∈ D(X). Finally, it

is immediate to see that 〈D(X),⇒≤K , X〉 is a subalgebra of the Hilbert

algebra 〈Up (X) ,⇒≤K , X〉. �

Let A ∈ Hil�. For each n ≥ 0, n ∈ N, we define inductively the formula

�na as �0a = a and �n+1a = � (�na). Let S be a subset of A. We define

the following sets:

�(S) = {�a ∈ A : a ∈ S} and �−1(S) = {a ∈ A : �a ∈ S}.

We note that �−1(F ) ∈ Fi(A), when F ∈ Fi(A). We note also that by

Lemma 2.5 (�(xc)] is an order-ideal, when x ∈ X(A).
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Lemma 3.5. Let A ∈ Hil�. Let F ∈ Fi(A) and a ∈ A. Then �a /∈ F
iff there exists x ∈ X(A) such that �−1(F ) ⊆ x and a /∈ x.

Proof. The proof follows taking into account that �−1(F ) is an im-

plicative filter and Theorem 2.2. �

Let A be an H�-algebra. By the results given in [8], the binary relation

QA ⊆ X(A)×X(A) given by

(x, y) ∈ QA iff �−1(x) ⊆ y,

for x, y ∈ X(A), is the H-relation associated with the modal operator �.

So, Q−1A (U) ∈ KA, for every U ∈ KA. It is easy to see that QA satisfies the

condition QA = (⊆ ◦QA) = (QA◦ ⊆). Moreover, by Proposition 2.1 in [8]

we have that if U, V ∈ KA, then sat(U ∩ V c) ∈ KA. Thus, the triple

F(A) = 〈X(A),KA, QA〉 ,

is a general H�-frame.

Now we shall define the H�-spaces, and we will see that its structures

are a particular class of general H�-frames.

Definition 3.6. A triple 〈X,K, Q〉 is an H�-space if 〈X,K〉 is an

H-space and Q ⊆ X ×X is an H-relation.

As Q is an H-relation in every H�-space 〈X,K, Q〉, by Teorem 3.1.(1)

in [8] we get that (≤ ◦Q) = Q = (Q◦ ≤) is valid in any H�-space. Conse-

quently, we have the following result.

Lemma 3.7. Every H�-space is a general H�-frame.

Thus, if 〈X,K, Q〉 is an H�-space, then 〈D(X),�Q〉 is an H�-algebra.

Theorem 3.8 (of Representation). For each H�-algebra 〈A,�〉 there

exists an H�-space 〈X,K, Q〉 such that 〈A,�〉 is isomorphic to 〈D(X),�Q〉.

Proof. Since 〈X(A),KA〉 is an H-space and QA is an H-relation, we

have that 〈X(A),KA, QA〉 is an H�-space. By Lemma 3.5, we have that

ϕ(�a) = �QA
(ϕ(a)), for each a ∈ A. So, 〈D(X (A)),�QA

〉 is an H�-alge-

bra. By Theorem 2.1 in [8] we get that ϕ is a Hilbert isomorphism. Thus,

〈A,�〉 is isomorphic to 〈D(X(A)),�QA
〉. �
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Definition 3.9. Let 〈X1,K1, Q1〉 and 〈X2,K2, Q2〉 be H�-spaces and

R ⊆ X1 × X2 be an H-relation. We say that R is an H�-relation if R

commutes with Q, i.e., Q1 ◦R = R ◦Q2.

If R ⊆ X1×X2 is an H-functional relation such that R commutes with

Q, then R is an H�-functional relation.

M�SR denote the category of H�-spaces and H�-relations. We will

prove that this category is dually equivalent to Hil�S.

Let 〈X,K〉 an H-space and consider the map ε : X → X (D(X)) defined

by ε (x) = {U ∈ D (X) : x ∈ U}. By Corollary 3.1 in [8] we get that the

relation ε∗ ⊆ X ×X (D(X)) given by

(x, P ) ∈ ε∗ iff ε(x) ⊆ P

is an H-relation. Now, we will prove that ε∗ is a morphism of H�-spaces.

Theorem 3.10. Let 〈X,K, Q〉 an H�-space. Then, the mapping ε is an

homeomorphism between the H�-spaces 〈X,K, Q〉 and 〈X(D(X)),KD(X),

QD(X)〉 such that

(x, y) ∈ Q iff (ε(x), ε(y)) ∈ QD(X),

where QD(X) is the H�-relation associated with the modal operator �Q.

Moreover, the relation ε∗ is a morphism of H�-spaces.

Proof. As 〈X,K, Q〉 is an H�-space, 〈D (X) ,�Q〉 is an H�-algebra

and by Theorem 3.8, the triple
〈
X (D (X)) ,KD(X), QD(X)

〉
is an H�-space

where (F, P ) ∈ QD(X) iff �−1Q (F ) ⊆ P , for all F, P ∈ X(D(X)). By The-

orem 2.2 in [8] we get that ε is an homeomorphism between the H-spaces

〈X,K〉 and
〈
X (D (X)) ,KD(X)

〉
, being KD(X) = {ϕ(U)c : U ∈ D(X)}.

Let (x, y) ∈ Q. We prove that (ε(x), ε(y)) ∈ QD(X), i.e., �−1Q (ε(x)) ⊆
ε(y). Let U ∈ D(X) such that U ∈ �−1Q (ε(x)). So, Q(x) ⊆ U and as

y ∈ Q(x), we get that y ∈ U . This is, U ∈ ε(y). Now, assume that

�−1Q (ε(x)) ⊆ ε(y) and suppose that (x, y) /∈ Q. As Q(x) is a closed subset

of 〈X,K〉, there exists U ∈ D(X) such that Q(x) ⊆ U and y /∈ U . This is,

U ∈ �−1Q (ε(x)) and U /∈ ε(y), which contradicts the assumption.

Now, we will prove that Q ◦ ε∗ = ε∗ ◦ QD(X). Let x ∈ X and P ∈
X (D(X)) such that (x, P ) ∈ Q ◦ ε∗. So, there exists y ∈ X such that

(x, y) ∈ Q and (y, P ) ∈ ε∗. This is, ε(y) ⊆ P . As (x, y) ∈ Q, we have
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(ε(x), ε(y)) ∈ QD(X), i.e., �−1Q (ε(x)) ⊆ ε(y) ⊆ P . Thus, (ε(x), P ) ∈ QD(X).

It is clear that (x, ε(x)) ∈ ε∗. So, (x, P ) ∈ ε∗ ◦ QD(X). Thus, Q ◦ ε∗ ⊆
ε∗◦QD(X). Assume that (x, P ) ∈ ε∗◦QD(X). So, there exists F ∈ X (D(X))

such that ε(x) ⊆ F and �−1Q (F ) ⊆ P . As ε is onto, there exists f, p ∈ X
such that F = ε(f) and P = ε(p). So, �−1Q (ε(x)) ⊆ �−1Q (ε(f)) ⊆ ε(p).

Then, (ε(x), ε(p)) ∈ QD(X) and consequently, (x, p) ∈ Q. It is clear that

(p, P ) ∈ ε∗. So, (x, P ) ∈ Q ◦ ε∗. �

In [8] it was proved that if 〈X1,K1〉 and 〈X2,K2〉 are H-spaces and

R ⊆ X1 × X2 is an H-relation then the mapping hR : D(X2) → D(X1)

defined by

hR(U) = {x ∈ X1 | R(x) ⊆ U}

is a semi-homomorphism.

Theorem 3.11. Let 〈X1,K1, Q1〉 and 〈X2,K2, Q2〉 be H�-spaces and

R ⊆ X1 ×X2 be an H�-relation. Then, hR is a morphism of Hil�S.

Proof. We will prove that hR(�Q2(U)) = �Q1(hR(U)), for each U ∈
D(X2). Let x ∈ X1. Then

x ∈ hR(�Q2(U)) iff R(x) ⊆ �Q2(U) iff Q2(R(x)) ⊆ U
iff R(Q1(x)) ⊆ U iff ∀z ∈ Q1(x)(R(z) ⊆ U)

iff Q1(x) ⊆ hR(U) iff x ∈ �Q1(hR(U)).

�

By the above Theorem and Theorem 3.7 in [8], we have the following

result.

Corollary 3.12. Let 〈X1,K1, Q1〉 and 〈X2,K2, Q2〉 be H�-spaces and

R ⊆ X1 × X2 be an H�-functional relation. Then, hR is a morphism of

Hil�H.

Let A, B be Hilbert algebras and h : A→ B be a semi-homomorphism.

In [8] it was proved that the relation Rh ⊆ X(B)×X(A) defined by

(x, y) ∈ Rh iff h−1(x) ⊆ y

is an H-relation. Now, we will study Rh when h is a semi-homomorphism

defined between H�-algebras that commutes with �.
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Theorem 3.13. Let A,B ∈ Hil� and let h : A → B be a �-semi-

homomorphism. Then, Rh is a morphism of M�SR.

Proof. If we prove that Rh ◦ QA = QB ◦ Rh, the assertion follows.

Let x ∈ X(B) and y ∈ X(A) such that (x, y) ∈ Rh ◦ QA. So, there exists

z ∈ X(A) such that z ∈ Rh(x) and (z, y) ∈ QA, i.e., h−1(x) ⊆ z and

�−1(z) ⊆ y. Consider the implicative filter �−1(x) and the order-ideal

(h(yc)] of B. Suppose that there exists a ∈ �−1(x) ∩ (h(yc)]. So, �a ∈ x
and there exists b ∈ yc such that a ≤ h(b). As �a ≤ �(h(b)) = h(�b), we

get that h(�b) ∈ x. Thus, �b ∈ z and so, b ∈ y, which is a contradiction.

Thus, �−1(x)∩ (h(yc)] = ∅. So, there exists w ∈ X(B) such that �−1(x) ⊆
w and (h(yc)]∩w = ∅. This is, there exists w ∈ X(B) such that w ∈ QB(x)

and h−1(w) ⊆ y, i.e., (w, y) ∈ Rh. Therefore, y ∈ Rh(QB(x)). Thus,

Rh ◦QA ⊆ QB ◦Rh. The proof of the other inclusion is similar. �

By Theorem 3.13 and Theorem 3.7 in [8] we have the following result.

Corollary 3.14. Let A,B ∈ Hil� and let h : A→ B be a �-homomor-

phism. Then Rh is an H�-functional relation.

From Theorem 3.11, we conclude that the functor D :M�SR → Hil�S
defined by

D(X) = 〈D(X),�Q〉 if 〈X,K, Q〉 is an H�-space,

D(R) = hR if R is an H�-relation.

is a contravariant functor. By Remark 3.1 in [8], Theorem 3.8 and Theorem

3.13, we conclude that the functor X : Hil�S →M�SR defined by

X(A) = 〈X(A),KA, QA〉 if A is an H�-algebra,

X(h) = Rh if h is a �-semi-homomorphism

is a contravariant functor. From the Lemmas 3.4 and 3.5 in [8] and Theo-

rems 3.8 and 3.10, we give the following result.

Theorem 3.15. The categories Hil�S and M�SR are dually equiva-

lent.

Corollary 3.16. The category Hil�H is dually isomorphic to the cate-

gory of H�-spaces with H�-functional relations.
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.4 Some subvarieties of H�-algebras

The variety of H�-algebras generated by a finite set of identities Γ will

be denoted by Hil� + {Γ}. We shall consider some particular varieties of

H�-algebras. These varieties are the algebraic counterpart of extensions

of the implicative fragments of the intuitionistic modal logic IntK�. Let

us consider the following identities:

S a→ �a ≈ 1,

Sn a→ �na ≈ 1,

T �a→ a ≈ 1,

4 �a→ �2a ≈ 1,

wD �2a→ �a ≈ 1,

5 (�a→ �b)→ �(�a→ �b) ≈ 1,

6 �2a→ �a ≈ 1.

Remark 4.1. It is not hard to prove that Hil� + {5} and Hil� + {S}
are subvarieties of Hil� + {4}.

Following the standard notation, we shall identify two important sub-

varieties of Hil�:

Hil�S4 = Hil� + {T,4},
Hil�S5 = Hil� + {T,5}.

It is clear that Hil�S5 is subvariety of Hil�S4. The variety Hil�S4 is a gen-

eralization of the topological o closure Boolean algebras, and the variety

Hil�S5 is a generalization of the monadic Boolean algebras. Similar to the

proven in [5], each one of the previous identities are characterized by means

of first-order conditions.

Let Q be a binary relation defined on a set X. For each n ≥ 0 we

define inductively the relation Qn as follows: (x, y) ∈ Q0 iff x = y, and

(x, y) ∈ Qn+1 = Qn ◦ Q, where ◦ is the composition of relations. Also we

define the binary relation Q∗ =
⋃
{Qn : n ≥ 0}.

The next result is a generalization of Lemma 3.5 applied to irreducible

implicative filters.

Lemma 4.2. Let A ∈ Hil� and let 〈X,K, Q〉 be its dual space. Let

x ∈ X and a ∈ A. For each n ∈ N, �na /∈ x iff there exists y ∈ X such

that (x, y) ∈ Qn and a /∈ y.



60 SERGIO A. CELANI AND DANIELA MONTANGIE

Proof. The proof is by induction on n. It is inmediatly for n = 0.

Assume that �na /∈ x implies that there exists y ∈ X such that (x, y) ∈ Qn
and a /∈ y. Suppose that �n+1a /∈ x. This is, � (�na) /∈ x. By Lemma 3.5,

there exists y ∈ X such that �−1(x) ⊆ y and �na /∈ y. By assumption,

there exists z ∈ X such that (y, z) ∈ Qn and a /∈ z. Since (x, y) ∈ Q and

(y, z) ∈ Qn, we get that (x, z) ∈ Qn+1.

Consider that if there exists y ∈ X such that (x, y) ∈ Qn and a /∈ y,

then �na /∈ x. Suppose that (x, y) ∈ Qn+1 and a /∈ x. So, there exists

z ∈ X such that (x, z) ∈ Qn and (z, y) ∈ Q. Therefore, �−1(z) ⊆ y and as

a /∈ y, we have that �a /∈ z. Thus, (x, z) ∈ Qn and �a /∈ z. By assumption,

�n+1a /∈ x. �

Let 〈X,K, Q〉 be an H�-space. Following the notation used in [19], we

denote by Φ and Φ′ the next first-order conditions:

Φ ⇔ ∀x∀y [xQy ∧ yQz ⇒ ∃w(x ≤ w ∧ wQz ∧ ∀v(wQv ⇒ yQv))] .

Φ′ ⇔ ∀x∀y [xQy ∧ yQz ⇒ ∃w(x ≤ w ∧ wQz ∧ yQw)] .

Remark 4.3. Let 〈X,K, Q〉 be an H�-space. Note that Φ′ (or Φ)

implies the transitivity of Q. In fact. Let x, y, z ∈ X such that xQy

and yQz. By Φ′, there exists w ∈ X such that x ≤ w, wQz and yQw.

By Lemma 3.7, (x, z) ∈ Q. This result us allows to prove that if Q is

reflexive then, Φ′ and Φ are equivalent. For this is enough to show that

∀v(wQv ⇒ yQv) ⇔ yQw. From left to right we use wQw. For the other

direction, suppose that yQw and wQv, for every v ∈ X and use that Φ′

implies the transitivity of Q.

Theorem 4.4. Let A ∈ Hil� and let 〈X,K, Q〉 be its dual space. Then:

1. A � a→ �a ≈ 1 iff ∀x∀y (xQy ⇒ x ⊆ y).

2. A � a→ �na ≈ 1 iff ∀x∀y(xQny ⇒ x ⊆ y), with n ∈ N.

3. A � �a→ a ≈ 1 iff Q is reflexive.

4. A � �a→ �2a ≈ 1 iff Q is transitive.

5. A � �2a→ �a ≈ 1 iff Q is weakly dense, i.e.,

∀x∀y(xQy ⇒ ∃z(xQz ∧ zQy)).

6. A � �(�a→ a) ≈ 1 iff ∀x∀y(xQy ⇒ yQy).

7. A � (�a→ �b)→ �(�a→ �b) ≈ 1 iff 〈X,K, Q〉 satisfies Φ.
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Proof. We will prove only the assertions (2), (5) and (7). The other

proofs are analogous.

(2) Let n ∈ N. Suppose that there exist x, y ∈ X such that (x, y) ∈ Qn
and x * y. Hence, there is an element a ∈ x such that a /∈ y. As (x, y) ∈ Qn
and a /∈ y, by Lemma 4.2, �na /∈ x. Since a ≤ �na, we have that a /∈ x,

which is a contradiction. Reciprocally, if there exists a ∈ A such that

a � �na then, there exists x ∈ X such that a ∈ x and �na /∈ x. By Lemma

4.2, we get an irreducible implicative filter y ∈ X such that (x, y) ∈ Qn

and a /∈ y. By assumption, x ⊆ y and so, a /∈ x, which is impossible.

(5) Assume that �2a ≤ �a for all a ∈ A and let (x, y) ∈ Q. Consider

the implicative filter �−1(x) and the order-ideal (�(yc)]. Suppose that

there exists a ∈ �−1(x) ∩ (�(yc)]. So, �a ∈ x and there exists p ∈ yc

such that a ≤ �p. Thus, �a ≤ �2p ≤ �p and consequently, �p ∈ x. So,

p ∈ �−1(x). As (x, y) ∈ Q, we have that p ∈ y, which is impossible. So,

�−1(x)∩ (�(yc)] = ∅. Thus, by Theorem 2.2, there exists z ∈ X such that

�−1(x) ⊆ z and z ∩ (�(yc)] = ∅. This is, z ⊆ �(yc)c and so, �−1(z) ⊆ y.

Thus, we have that there exists z ∈ X such that (x, z) ∈ Q and(z, y) ∈ Q.

Reciprocally. Suppose that there exists a ∈ A such that �2a � �a. So,

there exists x ∈ X such that �2a ∈ x and �a /∈ x. By Lemma 4.2, there

exists y ∈ X such that (x, y) ∈ Q and a /∈ y. By assumption, (x, y) ∈ Q2

and as a /∈ y, we get that �2a /∈ x, which is a contradiction.

(7) Consider that (�a → �b) ≤ �(�a → �b), for every a, b ∈ A. Let

(x, y) ∈ Q and (y, z) ∈ Q. Note that the implicative filter
〈
x ∪�(�−1(y))

〉
and the order-ideal (�(zc)] are disjoint. Indeed, suppose that there exists

a ∈ A such that a ∈
〈
x ∪�(�−1(y))

〉
and a ∈ (�(zc)]. Thus, by the

characterization of implicative filter generated by a set given on page 50,

there exist b ∈ x, c ∈ �−1(y), and d /∈ z such that b → (�c → a) = 1 and

a ≤ d. So, we have that 1 = b → (�c → a) ≤ b → (�c → d). Then, b →
(�c → �d) = 1 ∈ x. Thus, �c → �d ∈ x. As �c → �d ≤ �(�c → �d),

we get that �(�c→ �d) ∈ x. So, �c→ �b ∈ �−1(x) and by assumption,

�c → �d ∈ y. As �c ∈ y, we get that �d ∈ y and so, d ∈ z, which

is a contradiction. Thus, by Theorem 2.2 we can affirm that there exists

w ∈ X such that x ⊆ w, �(�−1(y)) ⊆ w and �(zc) ∩ w = ∅. Hence,

�−1(y) ⊆ �−1(w) and �−1(w) ⊆ z. For every v ∈ X such that (w, v) ∈ Q,

we get that �−1(y) ⊆ �−1(w) ⊆ v. So, (y, v) ∈ Q. We have proved that

〈X,K, Q〉 satisfies the condition Φ.

Conversely. Suppose that there exist a, b ∈ A such that �a → �b �
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�(�a → �b). So, there exists x ∈ X such that �a → �b ∈ x and

�(�a → �b) /∈ x. Then, there exists y ∈ X such that �−1(x) ⊆ y and

�a → �b /∈ y. By consequence of Theorem 2.2, there exists z ∈ X such

that y ⊆ z, �a ∈ z and �b /∈ z. So, there exists w ∈ X such that

�−1(z) ⊆ w and b /∈ w. Thus, (x, z) ∈ Q and (z, w) ∈ Q. By assumption,

there exists v ∈ X such that x ⊆ v, (v, w) ∈ Q and for all u ∈ X such that

(v, u) ∈ Q, we can affirm that (z, u) ∈ Q. Since �a→ �b ∈ x, we have that

�a→ �b ∈ v. On the other hand, b /∈ w and so, �b /∈ v. Thus, �a /∈ v and

consequently, there exists u ∈ X such that (v, u) ∈ Q and a /∈ u. Hence,

(z, u) ∈ Q, and so, �a /∈ z, which is impossible. �

We shall say that an H�-algebra 〈A,�〉 is bounded if the Hilbert algebra

A is bounded. The variety of bounded H�-algebras is denoted by Hil0�.

Theorem 4.5. Let A ∈ Hil0� and let 〈X,K, Q〉 be its dual space. Then,

1. A � �0→ 0 ≈ 1 iff Q is serial, i.e., ∀x∃y(xQy).

2. If Q is reflexive and transitive, we have that A � ¬�a → �¬�a ≈ 1

iff Q ⊆
(
⊆ ◦Q−1

)
.

Proof. (1) Suppose that �0 = 0. Since 0 /∈ x for all x ∈ X, we get that

0 /∈ �−1(x). Thus, for each x ∈ X there exists y ∈ X such that �−1(x) ⊆ y
and 0 /∈ y. So, Q is serial. Conversely. Suppose that �0 � 0. There is

x ∈ X such that �0 ∈ x and 0 /∈ x. Hence, 0 ∈ �−1(x) and by assumption,

there exists y ∈ X such that �−1(x) ⊆ y. Thus, 0 ∈ y, which is impossible.

(2) Let Q be reflexive and transitive. Assume that ¬�a ≤ �¬�a for

all a ∈ A and let (x, y) ∈ Q. Suppose that 0 ∈
〈
x ∪�(�−1(y))

〉
. So,

there exist a ∈ x and b ∈ �−1(y) such that a → (�b → 0) = 1, this is,

a ≤ ¬�b. Thus, ¬�b ∈ x and so, �¬�b ∈ x. Thus, ¬�b ∈ �−1(x) and

consequently, �b→ 0 ∈ y. As �b ∈ y, then 0 ∈ y, which is impossible. So,

there exists z ∈ X such that
〈
x ∪�(�−1(y))

〉
⊆ z and 0 /∈ z. Hence, x ⊆ z

and �(�−1(y)) ⊆ z. So, �−1(y) ⊆ �−1(z). As Q is reflexive, �−1(z) ⊆ z

and so, (y, z) ∈ Q. Thus, (x, y) ∈
(
⊆ ◦Q−1

)
.

Reciprocally. Assume that there is an element a ∈ A such that ¬�a �
�¬�a. So, there exist x, y ∈ X such that ¬�a ∈ x, �¬�a /∈ x, �−1(x) ⊆ y
and ¬�a /∈ y. By Lemma 2.3, we have an irreducible implicative filter z

such that y ⊆ z and �a ∈ z. Thus, (x, z) ∈ Q and �a ∈ z. By assumption,

there exists w ∈ X such that x ⊆ w and (z, w) ∈ Q. As ¬�a ∈ x, we
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have ¬�a ∈ w. So, �a /∈ w, implying that �2a /∈ z. As Q is transitive, by

Theorem 4.4, we have that �a ≤ �2a. So, �a /∈ z, which is impossible. �

We shall identify some subvarieties of Hil0� :

Hil0�S5 = Hil0� + {T,5},
Hil0�S5.1 = Hil0� + {T,4,¬�a→ �¬�a ≈ 1},
Hilw�S5 = Hil0� + {5,�0→ 0 ≈ 1}.

Note that Hil0�S5 is subvariety of Hil0�S5.1 and Hilw�S5. Indeed. If

A ∈ Hil0�S5, we have that �a → a ≈ 1, in particular, �0 → 0 ≈ 1. Thus,

A ∈ Hilw�S5. Moreover, by Remark 4.1, �a→ �2a ≈ 1 and as for all a ∈ A,

1 = (�a→ 0)→ �(�a→ 0) = ¬�a→ �¬�a , we get that A ∈ Hil0�S5.1.

It is clear that Hil0�S5.1 is subvariety of Hil0�S4 and consequently,

Hil0�S5 is subvariety of Hil0�S4.

Corollary 4.6. Let A ∈ Hil0� and 〈X,K, Q〉 be its dual space. Then,

A ∈ Hil0�S5.1 iff Q is reflexive, transitive and Q ⊆
(
⊆ ◦Q−1

)
.

Proof. By Theorem 4.4 and previous Theorem. �

.5 Implicational modal logics

In this section we shall define the {→,�}-fragment of the intuitionistic

normal modal logic IntK� and some of its extensions. Let L be the propo-

sitional modal language with an infinite set of propositional variables V ar,

a propositional constant >, the connective →, and the unary operator �.

The set of all formulas of L, we denote by Fm.

The logic IntK→� is a logic in the language L� characterized by the

following list of axioms and rules:

1. φ→ (ψ → φ),

2. (φ→ (ψ → α))→ ((φ→ ψ)→ ((φ→ α)),

3. �(φ→ ψ)→ (�φ→ �ψ),
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(MP)
φ, φ→ ψ

ψ
, (N)

φ→ ψ

�φ→ �ψ
.

It is clear that IntK→� is the {�,→}-fragment of intuitionistic modal

logic IntK�. An implicational modal logic I� is any extension of IntK→� .

Let F = 〈X,K, Q〉 be an H�-frame or a general H�-frame (see Defi-

nition 3.3). A valuation on F is a function V : V ar → Up (X) (V : V ar →
D(X)) on the H�-frame (general H�-frame) F . As is usual, V is extended

recursively to algebra of all formulas Fm by means of the clauses

1. V (>) = X,

2. V (φ→ ψ) = V (φ)⇒≤K V (ψ) = sat(V (φ) ∩ V (ψ)c)c, and

3. V (�φ) = �Q(φ) = {x ∈ X : Q(x) ⊆ V (φ)}.

By a general model we shall mean a structure 〈X,K, Q, V 〉 where F =

〈X,K, Q〉 is an H�-frame or a general H�-frame and V is a valuation on

F . We note that a function V is a valuation in an H�-frame or a general

H�-frame F iff it is a homomorphism between the algebra of all formulas

Fm and A(F) (D (X)). Then we get that a formula φ is valid in an H�-

frame (general H�-frame) F iff the equation φ ≈ 1 is valid in the Hilbert

algebra A(F) (D (X)). Thus, we have that if F is an H�-frame (general

H�-frame),

F � φ iff A(F) � φ ≈ 1 (D(X) � φ ≈ 1).

Let I� be an implicational modal logic. Denote by Fr(I�) the class of

all general H�-frames where the formulas of I� are valid. Let HSp(I�) be

the class of all H�-spaces F = 〈X,K, Q〉 such that F � φ, for all φ ∈ I�.

Clearly the class HSp(I�) is a subclass of Fr(I�).

We shall say that implicational modal logic I� is characterized by a class

F of general H�-frames, when φ ∈ I� iff φ is valid in every general H�-

frame 〈X,K, Q〉 ∈ F. Moreover, it is frame complete when φ ∈ I� iff φ is

valid in every general H�-frame F = 〈X,K, Q〉, for any F ∈ Fr(I�). It is

clear that an implicational modal logic I� is frame complete if and only if

it is characterized by some class of general H�-frames.

Let I� be an implicational modal logic. Consider the variety of Hilbert

modal algebras V(I�) = {A ∈ Hil� : A � φ ≈ 1, for all φ ∈ I�}. Simple

arguments (as in classical modal logic) show that

F ∈ HSp(I�) iff D(X) ∈ V(I�).
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Thus, we have the following result.

Proposition 5.1. Every implicational modal logic I� is characterized

by the class HSp(I�).

Let F = 〈X,K, Q〉 be a general H�-frame. As D(X) is a subalgebra

of A(F), every formula valid in A(F) is valid in D(X), but the converse in

general is not valid.

Definition 5.2. We say that the variety V of H�-algebras is canonical,

if A (F(A)) ∈ V, when A ∈ V. An implicational modal logic I� is canonical

if the variety V(I�) is canonical.

An implicational modal logic I� is H-persistent if A(F) ∈ V(I�), when

D(X) ∈ V(I�), for every H�-space F = 〈X,K, Q〉.

The notion of implicational H-persistent modal logic is a generalization

of the notion of d-persistent modal logic of classical modal logic (see [3]

and [25]). By the results on duality between H�-spaces and modal Hilbert

algebras, we can give the following result.

Proposition 5.3. An implicational modal logic I� is H-persistent if

and only if it is canonical.

Proof. Suppose that I� is H-persistent. Let A ∈ V(I�). As A is

isomorphic to D(X(A)), we have D(X(A)) ∈ V(I�). As I� is H-persistent

and taking into account that A(F((D(X(A))) is isomorphic to A(F(A)),

we get that A(F(A)) ∈ V(I�). So, I� is canonical.

For the converse we take an H�-space F = 〈X,K, Q〉, and suppose that

D(X) ∈ V(I�). As F is an H�-space, X is homeomorphic (and also order-

isomorphic) to X(D(X)). Then Up (X) is isomorphic to Up(X(D(X))).

Thus the Hilbert modal algebras A(F) and A(F(D(X))) are isomorphic,

and consequently A(F) ∈ V(I�). �

Proposition 5.4. Every canonical implicational modal logic I� is com-

plete with respect to Fr(I�).

Proof. The proof is as in classical modal logic. We need to prove that

for each formula φ /∈ I� there exists an H�-frame F of I� such that φ is

refuted in F . Let φ /∈ I�. Then there exists a modal Hilbert algebra A

such that A 2 φ ≈ 1. Then there exists a homomorphism h : Fm → A
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such that h(φ) 6= 1. By Theorem 2.2 there exists x ∈ X(A) such that

h (φ) /∈ x. Let F(A) = 〈X(A),KA, QA〉 be the H�-frame of A. As I� is

canonical, A(F(A)) ∈ V(I�), i.e., F(A) is an H�-frame of I�. As the map

ϕ : A→ D (X (A)) is an one to one homomorphism, the composition ϕ◦h is

a homomorphism from Fm into D (X (A)), i.e., ϕ◦h is a valuation based on

F(A). So, (ϕ ◦h) (φ) = ϕ(h (φ)) 6= ϕ(1) = X (A), because x /∈ ϕ(h (φ)). So

the formula φ is refuted in the general model 〈X(A),KA, ϕ ◦ h〉. Therefore,

φ is refuted in the H�-frame F(A). �

Given the characterizations proved in the Section 4, we can ensure that

any variety of H�-algebras axiomatized by some subset of the set of equa-

tions:

P = {S,Sn,T,wD,4,5,6,�0→ 0 ≈ 1,¬�a→ �¬�a ≈ 1,�(�a→ a) ≈ 1}

is canonical. Therefore we obtain the following result.

Theorem 5.5. Any variety of H�-algebras axiomatized by formulas

belong to P are canonical. Therefore, the associated logics are canonical

and frame complete.

.6 Simple and subdirectly irreducibles H�-algebras

Denote by Con(A,→) the lattice of all congruences on a Hilbert algebra A

and call the set [1]θ = {x ∈ A : (x, 1) ∈ θ} the kernel of θ. If D ∈ Fi(A)

then the binary relation θD defined by

(a, b) ∈ θD iff a→ b ∈ D and b→ a ∈ D

is a congruence on A such that [1]θD = D. Moreover, the lattices Fi(A) and

Con(A,→) are isomorphic under the mutually inverse mappings θ → [1]θ
and D → θD (see [11], [15], or [18]).

Let A ∈ Hil�. Denote by Con (A,→,�) the lattice of congruences of

A. Let F ∈ Fi(A). We said that F is a �-implicative filter if �a ∈ F ,

whenever a ∈ F , i.e., F ⊆ �−1(F ). The set of all �-implicative filters of

an H�-algebra A is denoted by Fi�(A).

Let n ∈ N0. We define the symbol

(αn(a); b) = (a,�a, ...,�na; b)
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for all a, b ∈ A. For each non-empty subset X of A, we define the set 〈X〉�
as:

〈X〉� = {a ∈ A : ∃x1, ..., xk ∈ X,n1, ..., nk ∈ N0

[(αn1(x1); ...; (αnk
(xk); a))...) = 1]}.

Note that if X = {a}, then

〈{a}〉� = 〈a〉� = {b ∈ A : ∃n ∈ N0 : (αn(a); b) = 1}.

Remark 6.1. As any Hilbert algebra A satisfies the Change Law, i.e.,

a→ (b→ c) = b→ (a→ c) for all a, b, c ∈ A, we get that any H�-algebra

〈A,�〉 satisfies the identity

(αn1(a); (αn2(b); c)) = (αn2(b); (αn1(a); c))

for all a, b, c ∈ A, n1, n2 ∈ N0.

Moreover, note that if A ∈ Hil� and a, b ∈ A such that a ≤ b, then

(αn(x); a) ≤ (αn(x); b), for all x ∈ A, n ∈ N0.

Lemma 6.2. Let A ∈ Hil�. Then,

x→ �(αn(x); a) ≤ (αn+1(x);�a),

for all x, a ∈ A, n ∈ N0.

Proof. By Definition 3.1,

�(αn(x); a) = �(x,�x, ...,�nx; a)

≤ �x→ �(�x, ...,�nx; a)

≤ �x→ (�2x→ (�3x→ ...(�n+1x→ �a)...)).

Thus,

x→ �(αn(x); a) ≤ x→
(
�x→ (�2x→ ...(�n+1x→ �a)...))

)
= (αn+1(x);�a).

�

Corollary 6.3. Let A ∈ Hil�. Then,

xk → (xk−1 → ... (x1 → � [(αn1(x1); (... (αnk
(xk); a)) ...)]) ...) ≤

≤ (αn1+1(x1); (... (αnk+1(xk);�a)) ...)

for all k ∈ N, a, x1, ..., xk ∈ A,n1, ..., nk ∈ N0 .
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Proof. By Lemma 6.2,

xk → �(αnk
(xk); a) ≤ (αnk+1(xk);�a) .

So, by above Remark,(
αnk−1+1(xk−1); (xk → �(αk(xk); a) )

)
≤
(
αnk−1+1(xk−1); (αnk+1(xk);�a)

)
and by Chance Law,

xk →
(
αnk−1+1(xk−1);�(αk(xk); a)

)
≤
(
αnk−1+1(xk−1); (αnk+1(xk);�a)

)
.

By Lemma 6.2,

xk−1 → �
(
αnk−1

(xk−1); (αk(xk); a)
)
≤
(
αnk−1+1(xk−1);�(αk(xk); a)

)
.

So,

xk →
(
xk−1 → �

(
αnk−1

(xk−1); (αk(xk); a)
))

≤ xk →
(
αnk−1+1(xk−1);�(αk(xk); a)

)
≤

(
αnk−1+1(xk−1); (αnk+1(xk);�a)

)
.

Repeating this procedure we obtain that

xk → (xk−1 → ... (x1 → � [(αn1(x1); (... (αnk
(xk); a)) ...)]) ...) ≤

≤ (αn1+1(x1); (... (αnk+1(xk);�a)) ...) .

�

Lemma 6.4. Let A ∈ Hil� and X ⊆ A. Then, 〈X〉� is the smallest

�-implicative filter containing to X.

Proof. It is clear that 〈X〉� ∈ Fi(A). Let a ∈ 〈X〉�. So, there exists

k ∈ N and there exist x1, ..., xk ∈ X,n1, ..., nk ∈ N0 such that

(αn1(x1); (αn2(x2); ...((αnk
(xk); a))...) = 1.

Hence, �(αn1(x1); (αn2(x2); ...((αnk
(xk); a))...) = �1 = 1. So,

xk → (xk−1 → ... (x1 → � (αn1(x1); (... (αnk
(xk); a)) ...)) ...) = 1.
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Thus, by above Corollary, 1 ≤ (αn1+1(x1); (... (αnk+1(xk);�a)) ...) and con-

sequently,

(αn1+1(x1); (... (αnk+1(xk);�a)) ...) = 1,

with x1, ..., xk ∈ X and n1 + 1, ..., nk + 1 ∈ N0. Consequently, �a ∈ 〈X〉�
and so, 〈X〉� ∈ Fi�(A).

Finally, it is easy to see that if F ∈ Fi�(A) and X ⊆ F , then 〈X〉� ⊆ F .

�

In some subvarieties of Hil� we can give simplified expressions of 〈X〉�.

If A ∈ Hil� + {4}, then

(αn(a); b) = (α1(a); b) (4)

for all a, b ∈ A, and for all n ∈ N. If A ∈ Hil�S4, then,

(αn(a); b) = �a→ b, (5)

for all a, b ∈ A, and for all n ∈ N.

Definition 6.5. Let 〈X,K, Q〉 be an H�-space. A subset closed Y of

X will be called Q-closed if Q(Y ) =
⋃
{Q(y) : y ∈ Y } ⊆ Y .

The set of all Q-closed subsets of an H�-space 〈X,K, Q〉 is denoted by

CQ(X).

If L is a lattice, Ld is the lattice with the dual order. Let L1 and L2 be

two lattices. If two lattices L1 and L2 are isomorphic we write L1
∼= L2.

Proposition 6.6. Let A ∈ Hil� and let 〈X,K, Q〉 be its dual space.

Then,

Con (A,→,�) ∼= Fi�(A) ∼= CQ(X)d.

Proof. Let θ ∈ Con (A,→,�). It is clear that [1]θ ∈ Fi�(A). Now, let

F ∈ Fi�(A). We know that θF ∈ Con (A,→ ). If (a, b) ∈ θF then a →
b, b→ a ∈ F . So, � (a→ b) ,� (b→ a) ∈ F . As � (a→ b) ≤ �a→ �b, we

get that �a→ �b ∈ F . Analogously, �b→ �a ∈ F and so, (�a,�b) ∈ θF .

We will prove that Fi�(A) ∼= CQ(X)d. Let F ∈ Fi�(A). So,

δ(F ) = {x ∈ X : F ⊆ x} =
⋂
{ϕ (a) | a ∈ F} ,

is a closed subset of X. Let y ∈ Q(δ (F )). So, exists x ∈ δ (F ) such that

y ∈ Q(x). As F is a �-implicative filter, F ⊆ �−1(F ) ⊆ �−1(x) ⊆ y, and
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hence, y ∈ δ (F ). Then δ(F ) is a Q-closed. Note that if F,H ∈ Fi�(A)

such that F ⊆ H then δ (H) ⊆ δ (F ).

Now, we will prove that π : CQ(X)→ Fi�(A) given by

π (Y ) = {a ∈ A : Y ⊆ ϕ (a)}

is well-defined. It is clear that π (Y ) ∈ Fi(A). We prove that π (Y ) is

a �-implicative filter. Let a ∈ A such that Y ⊆ ϕ (a). As Y is Q-closed,

Q(Y ) ⊆ Y ⊆ ϕ(a). Suppose that Y * ϕ(�a). So, there exists x ∈ Y

such that x /∈ ϕ(�a). Thus, �a /∈ x and so, there exists y ∈ X such that

y ∈ Q(x) and a /∈ y. As x ∈ Y , we get y ∈ Q(Y ). Thus, y ∈ Y and

y /∈ ϕ(a), which is a contradiction. So, π (Y ) ∈ Fi�(A).

Next, we will prove that δ and π are inverses of each other. Let Y ∈
CQ(X). So,

δ (π (Y )) =
⋂
{ϕ (a) | a ∈ π (Y )} =

⋂
{ϕ (a) | Y ⊆ ϕ (a)}

= cl(Y ) = Y .

Now, let F ∈ Fi�(A). Suppose that there exists

a ∈ π (δ (F )) = {b ∈ A : δ (F ) ⊆ ϕ(b)}

such that a /∈ F , this is, (a] ∩ F = ∅. By Theorem 2.2, there exists

x ∈ X such that F ⊆ x and a /∈ x, which contradicts the assumed. So,

π (δ (F )) ⊆ F . On the other hand, as δ (F ) =
⋂
{ϕ (a) | a ∈ F} ⊆ ϕ(b)

for every b ∈ F , we have that F ⊆ π (δ (F )). Thus, we deduce that δ is

a lattice anti-isomorphism. �

Let A ∈ Hil�. Let us recall that A is subdirectly irreducible if and

only if there exists the smallest non trivial �-congruence relation θ in A.

And A is simple if and only if A has only two �-congruence relations. By

Proposition 6.6 we have that A is subdirectly irreducible iff there exists

the smallest non-trivial �-implicative filter in A iff in its dual H�-space

〈X,K, Q〉 there exists the largest Q-closed subset distinct from X. More-

over, A is simple iff Fi�(A) = {{1} , A} iff CQ(X) = {∅, X}. Now, we give

a new characterization of simple and subdirectly irreducible algebras in the

variety Hil�.

Lemma 6.7. Let 〈X,K, Q〉 be an H�-space. Then, Vx = cl(Q∗(x)) is

the smallest Q-closed set containing the element x.
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Proof. As Q∗ is reflexive and Q∗(x) ⊆ cl(Q∗(x)) for each x ∈ X, we

get that x ∈ cl(Q∗(x)). In adittion, as cl(Q∗(x)) is a closed subset of X,

only remains to prove that Q (cl(Q∗(x))) ⊆ cl(Q∗(x)) for each x ∈ X. Let

y ∈ X such that y ∈ Q (cl(Q∗(x))). So, there exists z ∈ cl(Q∗(x)) such

that (z, y) ∈ Q. Suppose that y /∈ cl(Q∗(x)), then there exists a ∈ A such

that cl(Q∗(x)) ⊆ ϕ(a) and y /∈ ϕ(a). Since Q∗(x) ⊆ cl(Q∗(x)) ⊆ ϕ(a), we

get that Qn(x) ⊆ ϕ(a) for all n ≥ 0. This is, a ∈ w for all w ∈ Qn(x).

By Lemma 4.2, �na ∈ x for all n ≥ 0. On the other hand, as a /∈ y, we

get that �a /∈ z and since z ∈ cl(Q∗(x)), result ϕ (�a)c ∩ Q∗(x) 6= ∅. So,

there exists v ∈ X such that (x, v) ∈ Qm for some m ≥ 0 and �a /∈ v.

By Lemma 4.2, �ma /∈ x for some m ≥ 0, which is impossible. Thus,

cl(Q∗(x)) ∈ CQ(X). Let V ∈ CQ(X) such that x ∈ V . Then Qn(x) ⊆ V ,

for all n ≥ 0, because V is a Q-closed. So, Q∗(x) =
⋃
{Qn(x) : n ≥ 0} ⊆ V .

Thus, cl(Q∗(x)) ⊆ cl(V ) = V . �

We note that cl(Q∗(x)) =
⋂
{V : V ∈ CQ(X) and x ∈ V }.

Let 〈X,K, Q〉 be an H�-space. Let us define the following subsets of

X:

IX = {x ∈ X | Vx = X} and HX = X − IX ,

where Vx = cl(Q∗(x)).

Our first main result characterizes the simple algebras as the ones of

which the dual space is generated from each point.

Theorem 6.8. Let A ∈ Hil� and let 〈X,K, Q〉 be its dual space. Then,

the following conditions are equivalent:

1. A is simple,

2. IX = X, i.e., Vx = X, for each x ∈ X,

3. 〈a〉� = A, for all a ∈ A− {1}.

Proof. (1)⇒ (2) By Lemma 6.7.

(2) ⇒ (3) Suppose that there exists a ∈ A − {1} such that 〈a〉� 6= A.

So, there exists b ∈ A such that b /∈ 〈a〉�. This is, (αn(a); b) 6= 1 for all

n ≥ 0. So, there exists x ∈ X such that �na ∈ x for all n ≥ 0 and b /∈ x. As

cl(Q∗(x)) = X, we get that ϕ(a)c ∩Q∗(x) 6= ∅. So, there exists z ∈ Q∗(x)

such that a /∈ z. Hence, there exists m ≥ 0 such that (x, z) ∈ Qm and

a /∈ z. By Lemma 4.2, �ma /∈ x, which is impossible.
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(3) ⇒ (1) Let F ∈ Fi�(A). Let a ∈ F such that a 6= 1. Then 〈a〉� =

A ⊆ F . Thus, F = A, and consequently Fi�(A) = {{1} , A}. Thus, A is

simple. �

We note that the previous Theorem affirms that A is an H�-algebra

simple if and only if HX = ∅.
Our second main result gives a similar characterization of the subdi-

rectly irreducible algebras.

Theorem 6.9. Let A ∈ Hil� and let 〈X,K, Q〉 be its dual space. Then,

the following conditions are equivalent:

1. A is subdirectly irreducible.

2. HX = {x ∈ X | Vx 6= X} ∈ CQ(X)− {X},

3. There exists a ∈ A − {1} such that for all b ∈ A − {1} there exists

n ≥ 0 such that (αn(b); a) = 1.

Proof. (1)⇒ (2) By assumption, there exists the largest V ∈ CQ(X)−
{X}. We will prove that V = HX . It is clear that HX ⊆ V . Let x ∈ V .

As V ∈ CQ(X), by Lemma 6.7, Vx ⊆ V . Since V 6= X, Vx 6= X and so,

x ∈ HX .

(2) ⇒ (3) Since HX 6= X, there exists x ∈ X such that x /∈ HX .

As HX is closed, there exists a ∈ A − {1} such that HX ⊆ ϕ(a) and

x /∈ ϕ(a). We will prove that for all b ∈ A − {1} there exists n ≥ 0 such

that (αn(b); a) = 1. On the contrary, suppose that there exists b ∈ A−{1}
such that (αn(b); a) 6= 1 for all n ≥ 0. So, there exists w ∈ X such that

�nb ∈ w for all n ≥ 0 and a /∈ w. As w /∈ ϕ(a), we get that w /∈ HX and

consequently, cl(Q∗(w)) = X. Thus, Q∗(w)∩ϕ(b)c 6= ∅ and so, there exists

z ∈ Q∗(w) and b /∈ z. So, there exists m ≥ 0 such that (w, z) ∈ Qm and

b /∈ z. By Lemma 4.2, �mb /∈ w, which is impossible.

(3) ⇒ (1) By assumption, a ∈ 〈b〉� for all b ∈ A − {1}. As 〈b〉� ∈
Fi�(A), we have that 〈a〉� ⊆ 〈b〉� for all b ∈ A − {1}. As a 6= 1, we get

that 〈a〉� 6= {1}. We will prove that 〈a〉� is the smallest non-trivial �-

implicative filter. Let F ∈ Fi�(A) − {1}. So, there exists b 6= 1 such that

b ∈ F . As 〈b〉� is the smallest �-implicative filter containing to b, we get

that 〈a〉� ⊆ 〈b〉� ⊆ F . Thus, A is subdirectly irreducible. �

Now, we shall study the simple and subdirectly irreducible algebras in

the varieties Hil�S4, Hil0�S4, Hil0�S5.1, and Hilw�S5.
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Remark 6.10. Let A ∈ Hil�S4 and let 〈X,K, Q〉 be its dual space.

(1) By items 3 and 4 of Theorem 4.4, we get that Q is transitive and

reflexive. Thus, Q∗(x) = Q(x), for each x ∈ X, and as Q(x) is a closed

subset of X, we have that Q(x) = Vx, for each x ∈ X.

(2) If HX 6= ∅, then HX =
⋃
{ϕ(�a) : a ∈ A− {1}}. Indeed:

x ∈ HX iff Q(x) = Vx 6= X

iff ∃y ∈ X : y /∈ Q(x)

iff ∃y ∈ X∃a ∈ A : Q(x) ⊆ ϕ(a) & y /∈ ϕ(a)

iff ∃y ∈ X∃a ∈ A : x ∈ �Q(ϕ(a)) = ϕ(�a) & a /∈ y
iff x ∈

⋃
{ϕ(�a) : a ∈ A− {1}} .

The following result is a simple consequence of Theorem 6.8, item (1)

of Remark 6.10 and the formula (5).

Proposition 6.11. Let A ∈ Hil�S4 and let 〈X,K, Q〉 be its dual space.

Then, the following conditions are equivalent:

1. A is simple.

2. Q(x) = X, for each x ∈ X.

3. 〈�a〉 = A for all a ∈ A− {1}. This is, A is bounded.

Proposition 6.12. Let A ∈ Hil�S4 and let 〈X,K, Q〉 be its dual space.

Then, the following conditions are equivalent:

1. A is subdirectly irreducible.

2. HX ∈ D(X)− {X}.

3. There exists a ∈ A− {1} such that �b ≤ a, for all b ∈ A− {1}.

Proof. (1) ⇒ (2) By Theorem 6.9, HX ∈ CQ(X) − {X}. So, exists

x ∈ X such that x /∈ HX . Thus, there exists c ∈ A − {1} such that

HX ⊆ ϕ(c) and x /∈ ϕ(c). As in the proof of Proposition 6.6, if HX ∈
CQ(X) and HX ⊆ ϕ(c) then, HX ⊆ ϕ(�c). If HX 6= ∅, by Remark 6.10,

HX =
⋃
{ϕ(�b) : b ∈ A− {1}}. As c 6= 1, ϕ(�c) ⊆ HX . Thus, HX =

ϕ(�c) ∈ D(X)− {X}.
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(2)⇒ (3) Let HX ∈ D(X)−{X}. So, there exists a ∈ A−{1} such that

HX = ϕ(a). If HX = ∅, then Q(x) = X for all x ∈ X and by Proposition

6.11, 〈�b〉 = A for all b ∈ A − {1}. Let a ∈ A − {1}. Then a ∈ 〈�b〉 for

all b ∈ A − {1}. So, �b ≤ a, for all b ∈ A − {1}. If HX 6= ∅, by Remark

6.10, HX =
⋃
{ϕ(�b) : b ∈ A− {1}} = ϕ(a). Therefore, ϕ(�b) ⊆ ϕ(a)

and consequently, �b ≤ a for all b ∈ A−{1}, because ϕ is an isomorphism.

(3)⇒ (1) It is an immediate consequence of the formula (5) and Theo-

rem 6.9. �

Corollary 6.13. Let A ∈ Hil0�S4 and let 〈X,K, Q〉 be its dual space.

Then,

1. A is simple iff �a = 0, for all a ∈ A− {1}.

2. A is subdirectly irreducible iff HX ∈ D(X) − {X} iff there exists

a ∈ A− {1} for all b ∈ A− {1} such that �b ≤ a.

Proof. (1) As A is bounded, A = 〈0〉. Thus, by Proposition 6.11, A is

simple iff 〈�a〉 = 〈0〉 for a ∈ A− {1} iff �a = 0 for a ∈ A− {1}.
(2) By Proposition 6.12. �

Proposition 6.14. Let A ∈ Hil0�S5.1.Then,

1. A is simple iff �a = 0, for all a ∈ A− {1}.

2. A is subdirectly irreducible not simple iff there exists a ∈ A−{1} such

that �b ≤ a and ¬�a = 0, for all b ∈ A− {1}.

Proof. (1) By Corollary 6.13, because Hil0�S5.1 is subvariety of Hil0�S4.

(2) Let A be subdirectly irreducible. So, there exists a ∈ A − {1}
such that �b ≤ a, for all b ∈ A − {1}. It remains to prove that A is

not simple iff ¬�a = 0. If A is not simple then exists b 6= 1 such that

�b 6= 0, i.e., �b � 0. This is, ¬�b 6= 1 and so, �¬�b ≤ a. Thus, ¬�b ≤ a

and hence, ¬�a ≤ ¬¬�b. As any Hilbert algebra A satisfies (c→ d) →
((d→ c)→ c) = (d→ c) → ((c→ d)→ d), replacing c by 0 result ¬¬d =

¬d → d. Thus, ¬�a ≤ ¬�b → �b ≤ ¬�b → b and so, ¬�a → (¬�b →
b) = (¬�a→ ¬�b) → (¬�a→ b) = 1. As b 6= 1, we have �b ≤ a and so,

�b = �2b ≤ �a . Thus, ¬�a→ ¬�b = 1 and consequently, ¬�a→ b = 1.

As ¬�a ≤ b 6= 1, we get that ¬�a 6= 1 and so, ¬�a ≤ �¬�a ≤ a.
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Hence, (α0(¬�a); a) = 1 and thus, a ∈ 〈¬�a〉�. As 〈¬�a〉� ∈ Fi�(A),

�a ∈ 〈¬�a〉� and so, 0 ∈ 〈¬�a〉�. Thus, ¬�a = 0. Reciprocally, if there

exists a 6= 1 such that ¬�a = 0, then �a→ 0 6= 1. This is, �a � 0 and so,

�a 6= 0. Thus, A is not simple. �

Lemma 6.15. Let A ∈ Hilw�S5. Then, 〈a〉� = {b : a→ (�a→ b) = 1}.

Proof. It is easy and left to the reader. �

Proposition 6.16. Let A ∈ Hilw�S5. Then,

1. A is simple iff �a = 0, for all a ∈ A− {1}.

2. A is subdirectly irreducible iff there exists a ∈ A − {1} such that

(α1(b); a) = 1 for all b ∈ A− {1}.

Proof. Let A ∈ Hilw�S5. By Remark 4.1, �a ≤ �2a for all a ∈ A.

1. (⇒) Let a ∈ A. As �a ≤ �2a, we get that �b ∈ 〈�a〉 when b ∈ 〈�a〉.
Thus, 〈�a〉 ∈ Fi�(A). As A is simple, 〈�a〉 = A or 〈�a〉 = {1}. This is,

�a = 0 or �a = 1. The proof is completed by showing that �a = 1 iff

a = 1. Suppose that there exists a 6= 1 such that �a = 1. As A is simple,

by Theorem 6.8, 〈a〉� = A. Note that 〈a〉� = 〈a〉. In fact, it is clear that

〈a〉 ⊆ 〈a〉�. Let b ∈ 〈a〉�. By Lemma 6.15 we have 1 = a → (�a → b) =

a→ (1→ b) = a→ b. So, b ∈ 〈a〉. Thus, A = 〈a〉, and consequently a = 0.

Thus, �a = 0 which is impossible.

(⇐) It is clear that �a ∈ 〈a〉�. So, 〈�a〉 ⊆ 〈a〉� for all a ∈ A. By

assumption, A = 〈0〉 = 〈�a〉 ⊆ 〈a〉� for a ∈ A − {1} and consequently

A = 〈a〉�, for a ∈ A− {1}. Then by Theorem 6.8, A is simple.

2. By Theorem 6.9, there exists a ∈ A − {1} such that for all b ∈
A − {1} there exists n ≥ 0 such that (αn(b); a) = 1. So, (α0(b); a) = 1 or

(αn(b); a) = 1 for n ∈ N. By (4), b ≤ a or (α1(b); a) = 1. If b ≤ a, as

a ≤ �b → a, result that b ≤ �b → a and so, (α1(b); a) = 1. The converse

is an immediate consequence of Theorem 6.9. �
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