
Schedae Informaticae Vol. 22 (2013): 9–18

doi: 10.4467/20838476SI.13.001.2086

On Normal Forms and Erasing Rules
in Path Controlled Grammars

Jiř́ı Koutný, Alexander Meduna
Formal Language Research Group

Department of Information Systems
Faculty of Information Technology Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic

e-mail: {ikoutny, meduna}@fit.vutbr.cz

Abstract. This paper discusses path controlled grammars – context-free gram-

mars with a root-to-leaf path in their derivation trees restricted by a control

language. First, it investigates the impact of erasing rules on the generative

power of path controlled grammars. Then, it establishes two Chomsky-like

normal forms for path controlled grammars - the first allows unit rules, the

second allows just one erasing rule.

Keywords: context-free grammars, path controlled grammars, restricted deriva-

tion trees, paths, normal forms, erasing rules

1. Introduction

The investigation of context-free grammars with restricted derivation trees represents
an important trend in today’s formal language theory (see [3], [5], [6], [7], [8], [9],
[10], [13], [15], and [16]). In essence, these grammars generate their languages just
as ordinary context-free grammars do but their derivation trees have to satisfy some
simple prescribed conditions. The present paper continues the investigation of these
grammars.

In [8], path controlled grammars are introduced as an attempt to increase the
generative power of context-free grammar without changing the basic formalism
and without loosing some basic properties of the class of context-free languages.
Basically, a derivation tree in a context-free grammar is accepted if it contains a path

10

described by a control language. More precisely, consider a context-free grammar G
and a context-free language R. A string w generated by G belongs to the language
defined by G and R if there is a derivation tree t for w in G such that there exists
a path p of t described by R. Further properties of path controlled grammars are
studied in [6], [9], and [10], however, still many questions remain unanswered.

Since, in general, a restriction placed upon a path is a restriction placed upon
a derivation tree, we use a slightly modified but equivalent formulation of the defini-
tinions stated in [8], [9], and [10]. Consequently, aforementioned modifications allow
us to study all derivation-tree-based restrictions using the same terminology – e.g.
restriction on levels (see [3], [5], [13], [15], and [16]), paths (see [2], [6], [7], [8], [9],
and [10]), or cuts (see [7]).

In the theory of regulated rewriting, the impact of erasing rules on the generative
power of a rewriting system is usually studied. Typically, beyond the class of context-
free grammars, erasing rules significantly affect the generative power of a studied
model (see [4]). However, as it is demonstrated in the rest of the paper, erasing rules
do not affect the generative power of path controlled grammars. Indeed, erasing
rules outside the controlled path can be removed by a well-known algorithm (see
Algorithm 5.1.3.2.3 in [12]) and since a path is defined as a sequence of non-terminal
symbols followed by just one terminal symbol, erasing rules cannot be used along
the controlled path by the definition.

As the main goal of this paper, we establish two normal forms of path con-
trolled grammars. Normal form for any formal model is one of the fundamental
model-characterizing properties that is important both from the theoretical as well
as practical viewpoints. From the theoretical viewpoint, normal forms are often used
to facilitate some kind of proofs - typically, the proofs based on the transformation
of investigated formal model to a well-known one or vice versa. From the practical
viewpoint, normal forms underlie some general parsing methods used in compiler
construction. Since path controlled grammars generate several non-context-free lan-
guages used in linguistics (see [8]), parsing methods for path controlled are desirable
to be established (see [2]).

Despite all our effort so far, we are not able to transform a path controlled
grammar into an equivalent path controlled grammar with controlled grammar in
Chomsky normal form. Indeed, we have concluded that we need either chain rules
or erasing rules.

In Section 2., we introduce the needed terminology. Section 3. recalls the defi-
nition of path controlled grammars and introduces two normal forms for path con-
trolled grammars. As the main result of this paper, Section 4. demonstrates that
erasing rules do not affect the generative power of path controlled grammars and
establishes the algorithms that transform any path controlled grammar into an equiv-
alent path controlled grammar satisfying desired normal form. In the conclusion,
we formulate some open problems in the investigation of grammars with restricted
path.

11

2. Preliminaries

This paper assumes that the reader is familiar with graph theory (see [1]) and the the-
ory of formal languages (see [12]) including the theory of regulated rewriting (see
[4]). In this section, we introduce the terminology and the definitions needed in
the sequel.

For an alphabet V , V ∗ denotes the free monoid (generated by V under the
operation concatenation), ε is the unit of V ∗, and V + = V ∗ − {ε}. Every subset
L ⊆ V ∗ is a language over V . As usual, when comparing two languages, the empty
string (ε) is ignored – L1 equals L2 if L1 − {ε} = L2 − {ε}.

A context-free grammar is a quadruple G = (V, T, P, S) where V is a total alpha-
bet, T ⊆ V is a terminal alphabet, P is a finite set of rules of the form r : A → x
where r is unique label, A ∈ V − T , x ∈ V ∗, and S ∈ V − T is the starting sym-
bol. A context-free grammar G = (V, T, P, S) is referred to as ε-free if and only if
for all r : A → x ∈ P it holds x 6= ε. A rule r : A → x is referred to as chain
rule if and only if x ∈ V − T . A derivation step in G is defined for u, v ∈ V ∗

and r : A → x ∈ P as uAv ⇒ uxv [r]. In the standard manner, we introduce the
relations ⇒i, ⇒+, and ⇒∗ (see [12]). A rule r : A→ x ∈ P is referred to as usable
if and only if there is a derivation S ⇒∗ uAv ⇒ uxv [r] for some u, v ∈ V ∗. The
language of a context-free grammar G is called context-free language and defined as
L(G) = {x ∈ T ∗| S ⇒∗ x}. The family of context-free languages is denoted by CF.
A context-free grammar G = (V, T, P, S) is in Chomsky normal form if and only if
for all r : A→ x ∈ P it holds either x ∈ (V − T)2 or x ∈ T .

Let G = (V, T, P, S) be a context-free grammar and x ∈ T ∗. Let G4(x) denote
a set of the derivation trees with frontier x in G. Let t ∈ G4(x). A path of t is any
sequence of the nodes where the first node is the root of t, last node is a leaf of t,
and there is an edge in t between each two consecutive nodes of the sequence. Let
s be any sequence of the nodes of t, then word(s) denotes the string obtained by
concatenation of all labels of the nodes of s in order from left to right.

A rational transducer (see [14]) is a 6-tuple M = (Q,Σ,Ω, τ, s, F) such that Q is
a finite set of states, Σ is an input alphabet, Ω is an output alphabet, τ is a finite
subset of S × Σ∗ → S × Ω∗ called transition function, s ∈ Q is an initial state,
F ⊆ Q is a finite set of final states. A configuration of M is (p, u) with p ∈ Q,
u ∈ Σ∗. A configuration (p, u) is initial, final if p = s, p ∈ F , respectively. Given
a rational transducer M , for every input word u ∈ Σ∗, rational transduction of u
is denoted as RTM (u) and defined as RTM (u) = {v ∈ Ω∗| (t, v) ∈ τ(s, u) is a final
configuration}. A rational transduction of a language L is denoted as RTM (L) and
defined as RTM (L) =

⋃
{RTM (u)| u ∈ L}. It is well known that CF is closed under

rational transduction. Furhter properties of rational transducers can be found in
[11].

12

3. Definitions

First, using the terminology of previous section, we recall the basic notions and
definitions given in [6] and [8].

Definition 1 A tree-controlled grammar, TC grammar for short, is a pair (G,R)
where G = (V, T, P, S) is a context-free grammar, and R ⊆ V ∗ is a context-free
control language. The language that (G,R) generates under the path control by R
is denoted by pathL(G,R) and defined by the following equivalence: For all z ∈ T ∗,
z ∈ pathL(G,R) if and only if there exists a derivation tree t ∈ G4(z) such that
there is path p of t with word(p) ∈ R. Let path-TC = {pathL(G,R)| (G,R) is a TC
grammar} and path-TCε−free = {pathL(G,R)| (G,R) is a TC grammar where G
is ε-free}.

Next, we define 1st and 2nd Chomsky-like normal forms of TC grammars that
generates the language under path control. Roughly speaking, compared to Chomsky
normal form (see Sect. 2.), 1st normal form adds only unit rules, 2nd normal form
adds just one ε-rule.

Definition 2 Let (G,R) be a TC grammar that generates the language under path
control by R, where G = (V, T, P, S). (G,R) is in 1st normal form if every rule
r : A→ x ∈ P is of the form A ∈ V − T and x ∈ T ∪ (V − T) ∪ (V − T)2.

Definition 3 Let (G,R) be a TC grammar that generates the language under path
control by R, where G = (V, T, P, S). (G,R) is in 2nd normal form if every rule
r : A → x ∈ P is of the form A ∈ V − T and x ∈ T ∪ ((V ∪ {E}) − T)2 where
E ∩ V = ∅ and E → ε ∈ P . The alphabet of G should now include E, with E 6∈ V .

4. Results

Before transforming tree-controlled grammars that generate the language under path
control to the normal forms, we establish the following lemma related to erasing rules.

Lemma 1 For any TC grammar (G,R) there is a TC grammar (G′, R) such that

pathL(G,R) = pathL(G′, R) and G′ is ε-free.

Proof 1 Let (G,R) where G = (V, T, P, S) be a TC grammar generating pathL(G,R).
Without any loss of generality, assume G contains only usable rules. Basicaly, from
all correct derivation trees for any z ∈ L(G), we select just those of them containing
a path p with word(p) ∈ R.

Consider t ∈ (G,R)4(z), for any z ∈ pathL(G,R). Clearly, there is a path p of t
such that word(p) = A1 . . . A`a with A1, . . . , A` ∈ V − T , for ` ≥ 1, A1 = S, and

13

a ∈ T . Consider the rules Ai → xiAi+1yi, for 1 ≤ i ≤ `−1, used when passing from
Ai to Ai+1 on p and, corresponding to p, the rule A` → x`a y` used in the last step
of the derivation in G. Since word(p) ∈ {S}(V −T)∗T , no Ai → xiAi+1yi is ε-rule,
for 1 ≤ i ≤ `− 1.

Consider that any xiyi, 1 ≤ i ≤ `, contains B ∈ V −T that does not belong to p.
Consider a substring z′ of z that is derived from B. Since G is context-free, z′ can
be generated from B without using ε-rules (see the well-known Algorithm 5.1.3.2.3
in [12]).

Therefore, transformation G into G′ where G′ is ε-free by aforementioned algo-
rithm cannot affect the language describing a controlled path. Thus, such a transfor-
mation cannot restrict or extend pathL(G,R) properly and therefore pathL(G,R) =

pathL(G′, R) holds.

Corollary 2 path-TC = path-TCε−free.

Theorem 3 Let L ∈ path-TC. Then, there exists a TC grammar (G,R) in 1st

normal form such that L = pathL(G,R).

Proof 4 Alghorithm 1 is based on well-known Algorithm 5.1.4.1.1 in [12] used
for transformation of a context-free grammar to an equivalent context-free gram-
mar in Chomsky normal form. Whenever a rule A → X1X2 . . . Xn for n ≥ 3
is transformed into the rules A → X1〈X2 . . . Xn〉, . . . , 〈Xn−1Xn〉 → Xn−1Xn, if
word(p) = uAXiv ∈ R for a path p, for i = 1, 2 . . . n, rational transducer M non-
deterministicaly replaces AXi as a substring of word(p) by a sequence A〈X2 . . . Xn〉
〈X3 . . . Xn〉 . . . 〈Xi−1 . . . Xn〉Xi. Whenever new nonterminal symbol a′ for a ∈ V −T
is introduced, rational transducer M replaces a as a last symbol of word(p) by a se-
quence a′a. Since CF is closed under rational transduction, R′ ∈ CF.

Theorem 5 Let L ∈ path-TC. Then, there exists a TC grammar (G,R) in 2nd

normal form such that L = pathL(G,R).

Proof 6 Alghorithm 2 is a straightforward modification of Algorithm 1. First, new
symbol E ∈ V and the rule E → ε ∈ P ′ are created, then each rule A→ x ∈ P with
x ∈ V − T is replaced by A→ xE ∈ P ′. Clearly, this transformation does not affect
the language describing a controlled path and thus R = R′ ∈ CF.

5. Examples

Next, we demonstrate two examples of typically non-context-free languages that
belong to path-TC and corresponding TC grammars both in general as well as 1st

and 2nd normal form. The following examples demonstrate the languages capturing
multiple copy up to four parts and cross-referencing of two parts.

14

Algorithm 1: Conversion of a TC grammar (G,R) to a TC grammar (G′, R′)
in 1st normal form that generates the same language under the path restriction.

Input: A TC grammar (G,R) where G = (V, T, P, S) and G is ε-free.
Output: A TC grammar (G′, R′) where G′ = (V ′, T, P ′, S) satisfying

pathL(G,R) = pathL(G′, R′) and (G′, R′) is in 1st normal form.
1 begin
2 P ′ := {r| r : A→ x ∈ P, x ∈ T ∪ (V − T) ∪ (V − T)2};
3 Paux := {r| r : A→ x ∈ P, |x| ≤ 2, r /∈ P ′};
4 V ′ := V ;
5 assume rational transducer M(Q,V ′, V ′, τ, s, F) with RTM (R) = R;
6 foreach r : A→ X1X2 . . . Xn ∈ P where
7 Xi ∈ V , i = 1, 2, . . . , n for some n ≥ 3 do
8 begin
9 Paux := Paux ∪ {A→ X1〈X2 . . . Xn〉,

10 〈X2 . . . Xn〉 → X2〈X3 . . . Xn〉,
11 . . .
12 〈Xn−2 . . . Xn〉 → Xn−2〈Xn−1Xn〉,
13 〈Xn−1Xn〉 → Xn−1Xn};
14 V ′ := V ′ ∪ {〈Xi . . . Xn〉| i = 2, . . . , n− 1};
15 τ = τ ∪ {(f, uA〈X2 . . . Xn〉〈X3 . . . Xn〉 . . . 〈Xi−1 . . . Xn〉Xiv)|
16 (f, uAXiv) ∈ τ(s, uAXiv),
17 f ∈ F, u, v ∈ (V ′)∗, A,Xi ∈ V ′ for some 2 ≤ i ≤ n};
18 end

19 end
20 foreach r : A→ x ∈ Paux with alph(x) ∩ T 6= ∅ do
21 begin
22 replace each terminal a ∈ T with a new symbol a′ ∈ V ′ in x;
23 V ′ := V ′ ∪ {a′};
24 P ′ := P ′ ∪ {a′ → a};
25 τ := τ ∪ {(f, ua′a)| (f, ua) ∈ τ(s, ua), f ∈ F, u ∈ (V ′)∗, a ∈ V − T};
26 end

27 end
28 P ′ := P ′ ∪ {r : A→ x| p ∈ Paux, x ∈ T ∪ (V ′)2};
29 produce G′ = (V ′, T, P ′, S);
30 produce R′ = RTM (R);
31 produce (G′, R′);

32 end

15

Algorithm 2: Conversion of a TC grammar (G,R) to a TC grammar (G′, R′)
in 2nd normal form that generates the same language under the path restriction.

Input: A TC grammar (G,R) in 1st normal form where G = (V, T, P, S).
Output: A TC grammar (G′, R′) where G′ = (V ′, T, P ′, S) satisfying

pathL(G,R) = pathL(G′, R′) and (G′, R′) is in 2nd normal form.
1 begin
2 V ′ := V ∪ {E| E ∩ V = ∅};
3 P ′ := P ∪ {E → ε};
4 foreach r : A→ x ∈ P with x ∈ V − T do
5 P ′ := P ′ ∪ {A→ xE};
6 end
7 produce G′ = (V ′, T, P ′, S);
8 produce R′ = R;
9 produce (G′, R′);

10 end

Example 1 Consider the TC grammar that generates pathL(G,R) where

G = ({S,B,D, a, b, c, d}, {a, b, c, d}, P, S),
P = {S → aSd, S → aBd, B → bBc, B → D, D → bc},
R = {SnBnDb| n ≥ 1}.

Clearly, pathL(G,R) = {akbkckdk| k ≥ 1} /∈ CF.
Next, let us transform (G,R) to 1st normal form by Algorithm 1 that outputs

(G′, R′) where

G′ = ({S,B,D, 〈Sd〉, 〈Bd〉, 〈Bc〉, a′, b′, c′, d′, a, b, c, d, e, f}, {a, b, c, d, e, f}, P ′, S),
P ′ = {S → a′〈Sd〉, S → a′〈Bd〉, B → b′〈Bc〉, B → D, D → b′c′,

〈Sd〉 → Sd′, 〈Bd〉 → Bd′, 〈Bc〉 → Bc′,
a′ → a, b′ → b, c′ → c, d′ → d},

R′ = {(S〈Sd〉)nS〈Bd〉(B〈Bc〉)nDb′b| n ≥ 1}.

Clearly, pathL(G′, R′) = {akbkckdk| k ≥ 1} /∈ CF and (G′, R′) is in 1st normal
form.

Finally, let us transform (G,R) to 2st normal form by Algorithm 2 that outputs
(G”, R”) where

G′ = ({S,B,D,E, 〈Sd〉, 〈Bd〉, 〈Bc〉, a′, b′, c′, d′, a, b, c, d, e, f}, {a, b, c, d, e, f}, P ′, S),
P” = {S → a′〈Sd〉, S → a′〈Bd〉, B → b′〈Bc〉, B → DE, D → b′c′,

〈Sd〉 → Sd′, 〈Bd〉 → Bd′, 〈Bc〉 → Bc′, E → ε,
a′ → a, b′ → b, c′ → c, d′ → d},

R” = {(S〈Sd〉)nS〈Bd〉(B〈Bc〉)nDb′b| n ≥ 1}.

Clearly, pathL(G”, R”) = {akbkckdk| k ≥ 1} /∈ CF and (G”, R”) is in 2nd normal
form.

16

Example 2 Consider the TC grammar that generates pathL(G,R) where

G = ({S,A,B,C,D, a, b}, {a, b}, P, S),
P = {S → aS, S → aB, B → bB, B → A, A→ bA, A→ C,

C → Ca, C → D, D → a},
R = {SmBnAnCmDa| m,n ≥ 1}.

Clearly, pathL(G,R) = {akblakbl| k, l ≥ 1} /∈ CF.
Next, let us transform (G,R) to 1st normal form by Algorithm 1 that outputs

(G′, R′) where

G′ = ({S,A,B,C,D, a′, b′, a, b}, {a, b}, P ′, S),
P ′ = {S → a′S, S → a′B, B → b′B, B → A, A→ b′A, A→ C,

C → Ca′, C → D, D → a′, a′ → a, b′ → b},
R′ = {SmBnAnCmDa′a| m,n ≥ 1}.

Clearly, pathL(G,R) = {akblakbl| k, l ≥ 1} /∈ CF and (G′, R′) is in 1st normal form.
Finally, let us transform (G,R) to 2st normal form by Algorithm 2 that outputs

(G”, R”) where

G” = ({S,A,B,C,D,E, a′, b′, a, b}, {a, b}, P”, S),
P” = {S → a′S, S → a′B, B → b′B, B → AE, A→ b′A, A→ CE,

C → Ca′, C → DE, D → a′, a′ → a, b′ → b, E → ε},
R” = {SmBnAnCmDa′a| m,n ≥ 1}.

Clearly, pathL(G,R) = {akblakbl| k, l ≥ 1} /∈ CF and (G”, R”) is in 2nd normal
form.

6. Conclusion

In this concluding section, we summarize the achieved results and point out some
important open questions.

We have considered the impact of erasing rules in path controlled grammars on
the generative power. As opposed to tree controlled grammars (see [3]) in which tree
levels are restricted, erasing rules in path controlled grammars in which tree paths are
controlled do not restrict nor extend the generative power. On the other hand, when
controlling a path, the control language has to be at least linear to extend generative
power beyond context-free languages whereas for controlling levels or cuts (see [7]),
a regular language is enough. As a result, we have stated that erasing rules can
be removed from a path controlled grammar without affecting its language. Note
that by introducing path restrictions, the independence of context-free grammars on
erasing rules has not been lost.

Then, we have studied two normal forms for path controlled grammars. Both
of them are based on Chomsky normal form for context-free grammars. Although
we were not able to establish Chomsky normal form for path controlled-grammars,

17

we have introduced the normal form allowing chain rules (and no erasing rules) and
the normal form allowing just one erasing rule (and no chain rules). Then we have
formulated algorithms that transform a path controlled grammar to its normal form.

Let us point out that it is well-known that membership problem is dedicable
in polynomial time for path controlled grammars (see [9] and [10]). Both of these
newly established normal forms for path controlled grammars should be taken into
consideration in the relation to the results of [2] in order to modify general parsing
methods that are based on Chomsky normal form so as to parse path controlled
grammars in polynomial time.

Since for context-free grammars there is a well-known algorithm that transforms
any context-free grammar in Chomsky normal form into an equivalent context-free
grammar in Greibach normal form (see [12]), future investigations concerning the
subject of this paper should consider aforementioned algorithm and reformulate it
so that it modifies not only controlled grammar but also its controlling language.
In other words, such an algoritm should take path controlled grammar in general or
in 1st or 2nd normal form and produce an equivalent path controlled grammar in
a kind of Greibach-like normal form.

7. Acknowledgements

This work was supported by the research plan MSM0021630528, the BUT FIT grant
FIT-S-11-2, GA ČR grant GD102/09/H042, and by the European Regional Devel-
opment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00-
/02.0070).

8. References

[1] Bondy A.; Graph Theory, Springer, New York 2010.

[2] Čermák M., Koutný J., Meduna A.; Parsing based on n-path tree-controlled
grammars, Theoretical and Applied Informatics 23, 2011, pp. 213–228.

[3] Čulik K., Maurer H.A.; Tree controlled grammars, Computing 19, 1977, pp.
129–139.

[4] Dassow J., Păun Gh.; Regulated Rewriting in Formal Language Theory,
Springer, Berlin 1989.

[5] Dassow J., Truthe B.; Subregularly tree controlled grammars and languages,

Automata and Formal Languages – 12th International Conference AFL 2008,

18

Balatonfured, Computer and Automation Research Institute of the Hungarian
Academy of Sciences, 2008, pp. 158–169.

[6] Koutný J., Křivka Z., Meduna A.; Pumping properties of path-restricted tree-

controlled languages, 7th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, 2011, pp. 61–69.

[7] Koutný J., Meduna A.; Tree-controlled grammars with restrictions placed upon
cuts and paths, Kybernetika 48(1), 2012, pp. 165–175.

[8] Marcus S., Mart́ın-Vide C., Mitrana V., Păun Gh.; A new-old class of linguisti-
cally motivated regulated grammars. In: W. Daelemans, K. Sima’an, J. Veenstra,
J. Zavrel (eds.); Computational Linguistics in the Netherlands 2000, Selected
Papers from the Eleventh CLIN Meeting, Tilburg, Language and Computers –
Studies in Practical Linguistics 37, Rodopi 2000, pp. 111–125.

[9] Mart́ın-Vide C., Mitrana. V.; Further properties of path-controlled grammars.

In: Proceedings of FG-MoL 2005: The 10th Conference on Formal Grammar

and The 9th Meeting on Mathematics of Language, University of Edinburgh,
Edinburgh 2005, pp. 221–232.

[10] Martin-Vide C., Mitrana V.; Decision problems on path-controlled grammars,
IJFCS: International Journal of Foundations of Computer Science 18, 2007.

[11] Mateescu A., Salomaa A.; Handbook of formal languages, vol. 1, chapter Aspects
of classical language theory, Springer-Verlag New York, Inc., New York 1997,
pp. 175–251.

[12] Meduna A.; Automata and Languages: Theory and Applications, Springer, New
York 2005.

[13] Păun Gh.; On the generative capacity of tree controlled grammars, Computing
21(3), 1979, pp. 213–220.

[14] Salomaa A.; Computation and Automata, vol. 25 of Encyclopedia of Mathemat-
ics and Its Applications, Cambridge University Press, Cambridge 1985.

[15] Turaev S., Dassow J., Selamat M.H.; Language classes generated by tree con-
trolled grammars with bounded nonterminal complexity. In: M. Holzer, M.
Kutrib, G. Pighizzini (eds.); DCFS, vol. 6808 of Lecture Notes in Computer
Science, Springer, New York 2011, pp. 289–300.

[16] Turaev S., Dassow J., Selamat M.H.; Nonterminal complexity of tree controlled
grammars, Theoretical Computer Science 412(41), 2011, pp. 5789–5795.

