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A b s t r a c t

The	 goal	 of	 this	 paper	 is	 to	 apply	 Generalized	Additive	 Models	 to	 medical	 scheme	 data.	
The	flexibility	of	 the	nonparametric	approach	is	demonstrated	based	on	a	real-life	empirical	
example	that	seeks	to	model	hypertension	and	the	interplay	of	determinants,	such	as	physiological	
measurements,	medical	attributes,	demographic	and	socioeconomic	characteristics	in	predicting	
blood	pressure.	The	assessment	of	nonlinear	patterns	in	the	response-predictor	relationship	and	
the	strength	of	 this	association	are	 investigated.	The	extended	Generalized	Additive	Models	
allow	for	modeling	not	only	location	and	scale,	but	also	other	distribution	parameters,	such	as	
kurtosis	and	skewness.
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S t r e s z c z e n i e

Celem	 niniejszego	 artykułu	 jest	 aplikacja	 uogólnionych	 modeli	 addytywnych	 do	 danych	
medycznych.	 Elastyczność	 nieparametrycznych	 rozwiązań	 przedstawiono	 na	 przykładzie	
modelowania	 zmiennych	 determinujących	 poziom	 nadciśnienia	 tętniczego	 krwi,	 takich	 jak	
atrybuty	zdrowotne,	fizjologiczne,	demograficzne	czy	charakterystyki	społeczno-ekonomiczne.	
W	artykule	zbadano	nieliniowe	zależności	(oraz	ich	siłę)	pomiędzy	zmiennymi	objaśniającymi	
a	 nadciśnieniem	 tętniczym	krwi.	Rozszerzona	wersja	modelu	 pozwala	wyznaczyć	nie	 tylko	
parametry	skali	i	położenia,	lecz	również	inne	parametry	charakterystyczne	rozkładu,	takie	jak	
kurtoza	i	skośność.
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1. Introduction

There	are	loads	of	methods	and	techniques	for	nonparametric/semiparametric	regression,	
such	as	Locally	Weighted	Regression	[2],	Regression	Splines,	Smoothing	Splines,	B-Splines	
[16],	P-Splines	[4],	etc.	All	of	them	are	aimed	at	one	problem	–	to	make	a	precise	prediction.	
Compared	 with	 standard	 parametric	 methods	 such	 as	 Linear/Binary/Logistic	 Regression	
Models	 or	 Generalized	 Linear	 Models	 (GLM),	 the	 methodology	 behind	 nonparametric	
modeling	relaxes	the	assumption	of	linearity	in	the	response-predictor	relationship.	It	enables	
to	 uncover	 structural	 behavior	 of	 the	 response	 with	 the	 independent	 variables	 that	 may	
otherwise	be	missed.	The	notion	of	exploring	data	nonparametrically	has	been	proven	to	be	
successful	in	the	statistical	modeling.	Unfortunately,	this	success	sometimes	is	accompanied	
with	 a	weak	 interpretability	 and	 greater	 variance	 for	 greater	 dimensionality.	 Proposed	 by	
Hastie	and	Tibshirani	[9],	Generalized	Additive	Models	(GAM)	allow	for	multidimensional	
data	 and	 provide	 the	 ability	 to	 detect	 the	 nonlinear	 associations	 without	 any	 damaging	
repercussion	on	interpretability.

The	aim	of	this	paper	is	to	use	Generalized	Additive	Models	(GAM)	to	predict	hypertension	
by	multiple	independent	variables	whose	effect	is	modeled	nonparametrically.	The	presented	
results	 demonstrate	 the	 importance	 of	 nonparametric	 solutions,	 especially	 in	 the	 context	
of	 a	 real-life	 data	 set.	The	 study	on	 the	 example	of	 hypertension	 shows	 that	Generalized	
Additive	Models	(GAM)	provide	flexible	statistical	methods	for	identification	of	nonlinear	
regression	 effects	 and	 complex	 shapes	 in	 the	 relationship	 between	 the	 response	 and	 the	
predictors	which	are	missed	by	standard	parametric	solutions.	The	models	built	for	Systolic/
Diastolic	Blood	Pressure	account	for	scale,	location,	kurtosis	and	skewness	of	the	continuous	
response	distribution.

There	 is	 a	 plethora	 of	 studies	 trying	 to	find	 and	 explain	 the	 factors	 influencing	blood	
pressure.	 Unfortunately,	 most	 of	 them	 follow	 parametric	 assumptions	 [18],	 other	 allow	
for	 semiparametric	 inferences	 but	 strictly	 restricted	 to	 pre-specified	 response	 distribution	
belonging	to	the	exponential	family	and	thus,	disregarding	kurtotic	or	skewed	distributions	
[8].	As	presented	on	the	example	of	Systolic/Diastolic	Blood	Pressure,	the	analyzed	response	
variables	do	not	follow	exponential	family	features.	

2. Rationale

Modeling	 hypertension	 with	 Generalized	Additive	 Models	 (GAM)	 has	 by	 its	 nature	
interdisciplinary	 scope.	 Broadening	 the	 spectrum	 of	medical	 applications	 of	 Generalized	
Additive	Models	 (GAM)	 contributes	 to	 both	 IT	 and	medicine.	Hypertension	 is	 a	 chronic	
health	condition	prevalent	in	most	developed	nations.	Its	prevalence	in	the	western	population	
exceeds	20%.	Untreated	high	blood	pressure	is	a	major	risk	factor	for	coronary	heart	disease,	
cardiovascular	disease,	stroke	or	diabetes.	Thus,	it	is	of	crucial	importance	to	develop	models	
identifying	potential	markers	for	its	prediction.	Better	knowledge	of	the	blood	pressure	drivers	
supports	the	decision	making	process	concerning	hypertension	diagnosis	and	its	treatment.	

The	rationale	behind	incorporating	Generalized	Additive	Models	(GAM)	are:
a)	 relaxing	 the	 assumptions	 of	 parametric	 models:	 1)	 linear	 form	 of	 the	 relationship	

between	 response	 and	 predictors,	 2)	 diagnostic	 checking	 of	 the	 residuals	 (normality	
and	independence),
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b)	 enabling	the	use	of	multidimensional	data,
c)	 reasonably	easy	interpretation.

Generalized	 Additive	 Models	 (GAM)	 have	 greater	 flexibility	 than	 their	 parametric	
counterparts.	Traditional	methods,	although	attractively	simple,	often	fail	 in	many	applied	
settings.	In	real-life,	effects	are	generally	not	linear.

The	rationale	of	relaxing	the	parametric	assumptions	of	linearity	and	normality	(a)	enables	
to	explore	the	data	visually	and	uncovers	structural	behavior	that	may	be	otherwise	missed.	
Of	note	is	the	fact,	that	these	properties	of	Generalized	Additive	Models	(GAM)	are	shared	
by	 other	 nonparametric	 solutions.	What	make	 them	 distinctive	 from	 other	 nonparametric	
models	are	their	properties	of	multidimensionality	and	interpretability	(b	and	c).	In	light	of	
the	necessity	of	including	large	number	of	explanatory	variables	in	the	real-life	applications,	
the	 practical	 capabilities	 of	 the	most	 commonly	 used	 nonparametric	 regression	methods,	
such	as	Thin-Plate	Smoothing	or	Local	Regression	Methods	[2]	are	significantly	restricted.	
In	such	circumstances,	the	sparseness	of	data	results	in	the	unacceptably	large	variance	of	
estimates	(“the	curse	of	dimensionality”).	

The	 drawbacks	 of	 both	 parametric	 (linearity)	 and	 standard	 nonparametric	 solutions	
(multidimensionality	 and	 interpretability)	 are	 overcome	 by	 Generalized	Additive	Models	
(GAM).	 Their	 methodology	 allows	 for	 estimating	 the	 additive	 terms	 individually	 using	
a	 univariate	 smoother	 –	 each	 input	 is	 considered	 independently.	This	 addresses	 the	 issue	
associated	 with	 “the	 curse	 of	 dimensionality”.	 Additionally,	 individual	 term’s	 estimate	
directly	 explains	 the	 relative	 contribution	 to	 the	 response	 changes	 and	 thus,	 Generalized	
Additive	Models	(GAM)	are	among	the	most	interpretable	statistical	models.

3. Description of solutions

Generalized	Additive	Models	(GAM)	were	first	proposed	by	Hastie	and	Tibshirani	[9].	
Their	fit	allows	to	combine:
 – the	flexibilities	of	Generalized	Linear	Models	(GLM)	–	an	arbitrary	function	of	dependent	
variable,

 – the	additive	assumptions	that	enable	to	explore	the	data	nonparametrically.
Generalized	Additive	Models	(GAM)	extend	Linear	Models	(LM)	and	Generalized	Linear	

Models	(GLM)	to	include	smooth	functions	of	explanatory	variables.	They	are	an	important	
step	forward	in	the	generalization	of	Generalized	Linear	Models	(GLM).	Generalized	Additive	
Models	(GAM)	do	not	require	any	transformations	of	the	predictors	to	improve	the	fit.	The	
different	regression	models	might	be	envisioned	as	being	nested	within	each	other,	with	linear	
regression	being	the	most	limiting	case,	and	Generalized	Additive	Models	(GAM)	the	most	
general.	They	 combine	 the	 abilities	 to	 explore	 the	 data	 nonparametrically	 simultaneously	
with	the	distributional	flexibilities	of	Generalized	Linear	Models	(GLM).	Instead	of	having	
a	 single	 estimation	 coefficient	 for	 each	 of	 the	 predictors,	 Generalized	Additive	 Models	
(GAM)	use	an	arbitrary	nonparametric	function	to	approximate	the	association	between	each	
of	the	predictors	and	the	response.

The	only	underlying	assumption	made	is	that	 the	nonparametric	functions	are	additive	
and	that	the	components	are	smooth.	Generalized	Additive	Models	(GAM),	like	Generalized	
Linear	Models	 (GLM),	 apply	 a	monotonic	 link	 function	 to	 establish	 a	 relationship	 (link)	
between	 the	mean	of	 the	 response	variable	and	a	“smoothed”	function	of	 the	explanatory	
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variables.	They	are	constructed	through	summing	up	all	the	functions	which	fit	the	data	locally.	
The	final	model	closely	represents	the	behavior	of	the	data	(data	driven	approach).	However,	
apart	from	the	nature	of	the	response-predictor	relationship,	the	probability	distribution	of	the	
response	must	still	be	specified.	In	this	sense,	Generalized	Additive	Models	(GAM)	are	more	
aptly	referred	to	as	semiparametric	models.	 

3.1.	Fundamentals	of	Generalized	Additive	Models	(GAM)

Generalized	Additive	Models	(GAM)	combine	Generalized	Linear	Models	(GLM)	and	
Additive	Models	(AM):

Generalized	Linear	Models	(GLM)	extend	the	response	distribution	of	the	linear	model	into	
the	exponential	family.	Providing	that	Y	is	a	response	random	variable	and	Xj,	...,	Xp are	explanatory	

variables,	a	standard	linear	regression	model	might	be	expressed	as	 E Y Xj j
j
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Assuming	that	E(Y)	=	μ and	η	=	g(μ) where	g(•)	is	a	smooth	monotonic	differentiable	(up	to 
third	order)	link	function,	the	response-predictor	relationship	in	Generalized	Linear	Models	
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X . 	The	link	function	g(.) describes	how	the	expected	

value	of	Y	is	related	to	linear	predictor E(Y)	=	μ. Because	the	link	function	is	a	monotonic	
and	invertible	function,	the	mean	can	be	expressed	as	the	inversely	linked	linear	predictor:	
E(Y)	≡	μ	=	g–1(η)	where	g–1(.)	is	so	called	inverse	link	function.	The	form	η	=	g(μ) emphasizes	
that	Generalized	Linear	Models	(GLM)	use	transformations	of	the	mean	(no	transformation	
of	 the	data).	The	 second	 form,	 i.e.	μ	=	g–1(η) shows	how	predictions	of	 the	mean	can	be	
obtained	 following	 the	estimation	of	η.	The	most	commonly	employed	 link	 functions	are	
Normal,	 Exponential,	 Gamma,	 Inverse	Gamma,	 Poisson	 and	 Binomial.	 For	 instance,	 for	
binary	data,	a	common	link	function	is	the	logit	link:	g(t)	=	log[t/(1	–	t)]. The	mean	function	

of	Generalized	Linear	Model	(GLM)	with	the	assumed	logit	link	function	and	one	predictor	

can	be	written	as:	 log µ
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a	logistic	regression	model.	The	response	variable	in	Generalized	Linear	Models	(GLM)	is	
assumed	to	be	a	member	of	exponential	family.
 – Additive	Models	 (AM)	 extend	 the	 parametric	 form	 of	 predictors	 in	 the	 linear	model	

to	 nonparametric	 forms.	Additive	 Model	 (AM)	 is	 defined	 as:	 E Y s s Xj j
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where	the	smoothers	si,	i	=	1,	...,	p	are	smoothing	splines.	Please	note	that	smooth	functions	
have	to	be	constrained	to	have	zero	mean.
Combining	 Generalized	 Linear	 Models	 (GLM)	 and	 nonparametric	 Additive	 Models	

(AM),	Generalized	Additive	Models	(GAM)	might	be	defined	as:	
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where	the	response	variable	has	a	probability	density	from	the	exponential	family.	Generalized	

Additive	Models	(GAM)	extend	Generalized	Linear	Models	(GLM)	by	replacing	the	form	

β β0
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∑ j j
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p

X 	with	the	additive	form	 s s Xj j
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The	 form	 and	 the	 nature	 of	 Generalized	 Additive	 Models	 (GAM)	 are	 dependent	
on	the	backfitting	algorithm,	the	local	scoring	method,	the	specified	smoothing	parameters	
and	 the	 degrees	 of	 freedom	 (DF)	 used	 for	 their	 computation.	All	 of	 these	 parameters	
are	 thoroughly	 discussed	 in	 the	 literature	 [19].	 In	 this	 paper,	 only	 a	 brief	 summary	 is	
provided:
 – Backfitting algorithm: The	backfitting	and	the	local	scoring	form	an	interactive	method	
to	estimate	the	smoothers	si,	i	=	1,	...,	p.	The	backfitting	algorithm	is	an	algorithm	that	
enables	to	fit	Additive	Models	(AM).	It	might	be	used	with	different	smoothers	such	as	
univariate	or	bivariate	splines.	The	iterative	mechanism	permits	to	estimate	each	of	the	
smoothing	functions	sk(		),	given	estimates	 	[6].

 – Selection of smoothing parameters:	Very	 different	 types	 of	 smoothing	 functions	
could	 be	 specified	 in	 Generalized	 Additive	 Models	 (GAM):	 Cubic	 Smoothing	
Spline,	 Local	 Regression,	 Thin-Plate	 Smoothing	 Spline,	 etc.	 A	 smoother	 is	 an	
operator	 for	 summarizing	 the	 trend	 and	 the	 variability	 of	 a	 response	measurement	
Y	 as	 a	 nonparametric	 function	 of	 explanatory	measurements	X1,	 ...,	Xp.	 Smoothing	
methodology	offers	a	way	by	which	nonlinear	and	nonparametric	relationships	can	
be	 handled	without	 the	 restrictions	 of	 parametric	models.	 In	Generalized	Additive	
Models	 (GAM),	 each	 smoother	 has	 a	 single	 unique	 smoothing	 parameter.	 The	
most	commonly	used	methods	for	 the	selection	of	smoothing	parameters	are	Cross	
Validation	 (CV)	 function	 and	Generalized	 Cross	Validation	 (GCV)	 technique.	 For	
more	details,	please	refer	to	Wahba	[19].

4. Empirical results

4.1.	Description	of	data

The	 data	 set	 used	 in	 this	 paper	 is	 obtained	 from	 the	 National	 Health	 &	 Nutrition	
Examination	 Survey	 (NHANES).	 NHANES	 is	 an	 ongoing	 program	 designed	 to	 assess	
the	 health	 status	 of	 patients	 in	 the	United	 States.	 The	NHANES	 collects,	 among	 others,	
demographic,	 health	 history	 and	 behavioral	 information.	 This	 paper	 uses	 blood	 pressure	
measurements	 and	 demographic	 characteristics	 data.	 Blood	 pressure	 measurements	 were	
assessed	during	physician	examinations	(taken	in	the	mobile	examination	centers),	whereas	
demographic	 characteristics	 were	 collected	 during	 personal	 interviews.	 For	 the	 analysis	
purposes,	the	data	from	2003	to	2010	is	pooled.	Calculations	are	performed	using	SAS	Base	
9.2	and	R1.

1 SAS	=	Statistical	Analysis	System	(system	software	provided	by	SAS	Institute	Inc.,	4GL	language),	
R	=	programming	software	and	language	for	statistical	computing	developed	by	Development	Core	
Team	(Robert	Gentleman	and	Ross	Ihaka).
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The	primary	objective	of	this	real-life	empirical	example	is	to	investigate:
1)		 the	usefulness	and	flexibility	of	Generalized	Additive	Models	(GAM)	for	medical	scheme	

data,	
2)		 the	dependence	of	hypertension	on	various	medical	factors,	
3)		 the	patterns	of	hypertension	and	the	effects	of	the	independent	variables	on	the	response,	
4)		 the	strength	of	the	association	between	independent	and	dependent	variables.	

The	 response	measurement	 is	 either	 continuous	 derived	Mean	 Systolic/Diastolic	 Blood	
Pressure	 (referred	 to	 as	Mean	SBP/Mean	DBP)	 or	 derived	 binary	Hypertension/Borderline	
Hypertension	level	(Table	1).	Mean	SBP/Mean	DBP	is	an	average	of	three	blood	pressure	readings	
taken	 during	 physician	 examinations.	 The	 binary	 Hypertension/Borderline	 Hypertension	
response	is	derived	based	on	Mean	SBP/Mean	DBP	and	takes	the	value	of	‘Yes’	(Hypertension/
Borderline	Hypertension)	if	Mean	SBP	is	greater/equal	120	mmHg	or	Mean	DBP	greater/equal	
80	mmHg	and	 the	value	of	 ‘No’	 (No	Hypertension/Borderline	Hypertension)	otherwise.	 Its	
derivation	is	intended	to	account	for	both	Mean	SBP	and	Mean	DBP.	The	histogram	with	an	
overlaid	univariate	kernel	density	estimate	for	continuous	response	variables	is	presented	in	
Fig.	1.	One-Way	Frequencies	for	their	binary	counterparts	are	shown	in	Table	2.

T a b l e 	 1

Response variables used for fitting Generalized Additive Models (GAM)

Variable Name Variable Explanation
HYPERTFL Hypertension/Borderline	Hypertension	(1=Yes,	0=No)	[Derived]
mSBP Mean	Systolic	Blood	Pressure	(mm	Hg)	[Derived]
mDBP Mean	Diastolic	Blood	Pressure	(mm	Hg)	[Derived]

T a b l e 	 2

One-Way Frequencies for binary Hypertension/Borderline Hypertension response

Hypertension/Borderline 
Hypertension (HYPERTFL) Frequency Percent Cumulative 

Frequency
Cumulative 

Percent

[1=Yes] 9905 44.61 9905 44.61
[0=No] 12299 55.39 22204 100.00

T a b l e 	 3

Moments for Mean SBP and Mean DBP

Moments Mean SBP Mean DBP Moments Mean SBP Mean DBP
N 22204 22204 Sum Weights 22204 22204
Mean 119.869 67.93787 Sum Observations 2661592 1508492
Std Deviation 	17.521 11.81245 Variance 306.997 139.533
Skewness 1.136 0.04760 Kurtosis 1.873 0.160
Coeff Variation 14.617 17.38713 Std Error Mean 0.117 0.079
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Fig.	1.	Histogram	for	Mean	SBP/Mean	DBP

Rys.	1.	Histogram	dla	Średniego	Ciśnienia	Skurczowego/Rozkurczowego	Krwi

The	 predictor	 measurements	 are	 mainly	 variables	 representing	 physiological	
measurements,	medical	attributes	as	well	as	demographic	and	socioeconomic	characteristics.	
Ratio	 of	 Income	 to	 Poverty	 compares	 a	 family’s	 income	 with	 their	 appropriate	 poverty	
threshold2.	The	explanatory	variables	are	listed	in	Table	4.

T a b l e 	 4

Explanatory variables used for fitting Generalized Additive Models (GAM)

Variable Name Variable Explanation
AGEYRS Age	at	Screening	(years)
GENDER Gender	(1=Male,	2=Female)
BMXBMI Body	Mass	Index	(kg/m²)
LBXSUA Uric	acid	(mg/dL)
LBDHDDSI HDL-cholesterol	(mmol/L)
LBXSGTSI Gamma	Glutamyl	Transferase	(GGT)	(U/L)
INDFMPIR Family	PIR	(Ratio	of	Family	Income	to	Poverty)
LBDSGLSI Glucose	(mmol/L)
LBDSCRSI Creatinine	(umol/L)

Model	construction	was	preceded	by	outlier’s	detection.	It	involved	removing	extreme	
or	missing	values	that	might	unduly	influence	the	results	of	the	analysis	and	potentially	lead	
to	incorrect	conclusions.	Extreme	values	were	defined	as	values	deviating	from	the	expected	
range	of	1st	percentile	and	99th	percentile.	Additionally,	it	is	important	to	mention	that	in	order	
to	prepare	the	data	for	the	analysis,	it	is	recommended	to	apply	the	reduction	of	the	high-
dimensionality	of	the	data	set	[12].	Reducing	the	number	of	variables	under	consideration	

2 	Ratio	of	‘1’	means	living	right	at	the	poverty	line	(income	at	100%	of	poverty	level),	ratio	above	‘1’	
indicates	living	above	the	official	definition	of	poverty	(i.e.	a	ratio	of	‘1.5’	means	that	income	is	150%	
above	the	poverty	threshold).
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mitigates	 the	effects	of	 the	curse	of	dimensionality	and	contributes	 to	more	accurate	data	
analysis	results	[11].

Based	on	raw	data	and	before	building	Generalized	Additive	Models	(GAM),	a	positive	
association	with	Mean	SBP/Mean	DBP	for	Age	and	Body	Mass	Index	(BMI)	is	noticed.

Fig.	2.	Marginal	Scatter	Plot	for	Age	–	Mean	SBP	Relationship

Rys.	2.	Brzegowy	Wykres	Rozrzutu	dla	Relacji	Wiek	–	Średnie	Ciśnienie	Skurczowe	Krwi

Knowing	the	positive	response-predictor	relationship	for	both	explanatory	variables,	Age	
at	Screening	 is	classified	 into	4	Age	Cohorts:	12–<23	years,	23–<40	years,	40–<57	years	
and	57–<85	years,	and	Body	Mass	Index	(BMI)	into	3	BMI	Groups:	14–<25	kg/m²,	25–<30	
kg/m²,	30–<45	kg/m².	Please	note	that	Body	Mass	Index	(BMI)	in	the	range	of	25–<30	kg/
m²	could	be	an	indicator	of	being	overweight	and	Body	Mass	Index	(BMI)	>	30	kg/m²	an	
indicator	of	being	obese.	Age	Cohort,	BMI	Group	and	Gender	are	treated	as	the	classification	
variables	and	constitute	the	parametric	part	of	Generalized	Additive	Models	(GAM).	

Fig.	3.	Box	plots	of	Mean	SBP	for	classification	variables
Rys.	3.	Wykresy	pudełkowe	Średniego	Ciśnienia	Skurczowego	dla	poszczególnych	zmiennych	

klasyfikujących
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Alike	 the	 classification	 variables,	 the	 continuous	 predictors	 are	 intended	 to	 account	
for	the	nonparametric	inferences.	To	examine	the	trends	between	the	explanatory	variables,	
all	of	them	are	put	on	one	panel	(Fig.	4).	Only	a	weak	correlation	exists	between	explanatory	
variables.	Thus,	 the	impact	of	multicollinearity	(concurvity)	on	parameter	estimates	is	not	
a	major	issue.	Appendix	1	presents	bivariate	kernel	density	estimates	for	selected	explanatory	
variables,	with	contour	and	surface	plots,	in	which	density	function	is	averaged	across	the	
observed	data	points	to	create	a	smooth	approximation.	

Fig.	4.	Scatter	Plot	Matrices	for	Continuous	Explanatory	Variables

Rys.	4.	Wykres	Rozrzutu	dla	Ciągłych	Zmiennych	Objaśniających
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4.2.	Modeling	binary	response	variable

As	assessed	by	the	scatter	plot	of	explanatory	variables	(Fig.	4),	there	are	striking	features	
in	the	analyzed	data	set.	It	is	really	hard	to	determine	from	the	plot	whether	the	relationship	
between	 explanatory	 variables	 and	 the	 response	 is	 linear	 or	 not.	Another	 issue	 has	 to	 do	
with	 the	 response	 distribution.	 Although	 histograms	 for	 continuous	 response	 variables,	
particularly	for	Mean	DBP,	seem	to	look	pretty	symmetric	(Fig.	1),	they	are	not	of	normal	
distribution	and	more	importantly,	do	not	follow	exponential	family	features	(as	verified	by	
Kolmogorov-Smirnov,	Cramer-von	Mises	and	Anderson-Darling	Tests).	

To	 account	 for	 both	 Mean	 DBP	 and	 Mean	 SBP,	 as	 the	 starting	 point,	 Generalized	
Additive	Model	(GAM)	for	binary	Hypertension/Borderline	Hypertension	is	built	(Table	5).	
It	depends	on	additive	predictors	 through	a	 ‘Logit’	 link	 function.	An	additive	model	with	
univariate	 cubic	 smoothing	 splines	 is	 requested	 for	 all	 continuous	 explanatory	 predictors	
(Uric	 acid,	HDL-cholesterol,	Gamma	Glutamyl	Transferase	 (GGT),	Family	PIR,	Glucose	
and	Creatinine).

Parameter	Estimates	for	the	parametric	(linear)	part	of	the	model	(Table	5)	indicate	high	
significance	of	the	linear	trends	for	each	of	the	explanatory	variables,	with	p-values	much	lower	
than	the	assumed	significance	level	of	0.05.	The	Analysis	of	Deviance	(Table	6)	presents	a	χ2 
test	comparing	the	deviance	between	the	fully	specified	model	(all	explanatory	variables	with	
parametric	and	nonparametric	part)	and	the	model	without	the	nonparametric	component	of	
a	given	variable	(omitting	nonlinearity).	The	nonparametric	effects	are	concluded	to	be	highly	
significant	for	each	univariate	smoothing	splines	introduced	into	the	model.

T a b l e 	 5

Parameter Estimates (Binary Regression, Link Function = Logit)

Parameter Par. 
Estimate

Standard 
Error t Value Pr > |t|

Intercept –3.28 0.132 –24.9 <	0.0001**
Age Cohort (23–<40 vs 12–<23 years) 0.60 0.048 12.4 <	0.0001**
Age Cohort (40–<57 vs 12–<23 years) 1.42 0.050 28.5 <	0.0001**
Age Cohort (57–<85 vs 12–<23 years) 2.26 0.052 43.5 <	0.0001**
Gender (Male vs Female) 0.35 0.040 8.9 <	0.0001**
BMI Group (25–<30 vs 14–<25 kg/m²) 0.25 0.040 6.1 <	0.0001**
BMI Group (30–<45 vs 14–<25 kg/m²) 0.57 0.044 12.9 <	0.0001**
LINEAR(Uric acid) 0.11 0.015 7.6 <	0.0001**
LINEAR(HDL-cholesterol) 0.20 0.045 4.5 <	0.0001**
LINEAR(Gamma Glutamyl Transferase) <	0.01 <	0.001 9.8 <	0.0001**
LINEAR(Family PIR) –0.03 0.001 –2.7 0.0066*
LINEAR(Glucose) 0.06 0.014 4.6 <	0.0001**
LINEAR(Creatinine) <	0.01 0.001 4.1 <	0.0001**
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Ta b l e 	 6

Smoothing Model Analysis – Analysis of Deviance

Cubic Spline (CS) Generalized 
Cross Valid.

Sum of 
Squares

Chi-
Square Pr > ChiSq

CS(Uric acid) 0.538 19.550 19.550 	0.0002**

CS(HDL-cholesterol) 0.394 11.222 11.222 0.0106*

CS(Gamma Glutamyl Transferase) 5.346 113.702 113.702 <	0.0001**

CS(Family PIR) 0.625 13.693 13.692 0.0034**

CS(Glucose) 3.085 27.985 27.985 <	0.0001**

CS(Creatinine) 4.717 26.990 26.990 <	0.0001**

To	allow	 the	visual	 judgment	of	 the	 relative	nonparametric	effect	 sizes,	a	curvewise	
Bayesian	 confidence	 interval	 (standard-error	 band)	 to	 each	 smoothing	 component	 is	
used	 [9].	 Smoothing	 Components	 Plot	 (Fig.	 5)	 demonstrates	 the	 estimated	 smoothing	
spline	 functions	with	 the	 linear	 effect	 subtracted	out.	 It	 gives	 an	 idea	where	 significant	

Fig.	5.	Smoothing	Components	Plot	for	Hypertension/Borderline	Hypertension

Rys.	5.	Wykres	Komponentów	Wygładzania	dla	Nadciśnienia/Podwyższonego	Ciśnienia	Krwi	
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nonlinearities	occur.	The	small	p-values	indicate	that	the	data	exhibits	significant	nonlinear	
structure.	All	variables	are	nonlinear	predictors	of	Hypertension/Borderline	Hypertension.	
They	have	a	pretty	pronounced	complicated	structure	with	a	quadratic	pattern	for	Uric	acid	
and	HDL-cholesterol,	 and	 even	more	 curved	 pattern	 for	 Gamma	Glutamyl	Transferase	
(GGT)	or	Creatinine.	It	highlights	the	ability	of	Generalized	Additive	Models	(GAM)	to	
uncover	nonlinear	relationships	and	their	potential	in	identifying	patterns	which	are	missed	
by	standard	parametric	approaches.

The	 estimate	 of	 Generalized	 Additive	 Model	 (GAM)	 is	 just	 the	 sum	 of	 individual	
predictors’	 estimates	 plus	 a	 constant.	 Fig.	 6	 shows	 the	 partial	 prediction	 and	 the	 entire	
prediction	effects	of	individual	predictors	(derived	as	the	sum	of	the	estimated	linear	terms	
–	 parametric	 part	 and	 the	 respective	 nonlinear	 partial	 predictions	 –	 nonparametric	 part).	
It	 further	 reveals	 the	nature	of	 the	data	and	 the	overall	 shape	of	 the	 relationship	between	
the	predictors	and	the	response	variable.	

Concluding,	the	estimated	Generalized	Additive	Model	(GAM)	for	binary	Hypertension/
Borderline	Hypertension	response	reveals	pronouncedly	complex	nonlinear	patterns	in	the	
response-predictor	relationships	for	all	explanatory	variables.	For	more	in-depth	investigation,	
the	 estimation	 of	 continuous	Mean	 SBP/Mean	 DBP	 is	 needed.	 However,	 as	 verified	 by	
Kolmogorov-Smirnov,	Cramer-von	Mises	and	Anderson-Darling	Tests,	both	Mean	SBP	and	
Mean	DBP	do	not	belong	to	the	class	of	exponential	family	distributions.	Excess	kurtosis	is	
negative	for	both	variables	(Table	3)	indicating	platykurtic	distributions.	Thus,	the	estimation	
of	 continuous	 response	 variables	 requires	 going	 beyond	 exponential	 family	 distributions.	
This	 is	 accomplished	 by	 extending	 the	 standard	Generalized	Additive	Models	 (GAM)	 to	
Generalized	Additive	Models	(GAM)	for	Location	Scale	and	Shape.	

Fig.	6.	Partial	predictions	for	explanatory	variables	–	predictors	with	and	without	linear	terms

Rys.	6.	Prognozy	częściowe	dla	zmiennych	objaśniających	–	predyktory	z	oraz	bez	składowych	
liniowych
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4.3.	Modeling	continuous	response	variables

In	 Generalized	 Additive	 Models	 (GAM)	 for	 Location	 Scale	 and	 Shape	 the	
probability	 density	 function	 f yi

i( | )θ 	 is	 conditional	 on	 distribution	 parameter	 vector	
θ θ θ θ θ µ σ υ τi

i i i i i i i i= =( , , , ) ( , , , )1 2 3 4 	for	i =	1,	2,	...,	n.	Each	of	the	parameters	 ( , , , )µ σ υ τi i i i  
may	be	a	function	of	the	predictors.	The	first	two	distribution	parameters	μi	and	σi are	referred	
to	as	 location	and	scale	distribution	parameters,	whereas	υi	and	τi	are	referred	to	as	shape	
distribution	parameters	 (skewness	and	kurtosis).	The	formulation	of	Generalized	Additive	
Models	(GAM)	for	Location	Scale	and	Shape	goes	as	follows	[14]:
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where:
yT = (y1,	y2,	...,	yn)		 –		the	vector	of	response	variables,
θk	for	k	=	1,	2,	3,	4		 –		the	distribution	parameter	vector,
μ,	σ,	υ,	τ	and	ηk		 –		vectors	of	length	n,

k
T

k k J kk
= ( , ,... )'β β β1 2 		 –		a	parameter	vector	of	length	 Jk

' ,
Xk		 –		a	known	design	matrix	of	order	 n Jk× ' ,
xjk	for	j	=	1,	2,	...,	Jk		 –		vectors	of	length	n,
gk(.)		 –		monotonic	 link	 functions	 relating	 the	 distribution	

parameters	 ( , , , )µ σ υ τi i i i 	to	explanatory	variables,
hjk		 –	 an	unknown	smoothing	function	of	explanatory	variables	xjk,	
hjk = hjk(xjk)		 –		a	vector	evaluating	the	function	hjk	at	xjk,
hk		 –		nonlinear	parametric	function	of	explanatory	variables.

If	 equation	 (2)	 does	 not	 include	 any	 of	 the	 additive	 terms	 in	 any	 of	 the	 distribution	
parameters	(Jk	=	0)	then	the	model	defined	by	(2)	reduces	to	the	nonlinear	parametric	model	
gk(θk)	=	ηk = hk(Xk  βk).	If	additionally	 hk k k k

T
k( )X X= 	then	model	(2)	reduces	to	the	linear	

parametric	one	gk(θk)	=	ηk = Xkβk.
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Equation	(2)	allows	for	modeling	the	distribution	parameters	as	linear/nonlinear	parametric	

function	(hk(Xk βk))	and	nonparametric	smooth	function	 h xjk jk
j

Jk

( )
=
∑




1

	of	explanatory	variables.

The	form	of	the	response	distribution	 f yi i i i i( , , , )µ σ υ τ 	in	Generalized	Additive	Models	
(GAM)	for	Location	Scale	and	Shape	may	be	very	general.	Table	7	compares	the	goodness	of	
fit	based	on	the	Akaike	Information	Criterion	(AIC)	and	the	Bayesian	Information	Criterion	
(BIC)	for	28	different	continuous	distributions	fitted	to	continuous	response	variables.	For	
details	about	these	distributions,	please	refer	to	Johnson,	Kotz	and	Kemp	[10].

T a b l e 	 7

Continuous distributions applied to Mean SBP and Mean DBP data – Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC)

Mean SBP Mean DBP

Df AIC BIC Df AIC BIC

Box-Cox Power Exponential 16 177773 177901 16 167818 167946
Box-Cox-t 16 177809 177936 16 167825 167953
Inverse Gaussian 14 177895 178007 14 169376 169488
Zero Adjusted IG 15 177897 178017 15 169378 169498
Generalized Beta Type 2 16 177904 178032 16 167940 168068
Box-Cox Cole and Green 15 178230 178350 15 167880 168000
Generalized Gamma 15 178366 178486 15 167916 168036
Generalized Inverse Gaussian 15 178484 178603 15 168446 168566
Log Normal 14 178619 178732 14 169051 169163
Log Normal (Box-Cox) 14 178620 178732 14 169051 169163
Gamma 14 178896 179008 14 168444 168556
Shash 16 178896 179024 16 167811 167939
Johnson’s SU (the mean) 16 178930 179058 16 167764 167893
Skew t Type 1 16 178986 179113 16 167767 167895
Johnson’s Original SU 16 179076 179204 16 168173 168301
Skew t Type 2 16 179091 179220 16 167766 167894
Skew Power Exponential Type 1 16 179152 179280 16 167764 167892
Skew Power Exponential Type 2 16 179298 179427 16 167764 167892
Generalized y 16 179765 179893 16 167762 167890
t Family 15 179768 179888 15 167764 167884
Power Exponential 15 179911 180032 15 167761 167881
Reverse Gumbel 14 180144 180257 14 171709 171821
NET 14 180166 180278 14 169169 169281
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Mean SBP Mean DBP
Df AIC BIC Df AIC BIC

Normal 14 181593 181705 14 167829 167942
Weibull 14 184068 184180 14 168911 169023
Gumbel 14 190253 190365 14 171757 171869
Exponential 13 256838 256942 13 231641 231745

With	both	the	Akaike	Information	Criterion	(AIC)	and	the	Bayesian	Information	Criterion	
(BIC),	 the	 Box-Cox	 Power	 Exponential	 (BCPE)	 and	 the	 Box-Cox-t	 (BCT)	 distributions	
come	as	the	best	ones	in	approximating	Mean	DBP.	For	Mean	SBP,	both	AIC	and	BIC	favor	
the	Power	Exponential	distribution.	The	Box-Cox	Power	Exponential	(BCPE)	and	the	Box-
Cox-t	 (BCT)	 are	 continuous	 four	 parameter	 distributions	 (μ,	 σ,	 υ,	 τ)	They	generalize	 the	
Box-Cox	Cole	and	Green	distribution	(BCCG)	to	allow	for	modeling	kurtosis	and	skewness	
[3].	The	Power	Exponential	distribution	requires	three	distribution	parameters	(μ,	σ,	υ).	For	
details	 about	probability	density	 functions	of	 the	Box-Cox-t/Box-Cox	Power	Exponential	
and	the	Power	Exponential	distributions	please	refer	to	Rigby	and	Stasinopoulos	[14].

The	estimation	of	continuous	response	variables	assuming	the	Box-Cox	Power	Exponential	
distribution	(BCPE)	for	Mean	DBP	and	the	Power	Exponential	distribution	for	Mean	SBP	
is	preceded	by	the	selection	of	explanatory	variables.	The	first	distribution	parameter	μ	(the	
mean	of	 the	 response)	 is	modeled	assuming	 the	 inclusion	of	all	 the	explanatory	variables	
defined	at	the	very	beginning	(Table	4).	Table	8	checks	whether	the	model	can	be	simplified	
by	potential	dropping	any	of	the	terms	in	μ.

T a b l e 	 8

Single term deletions for μ

Mean DBP Mean SBP
AIC LRT Pr(Chi) AIC LRT Pr(Chi)

Age Cohort (years) 170573 2760 <	0.0001** 184047 	4141 <	0.0001**
Gender (1=Male, 2=Female) 167833 17 <	0.0001** 180078 169 <	0.0001**
BMI Group (kg/m²) 167883 69 <	0.0001** 180219 312 <	0.0001**
Uric acid (mg/dL) 167861 45 <	0.0001** 179984 75 <	0.0001**
HDL-cholesterol (mmol/L) 167816 <0 0.6537 179933 23 <	0.0001**
Gamma Glut. Trans. (U/L) 167978 161 <	0.0001** 180048 139 <	0.0001**
Family PIR 167839 22 <	0.0001** 179956 47 <	0.0001**
Glucose (mmol/L) 167843 27 <	0.0001** 179962 52 <	0.0001**
Creatinine (umol/L) 167841 25 <	0.0001** 179969 60 <	0.0001**

Based	on	the	Chi	square	test,	HDL-cholesterol	(mmol/L)	does	not	contribute	significantly	
to	Mean	DBP	(no	significant	reduction	of	Akaike	Information	Criterion	(AIC)	as	assessed	
by	Likelihood-Ratio	Test	(LRT)).	For	Mean	SBP,	no	terms	can	be	left	out,	all	of	them	will	
contribute	to	the	final	model.
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Modeling	 the	distribution	parameters	 (μ,	σ,	υ)	 and	 τ	of	 continuous	 response	variables	
and	 thus	 selecting	 the	 best	 distributions	 for	 Mean	 DBP/Mean	 SBP	 is	 performed	 based	
on	 the	 linear	 parametric	 functions	 of	 the	 predictors	 (Table	 7).	 For	 fitting	 nonlinear	 and	
nonparametric	smooth	functions,	as	 the	next	step,	additive	 term	functions	are	applied	and	
checked	for	the	goodness	of	fit.	Note	that	in	this	paper	the	modeling	of	the	Box-Cox	Power	
Exponential	 distribution	 (BCPE)	 for	Mean	 DBP	 and	 the	 Power	 Exponential	 distribution	
for	Mean	SBP	as	the	nonparametric	smooth	terms	is	restricted	to	Cubic	Smoothing	Spline	
Functions.	Alternative	additive	terms,	such	as:	Penalized	Splines	[4],	Thin-Plate	Smoothing	
Splines,	 Local	 Regression	 Splines	 [2],	 Fractional	 Polynomials,	 Power	 Polynomials	 [15],	
Random	effects,	Random	coefficients	[1],	although	very	attractive,	are	not	employed	and	not	
compared	in	this	paper.	Of	particular	notice	are	Random	effects	and	Generalized	Additive	
Mixed	Models	 (GAMM)	 which	 pose	 very	 different	 and	 flexible	 approach	 to	 estimating	
Generalized	Additive	Models	(GAM)	[13].

Cubic	Smoothing	Spline	Functions	are	curves	which	are	made	up	of	sections	of	joined	
cubic	polynomials	so	that	the	functions	h(x)	in	model	(2)	are	continuous	in	value	and	twice	
continuously	differentiable.	They	are	extensively	covered	in	the	literature	[7,	9],	thus	their	
derivation	is	omitted.	

Given	X = x,	Mean	DBP	is	modeled	by	the	Box-Cox	Power	Exponential	distribution	
denoted	as	BCPE(μ,	σ,	υ,	τ)	where	the	distribution	parameters	(μ,	σ,	υ)	and	τ	are	modeled	
as	 smooth	 nonparametric	 functions	 of	 x,	 i.e.:	Y	 ~	BCPE(μ,	 σ,	 υ,	 τ)	where	g1(μ),	g2(μ),	
g3(υ),	g4(τ)	are	defined	by	(3)–(6),	respectively	and	for	k	=	1,	2,	3,	4,	gk(.)	are	known	link	
functions.	The	similar	approach	applies	to	Mean	SBP	(the	Power	Exponential	distribution), 
i.e.	Y	~	PE(μ,	σ,	υ).

In	order	to	establish	whether	smoothing	terms	are	needed	in	the	μ	model	defined	by	(3),	
all	possible	combinations	of	linear	and	cubic	spline	functions	to	the	data	are	fitted.	For	each	
of	 the	estimated	models,	Akaike	 Information	Criterion	 (AIC)	 is	assessed	(stepwise	model	
selection).	 The	 selection	 process	 is	 very	 time-consuming	 and	 its	 outputs	 very	 extensive.	
Thus,	the	full	selection	process	of	smoothing	cubic	splines	is	not	included	in	this	paper.	Table	9	
and	Table	10	are	brief	summaries	of	the	results.

T a b l e 	 9

Summary of the selection process for Mean DBP – the first distribution parameter μ

From To Deviance Resid. Df Resid. Dev AIC

LINEAR(Creatinine) CS(Creatinine) –181 22186 167606 167641

LINEAR(GGT) CS(GGT) –143 22183 167462 167504

LINEAR(Glucose) CS(Glucose) –70 22180 167392 167440

CLASS(Gender)  <	0 22181 167393 167439
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Ta b l e 	 10

Summary of the selection process for Mean SBP – the first distribution parameter μ

From To Deviance Resid. Df Resid. Dev AIC

LINEAR(GGT) CS(GGT) –141 22186 179740 179776

LINEAR
(Creatinine) CS(Creatinine) –47 22183 179693 179735

LINEAR(Glucose) CS(Glucose) –31 22180 179662 179710

LINEAR(Uric acid) CS(Uric acid) –27 22177 179636 179689

LINEAR
(HDL-cholesterol) CS(HDL-cholest.) –17 22174 179618 179678

LINEAR
(Family PIR) CS(Family PIR) –16 22171 179603 179668

Having	 the	model	 for	 μ	 determined,	 models	 for	 variance,	 skewness	 and	 kurtosis	 are	
searched	for.	The	model	selection	procedure	for	these	distribution	parameters	comprised	of:
 – Choosing	link	functions:	for	the	Box-Cox	Power	Exponential	distribution	(Mean	DBP),	
the	default	identity	link	functions	are	chosen	for	μ	and	υ,	and	log	link	functions	are	chosen	
for	σ	and	τ;

 – Selecting	 linear	 terms	 influencing	 the	 given	 distribution	 parameter:	 this	 is	 achieved	
by	fitting	models	with	linear	terms;

 – Applying	cubic	spline	functions	h(x)	to	explanatory	variables	exhibiting	nonparametric	
relation	to	the	given	distribution	parameter:	this	is	verified	based	on	the	Akaike	Information	
Criterion	(AIC);

 – Selecting	 appropriate	 level	 of	 the	 “smoother”	 for	 each	 of	 the	 predictors	 modeled	
nonparametrically,	i.e.	choosing	the	effective	degrees	of	freedom	(DF)	for	smooth	cubic	
spline	 functions	h(x)	 and	 denoted	 as	dfμ,	dfσ,	dfυ	 and	dfτ	 respectively:	 this	 is	 achieved	
by	 employing	 numerical	 optimization	 function	 to	 minimize	 the	 Generalized	 Akaike	
Information	Criterion	 	 over	 hyper-parameters dfμ,	dfσ,	dfυ	 and	dfτ 
in	 the	Box-Cox	Power	Exponential	model	 for	Mean	DBP,	where	 	 is	 the	maximized	
log-likelihood	function,	#	denotes	penalty,	df refers	to	the	effective	degrees	of	freedom	
(DF)	and	 	is	referred	to	as	the	global	deviance.	Due	to	limited	space	for	this	paper,	
the	process	of	finding	and	searching	for	the	best	fit	is	not	presented	here.	Note	that	the	
best	model	is	found	for	hyper-parameters	corresponding	to	penalty	#=	2	and	results	in	
selecting	 a	 vector	 of	 hyper-parameters	minimizing	GAIC (2).	 For	more	 details	 please	
refer	to	Rigby	and	Stasinopoulos	[14].
Given	 that	CS	 is	Cubic	 Spline	 function	 and	df	 denotes	 degrees	 of	 freedom	 (DF),	 the	

model	for	Mean	DBP	defined	by	four	distribution	parameters	μ,	σ,	υ	and	τ	of	the	Box-Cox	
Power	Exponential	BCPE(μ,	σ,	υ,	τ)	(for	patients	from	Age	Cohort:	57–<85	years	and	with	
Body	Mass	Index	(BMI)	Group:	30–<45	kg/m²)	is	given	by:
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Applying	similar	model	selection	procedure	to	Mean	SBP	for	the	first	three	distribution	
parameters,	the	model	assuming	the	Power	Exponential	distribution	PE(μ,	σ,	υ)	is	given	by:
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5. Discussion

The	real-life	example	of	Mean	DBP/Mean	SBP	demonstrates	the	need	for	going	beyond	
the	exponential	family	distributions	and	thus,	the	usefulness	of	Generalized	Additive	Models	
(GAM)	for	Location,	Scale	and	Shape.	This	overcomes	the	shortcomings	associated	with	
standard	Generalized	Additive	Models	 (GAM)	 and	Generalized	Linear	Models	 (GLM).	
In	Generalized	Additive	Models	 (GAM)	 for	Location,	 Scale	 and	Shape	 the	 assumption	
of	exponential	 family	distributions	 is	 relaxed.	 It	allows	for	modeling	not	only	 the	mean	
associated	with	the	location	but	also	other	distribution	parameters	of	the	response	variable	
as	additive	nonparametric	smoothing	functions	of	explanatory	variables.	In	the	case	of	Mean	
DBP/Mean	SBP	data,	 the	usage	of	 the	Box-Cox	Power	Exponential/Power	Exponential	
distributions	within	Generalized	Additive	Models	(GAM)	allowed	for	modeling	kurtotic	
distributions.

The	 estimated	 Generalized	 Additive	 Model	 (GAM)	 for	 binary	 Hypertension/
Borderline	Hypertension	response	indicates	that	all	the	explanatory	variables	influence	
hypertension:	 Age	 Cohort,	 Gender,	 Body	 Mass	 Index	 (BMI)	 Group,	 Uric	 Acid,	 
HDL-cholesterol,	 Gamma	 Glutamyl	 Transferase	 (GGT),	 Family	 PIR,	 Glucose	 and	
Creatinine.	All	 explanatory	 variables	 are	 statistically	 significant	 with	 p-values	 much	
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lower	than	the	assumed	significance	level	of	0.05.	It	applies	also	to	Generalized	Additive	
Models	 (GAM)	 for	 Location,	 Scale	 and	 Shape	 estimated	 for	 Mean	 SBP.	 The	 results	
suggest	that	Mean	DBP	(which	refers	to	the	pressure	when	the	heart	is	resting	between	
beats)	does	not	depend	on	Gender	and	HDL-cholesterol.

Systolic	 Blood	 Pressure	 seems	 to	 have	 stronger	 relationship	 with	 physiological	
and	medical	attributes	than	Diastolic	Blood	Pressure.	All	explanatory	variables	are	nonlinear	
predictors	of	Systolic	Blood	Pressure.	The	models	 estimated	 for	Hypertension/Borderline	
Hypertension	and	Mean	DBP/Mean	SBP	suggest	that:
 – The	 blood	 pressure	 is	 higher	 among	 older	 subjects	 and	 subjects	 with	 elevated	 Body	
Mass	Index	(BMI).	The	risk	of	Hypertension/Borderline	Hypertension	is	higher	among	
population	groups	with	overweight	and	obesity,	particularly	in	Body	Max	Index	Group	
>=30	 kg/m2.	A	 similar	 trend	 prevails	 for	Age	 Cohorts.	 The	 slopes	 of	 blood	 pressure	
are	significantly	higher	in	men	than	women	(Table	5).

 – People	with	elevated	Uric	Acid	 levels	are	at	greater	 risk	of	hypertension.	 It	 is	backed	
by	other	studies	on	Uric	Acid	[5].	The	researchers	conclude	that	Uric	Acid	may	be	an	
independent	driver	of	high	blood	pressure	and	a	marker	of	its	prediction.	A	simple	blood	
test	can	determine	how	much	of	it	is	present	in	the	body.	Effective	drugs	already	exist	
which	 lower	 the	 level	 of	Uric	Acid	 and	 thus,	 offer	 a	 potential	 remedy	 for	 high	blood	
pressure	prevention.

 – HDL-cholesterol	 levels	 influence	 Systolic	 Blood	 Pressure	 response.	 This	 is	 due	 to	
the	 association	 between	 high	 HDL-cholesterol	 and	 atherosclerosis	 (accumulation	
of	HDL-cholesterol	 on	 the	walls	 of	 arteries	 –	 hardening	 of	 the	 arteries).	 High	HDL-
cholesterol	accelerates	the	progression	of	atherosclerosis	which	is	thought	to	contribute	
to	hypertension.	This	link	is	not	significant	for	Diastolic	Blood	Pressure	readings.

 – There	is	a	positive	link	between	Gamma	Glutamyl	Transferase	(GGT)	levels,	a	marker	
of	 oxidative	 stress	 and	 blood	 pressure.	 Although	 the	 underlying	 mechanism	 of	 this	
association	is	still	unclear,	some	studies	confirm	that	higher	Gamma	Glutamyl	Transferase	
(GGT)	is	implicated	in	the	pathogenesis	and	progression	of	hypertension	[17].

 – People	in	low	socioeconomic	status	environments	as	assessed	by	Income-Poverty	Ratio	
are	more	 susceptible	 to	 illnesses.	Those	with lower	 income	 tend	 to	 be	 at	 greater	 risk	
of	hypertension.	These	findings	are	pretty	worrying,	especially	 in	 light	of	 the	fact	 that	
most	researches	to	date	are	concentrated	on	hypertension	in	developed	urban	countries.	
As	a	result,	very	little	is	known	about	the	problems	and	barriers	to	treatment	and	diagnosis	
outside	high-income	areas.	This	issue	is	even	more	acute	knowing	that	the	epidemic	of	
cardiovascular	disease	occurring	in	low-income	nations	is	largely	driven	by	the	increasing	
prevalence	of	high	blood	pressure.

 – Glucose	 is	 able	 to	 induce	 Systolic	 Blood	 Pressure.	 Elevated	 Glucose	 level	 increases	
the	likelihood	of	having	diabetes	which	leads	to	higher	Systolic	Blood	Pressure	and	heart	
diseases.	The	relationship	with	Diastolic	Blood	Pressure	seems	to	be	reversed.

 – Higher	blood	pressure	is	associated	with	elevated	Serum	Creatinine	level	(an	indicator	of	
chronic	renal	disease).	Creatinine	draws	water	into	the	muscle	what	increases	body	weight	
and	muscle	volume.	Retaining	more	water	 in	 the	body	 impacts	 the	blood	volume	and	
thus,	 blood	 pressure.	Of	 note	 is	 the	 fact	 that	 half	 of	 the	 body’s	 Creatinine	 is	 created	
naturally	(produced	in	 the	liver	and	kidney)	whereas	 the	rest	comes	from	the	diet	(the	
consumption	of	red	meat	and	poultry).	It	confirms	that	appropriate	diet	plays	its	role	in	
the	treatment	of	blood	pressure.
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6. Conclusions

In	 this	 paper,	 the	 underlying	 methodology	 for	 Generalized	Additive	 Models	 (GAM)	
has	 been	 introduced.	 The	 real-life	 data	 set	 example	 has	 demonstrated	 how	 one	 can	 use	
the	nonparametric	approach	to	model	medical	scheme	data.	This	was	achieved	by	investigating	
the	 dependencies	 and	 patterns	 of	 Hypertension/Borderline	 Hypertension	 and	 Mean	 
DBP/Mean	SBP	on	various	physiological	measurements,	medical	attributes	and	Income	to	
Poverty	Ratio.	It	is	concluded	that	Generalized	Additive	Models	(GAM)	are	a	very	powerful	
and	flexible	tool	in	an	exploratory	analysis,	especially	when	you	have	little	prior	information	
about	the	data	or	you	want	to	find	new	features	that	parametric	tools	ignore.	Its	nonparametric	
nature	 does	 not	 require	 much	 prior	 information	 and	 can	 also	 shed	 light	 on	 underlying	
parametric	 relationships.	 Generalized	 Additive	 Models	 (GAM)	 help	 to	 avoid	 model	
misspecification	and	provide	information	that	might	not	be	revealed	by	standard	modeling	
techniques.	 The	 presented	 Generalized	 Additive	 Models	 (GAM)	 revealed	 pronouncedly	
complex	nonlinear	patterns	in	the	response-predictor	relationships	for	all	predictors	entered	
into	the	model.	These	nonlinear	associations	have	been	handled	without	the	restrictions	of	
parametric	models,	without	 sacrificing	 the	 interpretability	and	without	 the	bias	associated	
with	 the	 “curse	of	 dimensionality”.	The	built	Generalized	Additive	Models	 (GAM)	 seem	
to	represent	the	behavior	of	the	data	closer	than	the	parametric	counterparts.	It	underlines	
the	 importance	 of	 this	 class	 of	models	 in	 detecting	 nonlinear	 dependencies	 and	 suggests	
potential	 failure	 of	 parametric	 solutions	 in	 capturing	 important	 features	 of	 the	 medical	
scheme	data.
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T a b l e 	 11

Distribution parameters of Box-Cox Power Exponential distribution (BCPE) – Mean DBP

Estimate Std. Error t value Pr(>|t|)

μ – Mu Coefficients (Mu link function: identity)

(Intercept) 58.09 0.481 120.7 <	0.0001**

Age Cohort (23–<40 vs 12–<23 years) 5.76 0.212 27.1 <	0.0001**

Age Cohort (40–<57 vs 12–<23 years) 10.81 0.222 48.7 <	0.0001**

Age Cohort (57–<85 vs 12–<23 years) 6.05 0.240 25.2 <	0.0001**

BMI Group (25–<30 vs 14–<25 kg/m²) <	0.01 0.184 <	0.1 0.1986

BMI Group (30–<45 vs 14–<25 kg/m²) 1.33 0.202 6.6 <	0.0001**

LINEAR(Uric acid) 0.25 0.065 3.8 <	0.0001**

CS(Gamma Glutamyl Transferase, df = 6.48) 0.04 0.003 13.1 <	0.0001**

LINEAR(Family PIR) –0.25 0.046 –5.3 <	0.0001**

CS(Glucose, df = 7.25) –0.21 0.067 –3.1 <	0.0001**

CS(Creatinine, df = 9.49) 0.03 0.004 6.2 <	0.0001**
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Estimate Std. Error t value Pr(>|t|)

σ – Sigma Coefficients (Sigma link function: log)

(Intercept) –1.92 0.031 –62.5 <	0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.07 0.015 –4.7 <	0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.19 0.015 –12.6 <	0.0001**

Age Cohort (57–<85 vs 12–<23 years) 0.02 0.015 1.4 	0.1503

CS(Uric acid, df = 0.89) 0.01 0.004 3.7 	0.0002**

LINEAR(Family PIR) –0.02 0.003 –5.9 <	0.0001**

CS(Glucose, df = 3.20) 0.01 0.004 2.8 0.0049**

υ – Nu Coefficients (Nu link function: identity)

(Intercept) 1.41 0.117 12.0 <	0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.39 0.101 –3.8 <	0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.67 0.113 –5.5 <	0.0001**

Age Cohort (57–<85 vs 12–<23 years) –0.20 0.094 –2.2 0.0246*

LINEAR(Family PIR) 0.06 0.022 2.6 0.0082*

CS(Creatinine, df = 2.76) <	–0.01 0.001 –2.9	 	0.0032**

τ – Tau Coefficients (Tau link function: log)

(Intercept) 0.71 0.040 17.8 <	0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.19 0.042 –4.5 <	0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.18 0.043 –4.2 <	0.0001**

Age Cohort (57–<85 vs 12–<23 years) –0.13 0.042 –3.2 0.0014**

Gender (Male vs Female) 0.09 0.030 2.9 0.0034**

Degrees of Freedom for the fit: 68.90, No. of observations in the fit: 22204

Ta b l e 	 12

Distribution parameters of Power Exponential distribution (PE) – Mean SBP

 Estimate Std. Error t value Pr(>|t|)

μ – Mu Coefficients (Mu link function: identity)

(Intercept) 96.23 0.696 138.2 <	0.0001**

Age Cohort (23–<40 vs 12–<23 years) 6.18 0.250 24.7 <	0.0001**

Age Cohort (40–<57 vs 12–<23 years) 18.23 0.319 57.2 <	0.0001**
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 Estimate Std. Error t value Pr(>|t|)

Age Cohort (57–<85 vs 12–<23 years) 2.75 0.198 13.9 <		0.0001**

Gender (Male vs Female) 1.46 0.191 7.6 <	0.0001**

 Estimate Std. Error t value Pr(>|t|)

BMI Group (25–<30 vs 14–<25 kg/m²) 2.20 0.194 11.3 <	0.0001**

BMI Group (30–<45 vs 14–<25 kg/m²) 4.59 0.219 20.9 <	0.0001**

CS(Uric acid, df = 2.18) 0.40 0.077 5.2 <	0.0001**

CS(HDL-cholesterol, df = 3.90) 0.93 0.230 4.1 <	0.0001**

CS(Gamma Glutamyl Transferase, df = 8.11) 0.05 0.004 13.5 <	0.0001**

CS(Family PIR, df = 2.39) –0.20 0.045 –4.2 <	0.0001**

CS(Glucose, df = 6.52) 0.79 0.085 9.4 <	0.0001**

CS(Creatinine, df = 3.54) 0.06 0.005 12.2 <	0.0001**

σ – Sigma Coefficients (Sigma link function: log)

(Intercept) 2.03 0.042 48.1 <	0.0001**

Age Cohort (23–<40 vs 12–<23 years) 0.12 0.015 7.9 <	0.0001**

Age Cohort (40–<57 vs 12–<23 years) 0.48 0.016 29.2 <	0.0001**

Age Cohort (57–<85 vs 12–<23 years) 0.76 0.016 48.7 <	0.0001**

Gender (Male vs Female) –0.04 0.013 –3.3 <	0.0001**

CS(HDL-cholesterol, df = 0.90) 0.04 0.015 3.1 <	0.0001**

CS(Gamma Glutamyl Transferase, df = 2.55) <	0.01 <	0.001 4.1 <	.0001**

LINEAR(Family PIR) –0.02 0.003 –6.7 <	0.0001**

CS(Glucose, df = 1.34) 0.01 0.004 2.9 <	0.0001**

LINEAR(Creatinine) <	0.01 <0.001 4.1 <	0.0001**

υ – Nu Coefficients (Nu link function: log)

(Intercept) 0.53 0.065 8.4 <0.0001**

Age Cohort (23–<40 vs 12–<23 years) –0.19 0.041 –4.7 <0.0001**

Age Cohort (40–<57 vs 12–<23 years) –0.32 0.041 –7.8 <0.0001**

Age Cohort (57–<85 vs 12–<23 years) –0.09 0.042 –2.0 0.0430*

Gender (Male vs Female) 0.06 0.028 2.1 0.0350*

Degrees of Freedom for the fit: 63.59, No. of observations in the fit: 22204
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A p p e n d i x 	 1

Kernel Density for selected Explanatory Variables: Density Surface and Contour Plot

A p p e n d i x 	 2

Probability density functions of Box-Cox-t, Box-Cox Power Exponential and Power 
Exponential distributions

The	probability	density	function	 f yT i i i i i( , , , )µ σ υ τ 	of	the	Box-Cox-t	distribution	(BCT)	
is	given	by:
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for	y	>	0,	where	Y	is	a	positive	random	variable	of	the	Box-Cox	t	distribution,	μ	>	0,	σ	>	0,	
and	–	∞	<	υ	<	∞	and	Z	is	the	transformed	random	variable	given	by:
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where	Z	follows	a	truncated	t	distribution	with	degrees	of	freedom	(DF),	τ	>	0.	fT(t)	and	FT(t)	
are	 respectively	 the	 probability	 density	 function	 and	 the	 cumulative	 distribution	 function	
of	a	random	variable	T.	T	has	a	standard	t	distribution	with	degrees	of	freedom	(DF)	τ	>	0.

The	probability	density	function	of	the	Box-Cox	Power	Exponential	distribution	(BCPE)	
is	given	by	(7)	where	Z	 follows	a	 truncated	standard	Power	Exponential	distribution	with	
power	 distribution	 parameter,	 τ	 >	 0.	 The	 Power	 Exponential	 distribution	 requires	 three	
parameters.	The	probability	density	function	of	 the	Power	Exponential	family	distribution	
is	defined	by:

 f y

z
c

c
Y ( | , , )

exp
µ σ υ

υ

σ
υ

υ

=
−
















2 1Γ

	 (9)

for	 –	 ∞	 <	 y	 <	 ∞,	 where	 –	 ∞	 <	 μ	 <	 ∞,	 σ	 >	 0	 and	 υ	 >	 0	 and	 where	 z = (y	 –	 μ)/σ	 and		
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. 	In	this	parameterization,	E(Y)	=	μ	and	Var	(Y)	=	σ2.	


