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A b s t r a c t

This	 article	describes	 a	new	hybrid	 ant	 colony	optimization	algorithms	 for	 the	 set	 covering	
problem.	The	problem	is	modeled	by	means	of	a	bipartite	graph.	New	heuristic	patterns,	which	
are	 used	 in	 order	 to	 choose	 a	 vertex	 to	 a	 created	 covering	 set	 have	 been	 incorporated	 into	
modified	hybrid	algorithms.	Results	of	tests	on	investigated	algorithms	are	discussed.
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S t r e s z c z e n i e

W	artykule	przedstawiono	nowy	hybrydowy	algorytm	mrówkowy	dla	problemu	zagadnienia	
pokrycia	zbioru	o	minimalnym	koszcie.	Problem	jest	zamodelowany	za	pomocą	grafu	dwu-
dzielnego.	W	modyfikowanym	algorytmie	wprowadzono	nową	heurystykę	wyboru	wierzchoł-
ków	do	podzbioru	wierzchołków	pokrywających.	Opracowany	algorytm	przetestowano	i	po-
równano,	a	wyniki	tych	badań	omówiono.	
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1. Introduction

Many	 practical	 optimization	 problems	 such	 as	 for	 example	 facility	 location	 problem,	
airline	crew	scheduling,	nurse	scheduling,	vehicle	routing	and	resource	allocation	problem	can	
be	described	and	modeled	as	 the	Set	Covering	Problem	(SCP)	 [1,	2,	10–12]	and	many	other	
combinatorial	 problems	 can	 be	modeled	 in	 such	 a	 way.	 There	 are	many	 kinds	 of	 computer	
algorithms	that	have	been	designed	so	far	to	solve	SCP	such	as	exact	algorithms	[13,	14],	heuristic	
algorithms	[15–18],	meta-heuristics	algorithms	[19–21],	also	algorithms,	which	are	based	on	ant	
colony	optimization	strategy	[3,	6,	22,	23]	and	hybrid	of	Ant	Colony	Optimization	Algorithm	
(ACO)	with	so	called	Constraint	Programming	(CP)	[26,	27].	Ant	algorithms	were	designed	to	
solve	many	combinatorial	problems	[5,	8,	24,	25]. This	paper	presents	new	algorithms,	which	
are	based	on	an	ant	colony	optimization	strategy,	for	the	set	covering	problem	with	a	minimum	
covering	cost	and	a	new	heuristic	information	patterns,	which	have	been	used	in	these	algorithms.	
Transition	probability	rule	and	pheromone	update	rule	and	also	a	mechanism	checking	constraints	
consistency	are	used	all	together	in	order	to	solve	the	SCP	and	to	minimize	the	total	covering	
cost.	The	remainder	of	this	paper	is	structured	as	follows:	in	section	2	the	SCP	is	introduced,	in	
section	3	the	structure	of	ACO	algorithm	is	described,	in	section	4	pseudo-code	of	ant	algorithms	
with	new	heuristic	patterns	and	transition	probability	rules,	which	is	used	in	new	elaborated	ant	
algorithms,	are	discussed	and	in	section	5	results	of	the	conducted	computational	experiments	on	
a	special	kind	of	a	graph	with	an	almost	equal	density	and	in	section	6	conclusions	are	presented.	

2. Set covering problem

The	set	covering	problem	can	be	modeled	as	a	bipartite	graph	network	G(V1 + V2, E, w)	
with	weights	wij	assigned	to	edges	eij,	such	that	eij = (vi ∈ V1, vj ∈ V2), eij ∈ E	as	it	is	shown	
in	Fig.	1	and	in	the	same	way	as	it	is	presented	in	[9].	The	degree	of	vertex	i	is	the	sum	of	
edges	adjacent	to	this	vertex	i.	All	vertices	v1i can	be	grouped	into	subsets	in	such	a	way	that	
all	vertices	from	the	set	V2	are	covered	by	vertices	from	the	some	subset	Vs	of	vertices	V1.	
A	vertex	v2i is	covered	by	a	vertex	v1j	if	an	edge	eij exists	between	a	vertex	i and	a	vertex	j	in	
a	bipartite	graph,	for	example	subset	Vs ⊂ V1	which	consists	of	vertices	v11,	v13,	v14	and	v16 
covers	all	vertices	from	the	set	V2	and	the	another	example	of	set	Vs	is	subset	which	consists	
of	vertices	v14	and	v17.	In	general	if	the	cardinality	number	of	set	Vs	is	lower	than	the	total	set	
covering	cost	is	higher.	In	the	set	covering	problem	with	minimum	the	cardinality	number	of	
set	Vs	and	the	cost	the	total	cost	of	set	covering,	this	means	the	sum	of	weights	assigned	to	all	
graph	edges,	which	are	participating	in	the	set	covering,	has	to	be	minimized.

The	objective	function	F	is	to	find	a	cover	set	with	a	minimum	cost	and	is	described	in	
(1)	and	(2):

 min , ,F x w i V j Vij ijj

n

i

n
= ( ) ∈ ∈

== ∑∑ 11 1 2 	 (1)

and	subject	to	constraint	such	that:

 x i V j Viji Vs

n

∈∑ ≥ ∈ ∈1 1 2, , 	 (2)
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where:
xij = 1,	when	a	vertex	j	is	covered	by	a	vertex	i,
xij = 0,	when	a	vertex	j	is	not	covered	by	a	vertex	i,
wij		–		this	is	a	weight	associated	to	edge	eij (a	cost	of	covering	a	vertex	j	by	a	vertex	i),
Vs		 –	 	is	a	subset	of	vertices	V1	which	cover	all	vertices	V2.

Fig.	1.	The	set	covering	problem	modeled	by	a	bipartite	graph	

Rys.	1.	Problem	pokrycia	zbioru	modelowany	grafem	dwudzielnym

3. Structure of ACO algorithm

In	ant	algorithms	a	colony	of	artificial	ants	is	looking	for	a	good	quality	solution	of	the	
investigated	problem.	The	pseudo-code	of	ACO	procedure	is	presented	as	algorithm	1.	Each	
artificial	ant	constructs	an	entire	 solution	of	 the	problem	 in	some	number	of	 steps,	called	
intermediate	 solutions.	Any	of	 intermediate	 solutions	are	 referred	 to	as	 solution	 states.	 In	
each	step	m	of	the	algorithm	each	ant	k goes	from	a	one	state	i	to	an	another	state	j	and	thus	
constructs	a	new	 intermediate	solution	called	 later	a	partial	 solution	of	 the	problem	since	
the	entire	solution	is	received	in	some	number	of	steps	and	at	each	of	these	steps	there	is	an	
intermediate	solution	called	a	partial	solution	or	a	solution	under	construction.	At	each	step	
each	ant	k	computes	a	set	of	feasible	expansions	to	its	current	state	and	moves	to	one	of	these	
in	probability.	This	set	of	feasible	expansions	is	called	a	neighborhood	of	current	state.	In	
presented	algorithms	concerning	processing	of	bipartite	graph,	this	means	working	on	a	graph	
model	of	the	set	covering	problem	at	each	state	each	ant	chooses	a	vertex	from	the	set	V1	and	
adds	it	to	a	partial	solution	in	order	to	construct	finally	at	the	end	of	algorithm	action	the	entire	
solution	to	the	SCP	problem.	At	the	end	of	algorithm	action	the	set	of	vertices	Vs	constitute	
a	solution	to	the	SCP	problem.	Each	ant	k starts	with	an	empty	set	Vs	and	successively	adds	to	
this	set	Vs	a	vertex	chosen	one	after	the	other	from	the	set	V1	with	probability	p

k
ij	moving	from	

a	one	to	another	state.	At	each	state	i there	are	some	vertices	in	the	set	Vs	and	these	vertices	
from	the	set	Vs	constitute	a	partial	solution	of	a	problem	at	step	m,	this	means	at	state	m.	Each	
ant	in	order	to	construct	a	solution	uses	common	information	which	is	encoded	in	pheromone	
trails,	this	means	the	trail	level	of	the	move,	indicating	how	proficient	it	has	been	in	the	past	to	
make	that	particular	move.	Each	ant	also	deposits	a	pheromone	on	a	trail	when	a	solution	has	
been	found	and	a	quantity	of	the	pheromone	deposited	depend	on	a	quality	of	this	solution.	
The	move	of	each	ant	also	depends	on	so	called	the	attractiveness	of	the	move,	as	computed	
by	some	heuristic	indicating	the	a	priori	desirability	of	that	move.	In	order	to	avoid	a	very	fast	
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convergence	to	a	locally	optimal	solution	an	evaporation	mechanism	is	used,	this	means	that	
over	the	time	the	pheromone	trail	evaporates,	thus	reducing	its	attractive	strength.	

Algorithm	1
ACO	procedure	

begin 
 while	(exist	cycle)	do 
  while	(exist	any	ant,	which	has	not	worked)	do
   while	(a	solution	has	not	been	completed)	do 
	 	 	 	 choose	a	next	vertex	to	a	constructed	solution	with	a	probability	pk

ij ;
	 	 	 	 update	neighborhood	of	current	state;	
   end 
	 	 	 update	a	best	solution	if	a	better	solution	has	been	found;	
  end 
	 	 update	a	global	best	solution	if	a	better	solution	has	been	found;	
	 	 use	an	evaporation	mechanism;	
	 	 update	a	pheromone	trails	τ(i) = τ(i) + ∆τ; 
 end 
end.

Each	ant	k	moves	from	one	state	i	to	another	state	j	with	a	transition	probability	rule	pk
ij(t),	

which	is	described	by	the	formula:
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using	the	pheromone	trail	τij	and	the	attractiveness	µij	of	the	move.	The	pheromone	trail	τij 
is	 the	useful	 information,	which	 is	deposited	by	others	ants,	 for	 each	ant	during	 its	work	
on	 construction	 of	 solution,	 about	 the	 usage	 of	 vertex	 j	 in	 the	 past	 by	 others	 ants.	 The	
attractiveness	µij	is	a	desire	of	choosing	a	vertex	j	from	the	neighborhood	Ni of	current	state 
when	 there	 is	a	partial	 solution	yet	constructed	 in	state	 i	 and	 the	attractiveness	µij	 can	by	
expressed	by	a	some	heuristic	formula.	The	attractiveness	µij	allows	to	better	choose	a	some	
vertex	from	all	vertices,	from	the	neighborhood	Ni of	current	state,	to	be	added	to	a	solution	
under	construction	taking	an	objective	function	into	a	consideration.	The	neighborhood	Ni 
of	 state	 i	 is	 constituted	 by	 vertices	which	 can	 be	 added	 to	 a	 constructed	 partial	 solution.	
At	 the	 start	 all	 vertices	 can	 be	 added	 to	 a	 partial	 solution	 of	 the	 problem,	 this	means	 to	
a	solution	of	a	problem	under	construction	and	the	number	of	these	vertices	is	reduced	not	
only	because	of	their	inclusion	into	the	solution,	which	is	under	the	construction,	but	also	
because	some	of	these	vertices	cannot	be	yet	added	to	a	solution,	which	is	under	construction,	
since	 these	 vertices	 does	 not	 satisfied	 solution	 constraints	 and	 only	 these	 vertices	 can	 be	
added	 to	 constructed	 partial	 solution	which	 still	 satisfied	 solution	 constraints.	The	 partial	
solution	of	the	problem	is	a	part	of	solution	and	the	partial	solution	is	a	subset	of	vertices,	
which	constitute	a	solution	of	the	problem.	Parameters	α	and	β	which	is	used	in	the	transition	
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probability	rule	pk
ij(t)	expressed	by	(3),	 indicate	about	 this,	how	important	 the	pheromone	

trail	τij	and	the	attractiveness	µij	are	during	transition	from	one	to	another	state.	Values	of	
these	parameters	α	and	β should	be	set	by	experiment	and	tuned	to	the	set	covering	problem	
with	minimum	covering	cost.	

After	a	solution	has	been	found	each	ant	deposits	a	pheromone	with	a	quantity	∆τ	on	all	
vertices,	which	constitute	the	solution	Vs,	in	accordance	with	the	pattern:

 τ τ τij ijt t( ) ( )= + ∆ 		 (4)

Thus	 these	 vertices	 which	 were	 included	 into	 a	 solution	 have	 received	 an	 additional	
quantity	of	a	pheromone	and	can	be	chosen	to	a	solution	that	would	be	constructed	next	with	
a	higher	probability	than	others	vertices	from	the	set	V1.	

An	evaporation	mechanism	is	incorporated	into	an	ant	algorithm	in	order	to	avoid	a	too	
fast	 convergence	 to	 a	 sub-optimal	 solution.	An	 intensity	 of	 evaporation	 is	 controlled	 by	
a	parameter	ρ	and	a	quantity	of	a	pheromone	on	each	vertex	from	the	set	V1	is	update	at	the	
end	of	each	cycle	in	accordance	with	the	pattern:

 τ ρ τ ρij ijt t( ) ( ) ( ), ( , ]= − ∈1 0 1 	 	(5)

Thus	 a	 diversity	 of	 a	 solution	 is	 granted.	 Values	 of	 a	 parameter	 ρ	 should	 be	 set	 by	
experiment.

A	quantity	of	deposited	pheromone	∆τ	depends	on	a	quality	of	solution	Q	and	if	the	better	
is	a	solution	than	the	more	pheromone	is	deposited	and	in	general	can	be	stated	as	formula:

 ∆τ = f Q( ) 	 	(6)

and	 in	particular	can	be	expressed	by	some	specific	 formula,	which	 take	 into	account	 the	
covering	cost.

4. Hybrid ACO algorithm

Both	ACO-SCP	algorithms,	which	are	discussed	in	this	paper,	are	modified	versions	of	
the	 hybrid	 algorithm	described	 in	 [6]	 and	 in	 this	 paper	 the	 general	 pseudo-code	 of	 these	
algorithms	is	presented	as	algorithm	2.	In	the	algorithm	presented	in	this	paper	a	new	dynamic	
heuristic	rule	is	proposed.	The	dynamic	heuristic	information:

 µ
ν

1
1

21( ) , and and is not covered yeti c if x j S
j w

ij
ij

= = ∈
=∑

j 	 (7)

is	defined	in	the	same	way	as	in	the	paper	[6]	and	the	dynamic	heuristic	information	µ2(i)	
and	µ3(i)	can	be	defined	adequately:

 µ2 1
( ) ,maxi w w if w w k Vij ij kj sj

n
= −( ) −( ) ∈



=∑ 	 (8a)
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 µ3 1
( ) ,i w w if w w k Vkj ij ij kj sj

n
= −( ) <( ) ∈



=∑ 	 	(8b)

where:
vc		 –		 this	is	a	number	of	additionally	covered	vertices	from	S2	if	vertex	i 

would	be	included	into	a	solution	Vs,
wmax		 –		 this	is	the	maximal	weight	from	weights	associated	to	an	edges	eij,
wij  –		 this	is	a	weight	associated	to	an	edge	eij,
Vs		 –		 this	is	a	constructed	yet	subset	of	V1	vertices,
k  –	 	this	is	a	vertex	already	included	into	set	Vs,
µ1(i)		 –		 desirability	of	vertex	i	when	not	covered	vertices	j	from	the	set	V2 

are	taken	into	consideration,
µ2(i)	and µ3(i)		 –		 desirability	of	vertex	i	when	edge	covered	vertices	j	from	the	set	V2 

are	taken	into	consideration,
xij =	1	when	an	edge	eij	exists	between	vertex	i	and	vertex	j and	xij =	0	otherwise.	

In	both	algorithms	a	following	vertex	that	should	be	added	to	a	partial	solution	is	chosen	
with	a	probability	 that	depends	on	a	pheromone	 trail,	heuristic	 information	and	 transition	
rule.	Main	differences	between	elaborated	algorithms	and	algorithm,	which	is	presented	in	
the	paper	[6]	concern	a	transition	probability	rule	(9),	(10)	and	heuristic	information	(8a),	
(8b).	 Since	 the	 quality	 of	 a	 solution	 depends	 on	 a	 total	 weight	 of	 covering,	 this	 means	
depends	on	a	sum	of	weights	assigned	to	all	edges	between	all	vertices	of	the	set	V2	and	the	
set	Vs,	the	attractiveness	µij	of	choosing	vertex	j	expressed	as	a	function	of	a	weight	is	very	
important.	At	 any	 state	 only	 these	vertices	 from	 the	 set	V1	which	 can	 improve	quality	of	
solution	should	be	considered	when	any	ant	choose	following	vertex	that	should	be	added	to	
a	partial	solution	and	to	a	set	of	vertices	Vs.	Such	vertices	from	the	set	V1	which	can	improve	
quality	of	a	solution	will	be	called	available	vertices	and	will	be	constitute	a	set	VA	and	these	
vertices	will	be	also	constitute	the	neighborhood	Ni of	a	current	state.	These	vertices	from	
the	set	V1,	which	cannot	improve	a	quality	of	solution	are	excluded	as	a	result	of	consistency	
checking	from	available	vertices	VA	and	such	vertices	constitute	a	set	Vex.	It	is	obvious	that	
if	 any	 vertex	 is	 included	 into	 a	 partial	 solution	Vs	 it	 cannot	 belongs	 to	 a	 set	 of	 available	
vertices	VA,	so	taking	the	above	into	consideration	the	number	of	available	vertices	VA	can	be	
computed	in	accordance	with	expression	VA = V1 – Vs – Vex.	The	attractiveness	µ1(i)	and	µ2(i)	
and	µ3(i)	of	choosing	vertex	i	from	available	vertices	VA	depend	on	weights	of	its	edges	and	
not	only	it	concerns	not	covered	yet	vertices	from	the	set	V2 expressed	by	the	attractiveness	
µ1(i),	but	also	these	vertices	from	the	set	V2,	which	have	been	covered	up	till	now,	this	means	
up	to	this	moment	of	choosing	from	the	neighborhood	Ni of	a	current	state	the	next	following	
vertex	i	expressed	by	the	attractiveness	µ2(i)	and	µ3(i):
a)	 for	HACO1-SCP:

 p i i i i
i i i

V V
i V
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b)		for	HACO2-SCP:
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where:
VA

  –		 this	is	a	set	of	available	vertices,	VA = V1 – Vs – Vex,
Vex  –		 these	 are	 vertices,	 which	 are	 excluded	 as	 a	 result	 of	 consistency	

checking,
τ(i)		 –		 this	is	a	pheromone	trail	on	a	vertex	i,
(µ1 (i)	µ2 (i))		 –		 this	is	a	heuristic	information	associated	with	a	vertex	i	in	part	a),
(µ1 (i)	µ3 (i))		 –		 this	is	a	heuristic	information	associated	with	a	vertex	i in	part	b).

A	quantity	of	pheromone	∆τ	is	deposited	by	ants	during	one	cycle	of	algorithm	action	on	
all	vertices	of	the	set	Vs,	which	were	included	into	the	best	constructed	solution,	in	accordance	
with	the	formula:

 ∆τ =
−

−
1

1 c c
c
best

best

	 	(11)

where:
cbest		 –		 this	is	the	best	cost	of	covering,
c  –		 this	is	an	actual	cost	of	covering.

Algorithm	2
Hybrid	ACO	procedure	for	SCP	

begin
 while (exist	cycle	not	done)	do
  for (k:=1	to	n	Ants)	do
   while (a	solution	(a	subset	Vs)	is	not	completed	)	do
	 	 	 	 Update	Available	Vertices;
	 	 	 	 Choose	next	vertex	i	with	probability	p(i)	and	consistency	checking;
	 	 	 	 Add	to	a	Partial	Solution;
	 	 	 	 Update	Partial	Solution;
   end 
	 	 	 Save	a	Better	Solution;	
  end 
	 	 Update	Optimum;
	 	 Use	an	evaporation	mechanism;
	 	 Update	Pheromone;
 end 
Return	Best	Solution	Founded;
end.

Constraint	Programming	based	on	Edge	Consistency	with	pre	and	post-processing.
An	edge	adjacent	to	a	vertex	i	from	the	set	V1	and	exactly	from	the	set	VA	can	be	added	to	

a	partial	solution	only	if	a	cost	(weight)	of	this	edge	is	lower	in	comparison	to	a	cost	of	any	
edges	which	are	already	included	to	a	partial	solution	VS	and	when	both	these	edges,	which	
weights	are	compared,	cover	the	same	vertex	j	from	the	set	V2.	Adjacent	edges	of	this	vertex	
i,	whose	costs	are	higher,	cannot	be	added	to	any	partial	solution,	thus	to	a	solution	of	the	
problem.
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A	vertex	i	from	set	V1,	which	has	been	already	included	into	a	partial	solution	Vs,	will	be	
excluded	from	this	partial	solution	VS	only	when	costs	(weights)	all	of	its	edges	are	higher	in	
comparison	to	costs	of	other	edges	adjacent	to	vertices	which	are	too	already	included	into	
a	partial	solution,	this	means	that	a	vertex	i will	be	excluded	if	this	vertex	i	has	no	edge,	this	
means	that	its	edges	were	with	higher	weights	and	were	excluded	before	from	constructed	
partial	solution	up	till	now	and	thus	a	vertex	i has	now	no	edge	at	all	and	a	vertex	i	can	be	now	
excluded	from	a	partial	solution	Vs.

A	vertex	i	from	set	V1,	which	can	be	chosen	to	a	partial	solution	Vs,	is	excluded	from	these	
available	vertices	to	be	chosen	to	a	partial	solution	VA	if	costs	of	all	its	all	edges	are	higher	in	
comparison	to	costs	of	edges	from	a	constructed	yet	partial	solution,	this	means	from	the	set	
Vs	covering	these	some	vertices	j	from	the	set	V2	and	any	of	its	edges	cover	any	vertex	j	from	
the	set	V2,	which	is	not	yet	included	into	a	partial	solution	Vs.	

This	new	modified	heuristic	pattern	lets	to	receive	a	better	solution	than	a	solution	which	
is	received	by	the	hybrid	ACO	algorithm,	which	is	presented	in	[6]	for	a	bipartite	graph	with	
almost	equal	degree	of	all	vertices.	The	constraint	programming	technique	used	in	this	paper	
is	based	on	the	edge	consistency	with	pre	and	post	processing	[4,	6,	7].	Thus	a	number	of	
available	vertices	which	can	be	potentially	included	into	a	partial	solution	is	minimized	and	
any	no	longer	needed	vertices	are	eliminated	from	a	partial	solution	and	also	only	these	edges	
with	lower	weights	are	added	to	a	solution	under	construction	and	these	with	higher	weights	
are	eliminated	from	a	partial	yet	constructed	solution.	

5. Experiments

There	 are	 three	 algorithms	which	were	 studied	 during	 experiments.	 The	 first	 is	 the	
HACO	algorithm,	which	was	described	in	[6],	the	second	is	the	HACO1-SCP	algorithm	
with	 desirability	 µ2(i)	 and	 the	 third	 is	 the	 HACO2-SCP	 with	 desirability	 µ3(i),	 which	
are	 described	 in	 this	 paper.	 Two	 parameters	 were	 under	 observation	 during	 conducted	
experiments:	an	average	minimum	cost	of	set	covering	and	an	average	cardinality	number	
of	the	set	Vs,	which	were	received	as	a	result	of	10	measures.	All	algorithms	were	studied	for	
a	bipartite	graph	with	100	x	100	vertices	and	for	a	different	graph	densities	q,	which	were	
generated	in	random.	Later	all	algorithms	were	studied	for	a	bipartite	graph	with	random	
generated	edges	for	each	its	vertex,	this	means	with	random	generated	vertex	degree	and	
for	measure	cases	with	different	number	of	vertices,	 this	means	for	50	x	50,	100	x	100,	
150	x	150,	200	x	200	and	250	x	250	vertices	in	a	bipartite	graph.	These	bipartite	graphs	
belong	to	the	particular	kind	of	a	bipartite	graph	since	each	edge	in	each	of	these	graphs	
exists	with	 a	 probability	q	 and	 thus	 each	vertex	 of	 graph	has	 almost	 equal	 degree,	 this	
means	has	almost	equal	number	of	adjacent	edges.	An	average	minimum	set	covering	costs	
for	10	measures	were	presented	in	Table	1	and	Fig.	2	and	an	average	minimum	cardinality	
numbers	of	the	set	Vs	for	10	measures	were	presented	in	Table	2	and	Fig.	3.	These	all	three	
algorithms	ran	with	the	following	common	parameters	setting	for	each	measure	cases:	the	
evaporation	rate	was	set	 to	0.995,	 the	number	of	ants	was	set	 to	200	and	the	number	of	
cycles	was	set	to	300.
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Fig.	2.	An	average	cost	in	dependency	on	a	graph	density	q

Rys.	2.	Średni	koszt	pokrycia	w	zależności	od	gęstości	grafu

T a b l e 	 1

An average cost in dependency on a graph density q 

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HACO 2233.0 2000.4 1757.8 1738.5 1736.6 1706.8 1678.9 1845.6 1988.3

HACO1-SCP 2006.9 1736.5 1676.0 1608.3 1677.4 1583.5 1633.1 1794.4 1969.8
HACO2-SCP 1865.5 1721.7 1587.7 1606.3 1606.4 1610.8 1651.3 1792.3 2111.1

T a b l e 	 2

An average cardinality number of Vs in dependency on a graph density q 

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HACO 25.9 15.6 11.6 8.7 6.9 5.7 5,0 4,0 3.2

HACO1-SCP 25.3 15,0 10.3 7.9 6.1 5.0 4,0 3.1 2.2
HACO2-SCP 26.4 15,0 10.8 7.9 6.3 4.9 4,0 3,0 2,0

There	is	an	improvement	in	quality	of	the	solution	when	the	HACO1-SCP	or	HACO2- 
-SCP	 algorithm	 is	 used	 instead	 of	 the	HACO	algorithm	 since	 there	 are	 lower	 cardinality	
numbers	of	the	set	Vs	and	there	are	lower	covering	costs	for	all	investigated	graph	densities	
q =	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8	and	0.9.	The	HACO2-SCP	algorithm	is	better	than	
the	HACO1-SCP	algorithm	when	average	costs	are	taken	into	consideration	for	rare	graphs	
q ≤	0.5	and	there	is	not	a	difference	between	both	algorithms	for	dense	graphs	0.5 < q.	As	
concern	average	cardinality	numbers	HACO1-SCP	and	HACO2-SCP	algorithm	do	not	differ	
from	one	another.
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Fig.	3.	An	average	cardinality	number	of	Vs	in	dependency	on	a	graph	density	q

Rys.	3.	Średnia	liczba	kardynalna	zbioru	Vs	w	zależności	od	gęstości	grafu	q

The	HACO1-SCP	and	the	HACO2-SCP	algorithm	are	also	better	than	the	HACO-SCP	
algorithm	when	average	costs	of	 set	 covering	and	average	cardinality	numbers	of	 the	 set	
Vs	 are	 taken	 into	consideration	 in	 function	of	a	number	of	bipartite	graph	vertices	n	with	
different	vertices	degree.	These	two	above	parameters	has	been	observed	during	conducted	
tests	when	 a	 graph	 density	was	 differentiated	 for	 different	 number	 of	 graph	 vertices	 and	
received	values	of	two	above	parameters	have	been	shown	in	the	Table	3	and	in	the	Table	
4	or	in	the	Fig.	4	and	in	the	Fig.	5.	In	order	to	get	a	bipartite	graph	with	a	different	density	
for	each	graph	vertex	each	edge	was	generated	with	any	probability	so	degree	of	each	graph	
vertex	has	different	values,	this	means	each	graph	vertex	has	a	different	number	of	adjacent	
edges	and	thus	a	bipartite	graph	has	vertices	with	different	degree.

All	 experiments	 have	 shown	 that	 both	 elaborated	 algorithms	 give	 a	 better	 quality	 of	
solution	than	the	HACO	algorithm	which	has	been	presented	in	the	paper	[9].

T a b l e 	 3

An average cost in dependency on a number of vertices

n 50 100 150 200 250
HACO 856.1 1696.1 2538.6 3314.4 4026.3

HACO1-SCP 839.8 1636.5 2433.8 3215.3 3933.9
HACO2-SCP 829.9 1571.7 2374.4 3106.9 3927.9

All	 algorithms,	 the	 HACO	 algorithm	 and	 these	 both	 elaborated	 algorithms	 HACO1- 
-SCP	and	HACO2-SCP,	which	are	presented	 in	 this	paper,	 are	 implemented	 in	Microsoft	
Visual	C++	under	Microsoft	Windows	XP	on	Intel	Celeron	CPU	1.7GHz,	256	Mb	RAM	and	
the	running	time	of	these	algorithms	are	proportional	to	the	time	complexity	expressed	by	
a	multiplication	of	a	quadratic	number	of	vertices	n2	existing	in	a	bipartite	graph,	a	number	
of	cycles,	a	number	of	ants	and	a	cardinal	number	of	a	set	Vs.	
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Fig.	4.	An	average	cost	in	dependency	on	a	number	of	vertices	

Rys.	4.	Średni	koszt	w	zależności	od	liczby	wierzchołków

Ta b l e 	 4

An average cardinality number of Vs in dependency on a number of vertices 

n 50 100 150 200 250

HACO 6.1 7.0 7.8 8.4 9.0

HACO1-SCP 5.0 6.1 7.0 7.6 8.0

HACO2-SCP 5.0 6.1 7.0 7.8 8.0

Fig.	5.	An	average	number	of	cardinality	number	Vs	in	dependency	on	a	number	of	vertices	

Rys.	5.	Średnia	liczba	kardynalna	zbioru	Vs	w	zależności	od	liczby	wierzchołków
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6. Conclusions 

In	this	article	the	minimum	cost	set	covering	problem	was	solved	by	using	the	ACO	
algorithm	 with	 Constraint	 Programming	 and	 with	 new	 heuristic	 patterns.	 These	 new	
proposed	 heuristics,	 which	 have	 been	 used	 in	 the	 HACO1-SCP	 and	 the	 HACO2-SCP	
algorithm,	lets	to	match	in	a	better	way	an	available	vertex	i	from	the	neighborhood	Ni	of	
state	to	an	already	constructed	partial	solution	Vs	in	case	of	graphs	with	an	almost	equal	
degree	of	vertices	and	with	edges,	which	have	been	generated	in	random	with	a	determined	
probability	q	and	in	case	of	graphs	with	different	number	of	vertices	and	different	degree	
of	 vertices	 and	with	 edges,	which	 are	 generated	 in	 random	with	 any	 probability	q	 for	
each	graph	vertex.	Both	the	HACO1-SCP	and	the	HACO2-SCP	algorithm	look	for	a	new	
vertex	 form	 the	 set	VA	 to	 be	 added	 to	 a	 partial	 solution	Vs	with	 the	 highest	 number	 of	
additional	edges	and	with	the	lowest	corresponding	overall	cost	of	partial	solution.	The	
HACO	algorithm	is	taking	into	account	only	these	available	vertices	from	the	set	VA	which	
are	 outside	 of	 a	 partial	 solution	VS	 and	which	 can	 be	 added	 to	 a	 partial	 solution	with	
a	minimum	additional	average	cost,	 this	means	with	an	average	minimum	sum	of	edge	
weights	 and	 thus	omits	 these	available	vertices	 from	 the	 set	VA	which	can	be	added	 to	
a	 partial	 solution	Vs	with	 a	 higher	 number	 of	 additional	 edges	 and	 a	 little	 higher	 cost	
than	an	average	minimum	sum	of	edge	weights	and	which	can	minimize	the	overall	cost	
of	a	constructed	partial	solution	because	of	lower	weights	of	its	edges	covering	already	
covered	yet	vertices	from	the	set	V2.
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