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Abstract. The evolution of the dominant marine plankton ciliates, the oligotrichids and choreotrichids, is analysed for morphologic and 
genetic convergences and apomorphies based on literature and our own data. These findings have taxonomic implications. Within the oli-
gotrichid genus Parallelostrombidium two subgenera, Parallelostrombidium Agatha, 2004 nov. stat. and Asymptokinetum nov. subgen., are 
established, using the courses of the ventral and girdle kineties as a distinguishing feature. Likewise, a different arrangement of extrusome 
attachment sites is used for a split of the oligotrichid genus Novistrombidium into the subgenera Novistrombidium Song and Bradbury, 1998 
nov. stat. and Propecingulum nov. subgen.; Novistrombidium (Propecingulum) ioanum (Lynn and Gilron, 1993) nov. comb. and Novistrom­
bidium (Propecingulum) platum (Song and Packroff, 1997) nov. comb. are affiliated. Based on discrepancies in the somatic ciliary pattern 
and the presence of conspicuous argyrophilic inclusions, the aloricate choreotrichid species Pelagostrobilidium kimae nov. spec. is distin-
guished from P. conicum. The diagnosis for the tintinnid family Eutintinnidae Bachy et al., 2012 is improved by including cell features. The 
co-operation of taxonomists and molecular biologists is strongly recommended to prevent misinterpretations of gene trees due to incorrectly 
identified species and for better species circumscriptions.
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INTRODUCTION

The marine plankton is a highly diverse community 
of organisms, among which we find the Oligotrichea, 
a ciliate taxon that episodically dominates the micro-
zooplankton (Pierce and Turner 1992). The classifica-
tion of the Oligotrichea in this paper follows Agatha 

(2004b) and is based on the relationships revealed by 
cladistic analyses and genetic phylogenies, except for 
the uncertain position of the halteriids (see below). As 
the Oligotrichea have species-specific trophic require-
ments (e.g., algivorous, bacterivorous, mixotrophic), 
proper identification is essential (i) for appreciating 
their role in the multi-step microbial food web and en-
ergy flux to the conventional planktonic food web and 
(ii) for estimating their biodiversity and biogeography 
(Agatha 2011a).

Since the last combined cladistic and phylogenetic 
analyses of the Oligotrichea, specifically of the tintin-
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nids (Agatha and Strüder-Kypke 2012a, b), there was 
a considerable progress, yielding a wealth of new ge-
netic and morphologic data published in separate pa-
pers: (i) ~ 65 new SSU rRNA gene sequences (Bachy et 
al. 2012; Liu et al. 2012; Saccà et al. 2012; Santoferrara 
et al. 2013; Xu et al. 2012, 2013; Kim et al. 2013); (ii) 
cell features in two further genera (Saccà et al. 2012, 
Kim et al. 2013); and (iii) new somatic ciliary patterns 
in the tintinnid genus Tintinnopsis (Jiang et al. 2012) 
and the aloricate choreotrichid genus Pelagostrobili­
dium (Lee et al. 2011, Liu et al. 2012). The inclusion of 
these morphologic findings, new features (e.g., the so-
matic ciliary pattern evolution in Pelagostrobilidium), 
and ciliary patterns inferred from illustrations in Small 
and Lynn (1985) raised the number of considered taxa 
from 49 in Agatha and Strüder-Kypke (2012a, b) to 67 
in the present review and the number of cladistically 
analysed characters from 76 to 94. Here, we thus pres-
ent the current state of knowledge about the evolution 
of Oligotrichea based on concerted analyses of mor-
phology and molecules.

Based on morphology and pattern of cell division, 
the Oligotrichea comprise the halteriids, oligotrichids, 
and choreotrichids (Agatha 2004b, Agatha and Foissner 
2009). The most prominent feature of the Oligotrichea 
is the apical adoral zone of membranelles (C-shaped or 
circular arrangement of fan-like ciliary units), which 
is used for locomotion and filter feeding. The zone is 
divided into portions with large collar membranelles 
and small buccal membranelles. While the halteriids 
and oligotrichids contain exclusively aloricate species, 
the choreotrichids embrace besides naked species the 
tintinnids with loricae usually 50–300 µm long. Typi-
cally, the aloricate Oligotrichea have globular to ob-
conical cell shapes, measure 15–260 µm in length, and 
have a reduced somatic ciliature with possibly sensory 
function. The tintinnid cells are attached by a peduncle 
to the bottom of the lorica, which they carry through 
the water. The cells are obconical in extended state and 
the anterior cell portion with the adoral zone of mem-
branelles projects out of the lorica. Disturbance causes 
a retraction of the tintinnid into the lorica by contrac-
tion of the peduncle, and the cell assumes a globular 
to ellipsoidal shape. The somatic ciliature of tintinnids 
consists of numerous ciliary rows, which, in contrast 
to the aloricate taxa, are not exposed to the surround-
ing water, but are mostly covered by the lorica; it is 
assumed that the somatic ciliature is involved in lorica 
formation (Laval-Peuto 1981).

The first species assigned to the Oligotrichea were 
(i) the halteriid Halteria grandinella (Müller, 1773) 
Dujardin, 1841, (ii) the oligotrichid Strombidium sulca­
tum Claparède and Lachmann, 1859, (iii) the aloricate 
choreotrichid Strobilidium caudatum (Fromentel, 1876) 
Foissner, 1987, and (iv) the tintinnid Tintinnus inquili­
nus (Müller, 1776) Schrank, 1803. While the investi-
gation of live and preserved specimens revealed only 
some characters in the aloricate taxa, the vase- or tube-
shaped tintinnid loricae provided several features for 
identification and classification. In the 1950s, histologi-
cal staining procedures commenced to reveal the cili-
ary patterns and allowed their usage in taxonomy and 
systematics. Notably, protargol impregnation, which 
stains basal bodies and the nuclear apparatus (macronu-
clei and micronuclei), is still routinely used today. The 
introduction of electron microscopy provided further 
insights into cell morphology, especially, into kinetid 
structure (basal body and associated root structures). 
A new era of phylogenetic analyses commenced with 
the introduction of gene sequencing. In particular, the 
small subunit ribosomal RNA (SSU rRNA) gene is fre-
quently used to infer relationships among ciliate taxa.

The most recent monographs on halteriids, oligo-
trichids, and aloricate choreotrichids were based on live 
and preserved material only and regarded 127 species, 
14 genera, and three families as valid (Maeda and Car-
ey 1985, Maeda 1986). The application of silver-im-
pregnation techniques has yielded many new species, 
whose number continuously increases. However, the 
rate of discovery was and still is distinctly influenced 
by the trend to neotypify species rather than to establish 
new ones, assuming that the majority of species have 
a cosmopolitan distribution. Accordingly, the inten-
sity of taxonomic studies during the past thirty years 
was much higher than implied by the rate of discovery 
(Agatha 2011a). Currently, the number of reliable spe-
cies amounts to 15 halteriid species in three genera and 
one family, 115 oligotrichid species in 18 genera and 
four families, and 50 species of aloricate choreotrichids 
in nine genera and five families; the majority of them 
have been redescribed, applying modern methods (live 
observation, silver impregnation, electron microscopy; 
own data). The more than one thousand tintinnid spe-
cies are classified in 75 genera and 14 families, still 
mainly using lorica characteristics, as cell features have 
properly been described in only 29 species (Agatha and 
Strüder-Kypke 2012a, b; Jiang et al. 2012; Saccà et al. 
2012; Kim et al. 2013).
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The introduction of new investigation methods not 
only revealed new characters and contributed to the dis-
covery of new species, but cladistic and phylogenetic 
analyses of these data also provided arguments for the 
establishment of new higher taxa and an improvement 
of the systematics (Agatha 2004a, b, 2011b; Agatha and 
Strüder-Kypke 2007, 2012a, b). Specifically, the evo-
lution of the somatic kinetids and the somatic ciliary 
patterns turned out to be of high taxonomic and system-
atic significance within the Oligotrichea. The main clue 
for the evolutionary reconstruction was the orientation 
of the somatic kineties (ciliary rows), in particular the 
fact that only the anterior basal bodies of the dikinetids 
(basal body pairs) are associated with a cilium in the 
(dorsal) somatic kineties of the closely related euplotid 
(e.g., Euplotes) and hypotrich (e.g., Oxytricha) ciliates. 
In the following, the evolution of the oligotrichids and 
choreotrichids is reviewed, emphasizing homoplasies 
and apomorphies and their implications on taxonomy 
and systematics. The halteriids with their distribution 
mainly in freshwater and their controversial phylo-
genetic relationships (sistergroup to oligotrichids and 
choreotrichids according to morphology and mode of 
cell division, but members of the hypotrichs according 
to SSU rRNA analyses; Snoeyenbos-West et al. 2002, 
Agatha and Foissner 2009) are excluded here.

RESULTS and Discussion

1. Oligotrichids. The oligotrichids are the sister-
group to the choreotrichids. Both differ in the arrange-
ment of the adoral zone of membranelles (C-shaped vs. 
circular pattern) and the origin of the oral primordium 
(oral apparatus of posterior division product develops 
in a subsurface tube vs. a pouch).

Although the somatic ciliature comprises only two 
kineties, namely, the ventral and girdle kineties with 
an ancestral kinetid structure, 13 patterns are currently 
known (Fig. 1). Four girdle kinety patterns occur in the 
tailed family Tontoniidae and also in tailless taxa (Figs 
1II, IV–VII; Agatha 2011b). Due to the unique ultra-
structure of the contractile tail (probably sea anchor 
function), Agatha (2004a) supposed an independent de-
velopment of these four patterns in the tailed and tail-
less genera. This is actually supported by ontogenetic 
(positions of oral primordia) and genetic data (Figs 1IV, 
VI, 2). However, Agatha’s hypothesis apparently failed 
concerning the monotypic tailless genus Laboea and 

the tailed genus Spirotontonia (Fig. 1VII), both with an 
identical somatic ciliary pattern. The genetic analyses 
by Gao et al. (2009) indicated that the pattern devel-
oped only once and that Laboea strobila lost the tail, 
regaining the plesiomorphic state; shared unique SSU 
rRNA regions, topology testing (Li et al. 2013), and 
some cladograms based on morphologic features sup-
port this assumption (Supplement Figs S3, S6, Tables 
S1, S2). The Tontoniidae apparently branched off rather 
early in the oligotrichid evolution (Figs 1, 2). The posi-
tion of the oral primordium relative to the girdle kinety 
and extrusome attachment sites was a valuable taxo-
nomic feature to split the speciose genus Strombidium 
and to establish two further genera, Foissneridium and 
Opisthostrombidium (Figs 1V, VIII, IX; Agatha 2011b).

The tailless genera Apostrombidium and Varistrom­
bidium Xu, Warren, and Song, 2009 were established 
for strongly deviating, partially very complex somatic 
ciliary patterns (Xu et al. 2009). Agatha (2011b) sup-
posed their origin in the tailless genus Omegastrombi­
dium (Figs 1IV, XII, XIV); actually, the close relation-
ship of the three genera is supported by ontogenetic and 
genetic data (Gao et al. 2009, Xu et al. 2011, Song et 
al. 2013; Fig. 2).

The tailless genus Parallelostrombidium is assumed 
to represent the most ancestral oligotrichid pattern 
(Fig. 1I). Differences in the extent to which the ven-
tral kinety and the dextrally spiralled girdle kinety run 
parallel indicate the presence of two subgenera (see 
‘Taxonomic implications’; Figs S7, S8). The Paral­
lelostrombidium pattern probably gave rise to the No­
vistrombidium pattern (Fig. 1II). Discrepancies mainly 
in the position of the extrusome attachment sites in rela-
tion to the oral primordium support two genetically dis-
tinct groups of Novistrombidium species (Figs 2, S10, 
S11; Li et al. 2013, Song et al. 2013), for which two sub-
genera are established (see ‘Taxonomic implications’).

In contrast to the great diversity of somatic ciliary 
patterns, whose evolutionary advantages are unknown, 
the oral ciliature is rather conserved in oligotrichids. 
Only in the genus Cyrtostrombidium, do the extraordi-
narily thick pharyngeal fibres and the absence of buccal 
membranelles and an endoral membrane justify the es-
tablishment of a distinct family, the Cyrtostrombidiidae 
(Agatha 2004a). A further family, the Pelagostrombi-
diidae, was established for freshwater genera charac-
terized by a neoformation organelle (permanent tube, 
in which the posterior divider forms its oral apparatus; 
Agatha 2004a). The remaining genera are assigned to 
the family Strombidiidae, which is paraphyletic in cla-
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Fig. 1. Hypothetical evolution of oligotrichid somatic ciliary patterns (0–IV, VI, VII, after 
Agatha 2011b; V, VIII–XIV, originals; protargol impregnation). Small arrows mark orien-
tation of kineties (posterior to anterior). Arrowheads denote dorsal breaks in girdle kinety. 
Dotted arrows mark the tontoniid evolution. Dotted circles denote position of oral pri-
mordium in early dividers. Type 0 – dorsal kineties of hypotrich-like ancestor; Type I – 
strombidiid Parallelostrombidium; Type II – strombidiid Novistrombidium and tontoniid 
Tontonia; Type III – strombidiid Spirostrombidium; Type IV – strombidiid Omegastrom­
bidium; Type V – strombidiid Strombidium, pelagostrombidiid Limnostrombidium, and 
tontoniid Pseudotontonia; Type VI – tontoniid Paratontonia; Type VII – tontoniids La­
boea and Spirotontonia; Type VIII – strombidiid Foissneridium; Type IX – strombidiid 
Opisthostrombidium; Type X – cyrtostrombidiid Cyrtostrombidium; Type XI – strombi-
diid Williophrya; Type XII – strombidiid Apostrombidium; Type XIII – hypothetic stage; 
Type XIV – strombidiid Varistrombidium. EX – extrusome attachment sites, GK – girdle 
kinety, OP – oral primordium, VK – ventral kinety.
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distic analyses (Figs S3–S6), as morphologic features 
for a split are currently not available; however, the ar-
rangement of the extrusome attachment sites (clustered 
or in one or several rows) might be a promising feature, 
but more data are required for verification.

Gene trees consider only 11 out of the 18 oligotrichid 
genera and two out of the four families, and tree topolo-
gies vary, depending on the phylogenetic analysis used 
(compare unsupported nodes in Fig. 2 and supplemen-
tal Fig. S1). Nevertheless, several branches are sup-
ported by morphologic features (see above), especially 
by the evolution of the somatic ciliary patterns. While 
the family Tontoniidae and genera therein are fully sup-
ported in the phylogenetic analysis, support values for 
basal nodes in the family Strombidiidae are generally 
very low (Fig. 2).

2. Aloricate choreotrichids. Both cladistic and 
genetic analyses usually show (i) a monophyly of the 
tintinnids mainly based on the apomorphic lorica and 
(ii) a paraphyly of the aloricate choreotrichids (Figs 
3, S2–S5, S12). Since different numbers of genera are 
considered in the cladograms and gene trees (aloricate 
choreotrichids: 9 vs. 6; tintinnids: 15 vs. 30), more de-
tailed comparisons are difficult, especially since the tree 
topology is also influenced by the methods of analysis 
(compare Figs 3 and S2 for molecular analyses alone).

Immediately after separation from the oligotrich-
ids, the structure of the somatic kinetids commenced 
to change in the choreotrichids, viz., a second cilium 
formed at the posterior dikinetidal basal body, produc-
ing a pattern found for instance in the aloricate genus 
Strombidinopsis (Fig. 4; Lynn et al. 1991). The sub-
sequent steps occurred several times independently in 
(i) the tintinnids, (ii) the Lohmanniellidae and Strobi-
lidiidae, and (iii) the genus Lynnella: the cilium at the 
anterior basal body is lost, and finally, the unciliated 
anterior basal body disappears. These comparatively 
rapid changes and the resulting diversity of kinetid 
structures in the choreotrichids contradict the structural 
conservatism of the somatic cortex hypothesized by 
Lynn (1981); but the reasons for and the advantages of 
these structural changes are unknown. In tintinnids, this 
transformation process is accompanied by the introduc-
tion of specialised ciliary fields and rows (see below).

The ventrally slightly opened adoral zone of mem-
branelles in Parastrombidinopsis, Parastrombidium, 
and Lynnella is interpreted as synapomorphic retro-
gression to the plesiomorphic (open) state, as this fea-
ture is combined with an advanced kinetid structure, 

elongated bases (polykinetids) in the proximal collar 
membranelles, and a stomatogenesis within a pouch, 
features typical of choreotrichids (Fig. S12, Tables S1, 
S2; Agatha and Strüder-Kypke 2012a). In cladograms 
and gene trees, however, the position of Lynnella is 
highly variable, occasionally even suggesting an affili-
ation with the oligotrichids or a sistergroup relationship 
to the remaining choreotrichids (Figs 3, S2–S5, S12; 
Xu et al. 2012). The inclusion of gene sequences from 
Leegaardiella, Lohmanniella, and Parastrombidium 
will show whether (i) Lynnella is closely related to 
Parastrombidium and Parastrombidinopsis as indicat-
ed by the shape of the adoral zone and the latter two 
genera have to be affiliated with the family Lynnellidae 
or (ii) Lynnella is related to Lohmanniella as indicated 
by a similar structure of the somatic kinetids.

Usually, the genera Pelagostrobilidium, Rimostrom­
bidium, and Strobilidium form a monophylum, the 
family Strobilidiidae, based on kineties composed of 
condensed monokinetids (single basal bodies) and cy-
toplasmic lips covering the bases of their cilia (Figs 
S3–S5, S12); this cluster is also revealed by molecu-
lar phylogenies (Figs 3, S2; Agatha and Strüder-Kypke 
2007). The diversity of somatic ciliary patterns is com-
paratively large in Pelagostrobilidium (Figs S14–27). 
Probably, the Rimostrombidium-like ancestor had six 
more or less straight somatic kineties. The curvature 
of kinety 2 seems to be the most important feature for 
taxonomy and inferring intrageneric relationships: first, 
the kinety became anteriorly shortened, then sigmoi-
dal, subsequently semicircular, and finally it performed 
a ~ 270° curvature. Posterior shortenings occurred sev-
eral times independently in kineties 3–6. In the absence 
of kinety 5, kinety 6 performed distinct curvatures. 
Korean specimens identified by Lee et al. (2011) with 
Pelagostrobilidium conicum, as authoritatively rede-
scribed by Agatha and Riedel-Lorjé (1998), deviate in 
the length of somatic kineties 1 (posteriorly shortened 
vs. unshortened) and 2 (anteriorly vs. posteriorly short-
ened) and an argyrophilic C-shaped structure near the 
collar membranelles (present vs. absent). These differ-
ences justify the establishment of a distinct species for 
the Korean specimens (see ‘Taxonomic implications’).

3. Tintinnids. The most conspicuous apomorphy 
of the tintinnids is the lorica, which probably acts as 
sea anchor (Jonsson et al. 2004) and may show a phe-
notypic plasticity caused by environmental conditions 
during its formation and the cell cycle (Laval-Peuto 
1981, Agatha et al. 2012); the most reliable lorica fea-
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Fig. 2. Maximum Likelihood tree of the Oligotrichida inferred from small subunit ribosomal RNA (SSU rRNA) gene sequences (66 taxa and 
1823 nucleotide positions) aligned with the Muscle algorithm (Edgar 2004) implemented in MEGA ver. 5.1 (Tamura et al. 2011). The align-
ment is available upon request. The tree was computed with RAxML (Stamatakis et al. 2008) and the datasets were bootstrap re-sampled 
100 times. Support values are listed at the nodes. The second values at the nodes represent the posterior probability values of a Bayesian 
Inference analysis performed with MrBayes (Ronquist and Huelsenbeck 2003). Values below 50% and 0.5, respectively, are represented by 
a dash. * – initially published as Spirostrombidium sp.; ** – initially published as Parallelostrombidium sp.
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Fig. 3. Maximum Likelihood tree of the Choreotrichida inferred from small subunit ribosomal RNA (SSU rRNA) gene sequences (138 
taxa and 1859 nucleotide positions) aligned with the Muscle algorithm (Edgar 2004) implemented in MEGA ver. 5.1 (Tamura et al. 2011). 
The alignment is available upon request. The tree was computed with RAxML (Stamatakis et al. 2008) and the datasets were bootstrap 
re-sampled 100 times. Support values are listed at the nodes. The second values at the nodes represent the posterior probability values of 
a Bayesian Inference analysis performed with MrBayes (Ronquist and Huelsenbeck 2003). Values below 50% and 0.5, respectively, are 
represented by dashes. Branches with unambiguously clustered taxa are collapsed, species of the genus Tintinnopsis grouped in 5 different 
clades numbered I–V. Most common lorica structures:  – hyaline;  – entirely agglomerated;  – composed of hyaline collar and agglom-
erated bowl; * – after Kofoid and Campbell (1929) a synonym of Codonella cratera; ** – does not correspond with the redescription of 
Agatha and Riedel-Lorjé (2006); *** – possibly incorrectly identified, might be Dadayiella acutiformis; **** – invalid taxon, very likely 
a replacement lorica (see text).
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Fig. 4. Evolution of kinetid structures in the somatic ciliature of choreotrichid ciliates. The aloricate taxa have only one kinetid type, except 
for Leegaardiella elbraechteri and Lynnella. Tintinnids with ventral organelles have two (Tintinnidium, subgenus Tintinnidium), rarely one 
(Tintinnopsis cylindrata, Membranicola) or three (Tintinnidium, subgenus Semitintinnidium) kinetid types. Extant tintinnids with a ventral 
kinety have some dikinetids with two cilia and many monokinetids or some dikinetids with two cilia, some dikinetids with one cilium, and 
many monokinetids.

tures for species identification are apparently the gen-
eral outline, details of the opening rim, the wall texture, 
and the opening diameter (Laval-Peuto and Brownlee 
1986). Santoferrara et al. (2013) phylogenetically ana-
lysed variable regions of the SSU and LSU rRNA of 
tintinnids. They distinguished three taxonomic tenden-
cies: (i) similarities and deviations in lorica shapes and 
sizes and gene sequences are consistent in the majority 
of morphospecies; (ii) some/several similar morpho-
species show a high genetic divergence, supporting 
Kofoid’s and Campbell’s (1929, 1939) splits based on 
minute deviations in lorica morphology; and (iii) some/
several morphologically distinct morphospecies are ge-
netically identical or very similar. This has been shown 
for the genera Cymatocylis, Favella, Rhabdonella, and 
Helicostomella, in which distinct morphospecies devi-
ate genetically by less than 1% in both the SSU and 
LSU rRNA sequences (Bachy et al. 2012, Xu et al. 
2012, Kim et al. 2013). However, conspecificity cannot 
automatically be inferred from a high genetic similarity 
as demonstrated in two Helicostomella morphotypes. 
Despite a dissimilarity of only 0.5% in the SSU rRNA, 

compensatory base changes in the ITS2 helices II and 
III indicate the presence of two distinct species (Xu et 
al. 2012). Accordingly, the percentage of synonyms 
among the more than one thousand tintinnid species is 
still hardly guessable.

The genetic diversity within single morphotypes 
found by Kazama et al. (2012) markedly exceeds that 
of any previous molecular study on tintinnids, aloricate 
choreotrichids, and oligotrichids (see also Gong et al. 
2013). For instance, the same Tintinnopsis morphospe-
cies (with entirely agglomerated lorica) atypically clus-
ters at the beginning of the tintinnid evolution with Am­
phorellopsis, Steenstrupiella, and Salpingella (all with 
hyaline loricae, a comparatively simple somatic ciliary 
pattern, and an oblique adoral zone in contracted cells; 
Figs S52–61) and also occurs in the tintinnid branch 
with the most complex ciliary pattern. Since previous 
and the present studies found the first occurrence of 
Tintinnopsis species only after the branching of Fa­
vella (Figs 3, S2, S3, S5, S12), methodological errors 
(misidentification of the species or contamination of the 
extracted DNA) might have caused these distinctly de-
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viating sequences in single morphotypes. Accordingly, 
the sequences deposited by Kazama et al. (2012) in 
GenBank are not suitable as references in phylogenetic 
analyses.

Helical structures may constitute collars (epilo-
ricae) or entire loricae of hyaline and agglomerated 
types. The Coxliella species with their completely 
helical loricae probably represent replacement loricae 
(paraloricae) built independently from cell division 
when lorica forming material is less abundant in the 
cell and construction is thus slower, or they are formed 
after cell division when the material is possibly less 
viscous (Laval-Peuto 1981, 1994). The presence of 
“coxliella” forms could be shown for Favella (Laval-
Peuto 1981, Kim et al. 2010) and Schmidingerella 
(Agatha and Strüder-Kypke 2012a), whereas clear 
evidence from cultures is lacking for Helicostomella, 
Parafavella (all hyaline), and some Tintinnopsis spe-
cies (entirely agglomerated; Laval-Peuto and Brown-
lee 1986). As already assumed by Brandt (1907), the 
genus Coxliella thus seems to be artificial, whereas Xu 
et al. (2013) regarded high abundances of Coxliella 
sp. and the apparent absence of a typical form as sup-
port for the validity of the genus Coxliella. The cell 
cycle of Favella, however, demonstrated that under 
certain (unknown) conditions the “coxliella” form can 
produce the spiralled “decipiens” form after cell di-
vision (Laval-Peuto 1981); so, the typical form must 
not necessarily occur. Further, the typical form might 
have been too rare to be detected in the study of Xu et 
al. (2013). In several other genera, helical structures 
seem to be absent, e.g., Petalotricha, Salpingella (both 
hyaline), Codonella (agglomerated), and Dictyocysta 
(partially or entirely hyaline; Agatha et al. 2012).

Both genetic and cladistic analyses reveal that dif-
ferent lorica types (hyaline, entirely or partially ag-
glomerated) do not form distinct evolutionary lineages 
(Figs 3, S2–5, S12; Strüder-Kypke and Lynn 2008); 
only the branch of freshwater tintinnids with two ven-
tral (ciliary) organelles is characterized by a special 
type, namely, a flexible and agglomerated lorica with 
a compact matrix. In the mainly marine tintinnids 
with a ventral kinety, the lorica walls were probably 
first hard, hyaline, and compact (Amphorellopsis, Am­
phorides, Eutintinnus, Salpingella, Steenstrupiella; the 
collapsible lorica of Nolaclusilis represents an autapo-
morphy), became hard, hyaline, and monolaminar with 
alveoli (Figs S28–38), and then the first hard, agglom-
erated loricae occurred, as indicated by the increasing 
complexity of the somatic ciliary pattern. Further hard, 

hyaline loricae are found in Undella (trilaminar with 
alveoli), Cyttarocylis, and Petalotricha (trilaminar with 
tubules; genetic data even indicate a synonymy; Bachy 
et al. 2012). Finally, the wall of the hard, agglomer-
ated lorica portions became apparently bilayered, viz., 
composed of a thick outer layer with particles embed-
ded into compact material and a continuous compact 
inner layer (Figs S39–51; Codonella, Codonellopsis, 
Stenosemella, and probably Dictyocysta and Codona­
ria). Hyaline collars that might be associated with such 
agglomerated bowls are compact (Stenosemella; own 
data) or alveolar (Codonellopsis, Dictyocysta; own 
data, Laval-Peuto 1994); however, the texture of the 
entirely hyaline and fenestrated lorica in Dictyocysta 
mitra seems to be tubular (Agatha 2010).

Together with the lorica, a right and left ciliary field 
evolved in the common tintinnid ancestor, giving rise 
to the mainly freshwater species with two ventral or-
ganelles and the mainly marine species with a ventral 
kinety. In the former branch, the diversity of kinetid 
structures is comparatively large, ranging from one to 
three types in a single species, while the complexity 
of the ciliary pattern did not change anymore (Figs 4, 
S12). In the marine branch, two kinetid structures first 
occurred together with the ventral kinety and were later 
completed by a third type, while the complexity of the 
pattern distinctly increased by the successive addition 
of a further field and specialised kineties (Agatha and 
Strüder-Kypke 2012b, this study).

Although the somatic ciliature is assumed to be in-
volved in lorica formation, correlations between cili-
ary patterns, lorica types (hyaline, agglomerated), wall 
textures (compact, alveolar etc.), and deformability are 
not recognisable, except for the occurrence of a ventral 
kinety and hard loricae and ventral organelles and flex-
ible loricae, respectively (Figs 3, S3–5, S12; Agatha et 
al. 2012). It seems more likely that differences in lorica 
type, texture, and deformability result essentially from 
differences in the lorica forming material, whose main 
chemical component is probably of proteinaceous nature 
with variable additions of, e.g., lipids and carbohydrates. 
However, a correlation between lorica features and the 
characteristics of the lorica material was again not evi-
dent (Agatha and Simon 2012, Agatha et al. 2012).

A detailed comparison of gene trees with cladograms 
is currently impeded by differences in the species and 
genera analysed (Figs 3, S3–5, S12). Nevertheless, the 
evolution of somatic ciliary patterns is the main feature 
complex in cladistic analyses of tintinnids and is rather 
well reflected by genetic phylogenies.
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Further morphologic characters support several 
groupings in the molecular genealogies. The lorica sac 
with its foldable closing apparatus represents a synapo-
morphy of the genera Codonaria, Codonella, Codonel­
lopsis, and Dictyocysta (Agatha 2010). Stenosemella 
and Laackmanniella are closely related to these four 
genera phylogenetically, but apparently lack a lorica 
sac (Fig. 3; Kim et al. 2013). While the relationship of 
the former genus might be explained by the same type 
of capsule (tintinnid extrusome; Laval-Peuto and Bar-
ria de Cao 1987), further morphological studies are re-
quired in the latter genus to understand its phylogenetic 
placement (Kim et al. 2013). An oblique orientation 
of the oral ciliature and peristomial field in contracted 
specimens probably represents the synapomorphy of 
Salpingella, Amphorellopsis, Amphorides, Steenstru­
piella, Salpingacantha, and Bursaopsis obliqua (Figs 
S3, S12, S52–61). Actually, the former four genera con-
stitute a monophylum in the gene trees separate from 
the genus Eutintinnus, for which Bachy et al. (2012) 
established the family Eutintinnidae; here, the family 
diagnosis is emended by including cell features (see 
‘Taxonomic implications’).

The non-monophylies of tintinnid genera in gene 
trees necessitate further morphologic studies, espe-
cially, of the cells. Recently, the problem of two geneti-
cally distinct groups of Favella species was resolved 
and the genus Schmidingerella has been established for 
the second cluster deviating in ciliary pattern and lorica 
wall texture (Figs S28, S31; Agatha and Strüder-Kypke 
2012a). A monolaminar, alveolar wall with surface ridg-
es and pores unites the new genus, Rhabdonella (own 
data), Rhabdonellopsis (Gold and Morales 1977), Pro­
torhabdonella (Kofoid and Campbell 1929), Epiplocylis 
(Abboud-Abi Saab 2008), and Epiplocyloides (Laval-
Peuto 1994, Abboud-Abi Saab 2008) within the family 
Rhabdonellidae, which is mostly supported by genetic 
data (Figs 3, S2, S31–36). Cymatocylis also falls into this 
genetic cluster and indeed shows also ridges on the lorica 
surface (Laackmann 1910, Kim et al. 2013). A further 
conspicuous non-monophyly concerns the genus Tin­
tinnopsis. Although as yet four different ciliary patterns 
have been discovered (Fig. S12), a reasonable split of the 
genus can, however, currently not be performed, as the 
cell features of its type species, T. beroidea, are unknown 
and the determination of the specimens sequenced is un-
certain (Agatha and Strüder-Kypke 2012b).

Generally, doubtful identifications or misidentifi-
cations of genetically analysed species cause serious 

problems in the interpretation of the trees, particular-
ly, when it concerns type species (see also above for 
Kazama et al. 2012). For instance, a very high genetic 
similarity (one base pair difference in the SSU rRNA) 
between Dadayiella ganymedes sequenced by Xu et al. 
(2013) and Parundella aculeata analysed by Bachy et 
al. (2012) was used as argument by Xu et al. (2013) 
to transfer the type species D. ganymedes to the genus 
Parundella and to make the genus Dadayiella thus 
invalid. The astonishing close genetic relationship of 
species affiliated with different families in the lorica-
based classification (Tintinnidae and Xystonellidae) 
caused scepticism about the determinations. Actually, 
the micrograph and the morphometric data of the lori-
cae indicate that the former specimens have been con-
fused with Dadayiella bulbosa (with knob at posterior 
lorica process vs. without in D. ganymedes; Entz 1884; 
Brandt 1906, 1907). In the second case, the specimen 
genetically analysed perfectly matches P. aculeata in 
lorica shape and size (lorica length: 105 µm; opening 
diameter: 27 µm), but also Dadayiella acutiformis Ko-
foid and Campbell, 1939 (lorica length: 82–103 µm; 
opening diameter: 25–30 µm; Jörgensen 1924, Kofoid 
and Campbell 1939). The main differences between the 
two species are delicate longitudinal ribs in the ante-
rior quarter of the Dadayiella lorica, which might be 
hardly recognisable in the light microscope when the 
cell is inside the lorica. The small micrograph pro-
vided by Bachy et al. (2012) does not allow any deci-
sion about the presence of ribs, and we assume that the 
authors have not seen the ribs and thus identified the 
specimen with P. aculeata. But nevertheless, the aston-
ishing genetic relationship together with the existence 
of a similar-sized and similar-shaped Dadayiella spe-
cies should keep us sceptical. If the latter specimen has 
actually been misidentified, both morphotypes would 
belong to the same genus (Dadayiella) and possibly 
even to the same species, as already suggested by Jör-
gensen (1924). However, any nomenclatural act should 
await a detailed re-investigation of the lorica and cell 
and possibly the analysis of additional molecular mark-
ers. These examples demonstrate the urgent need for 
co-operation of molecular biologists with experienced 
taxonomists for reliable identifications.

The consultation of monographs (e.g., Kofoid and 
Campbell 1929, 1939) is a very helpful first step, but 
species determinations should finally be based on 
original descriptions or authoritative redescriptions, as 
revising authors may have changed the circumscrip-
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tions by lumping species. Synonymisations should be 
performed only after detailed investigations of the cell 
(live observation, protargol impregnation) and lorica 
ultrastructure (electron microscopy) and genetic analy-
ses. The variable regions (D1-D2) of the LSU rRNA 
gene (Santoferrara et al. 2013) and ITS2 sequence and 
secondary structure comparisons (Snoeyenbos-West et 
al. 2003, Weisse et al. 2006) are promising molecular 
markers for elucidating phylogenetic relationships and 
species limits in tintinnids. Therefore, we regard any 
taxonomic acts merely based on gene sequence data 
and lorica features as premature, especially, as they are 
occasionally in conflict with the International Code of 
Zoological Nomenclature (ICZN 1999). On the other 
hand, descriptions of new species or redescriptions 
should comprise gene sequence analysis besides the 
complete morphologic data. 

4. Taxonomic implications

Genus Parallelostrombidium Agatha, 2004
Subgenus Parallelostrombidium Agatha, 2004 nov. 

stat. (Fig. S7)
Diagnosis: Ventral kinety entirely parallel to girdle 

kinety.
Type species: Strombidium rhyticollare Corliss and 

Snyder, 1986.
Species assignable: Parallelostrombidium (Par­

allelostrombidium) rhyticollare (Corliss and Snyder, 
1986) Agatha, 2004 and Parallelostrombidium (Paral­
lelostrombidium) siculum (Montagnes and Taylor, 
1994) Agatha, 2004.

Subgenus Asymptokinetum nov. subgen. (Fig. S8)
Diagnosis: Only posterior portion of erected ventral 

kinety parallel to girdle kinety. 
Type species: Parallelostrombidium paralatum Xu 

et al., 2006.
Etymology: Composite of the Greek adjective as­

ymptotos (not falling together) and verb kinein (to 
move), referring to the course of the girdle kinety, 
which continuously approaches the longitudinal ventral 
kinety; neuter gender.

Species assignable: The subgenus Asymptokinetum 
is monotypic, comprising only Parallelostrombidium 
(Asymptokinetum) paralatum Xu et al., 2006.

Genus Novistrombidium Song and Bradbury, 1998
Remarks: According to the topology tests by Li et 

al. (2013), the monophyly of the genus Novistrombi­

dium cannot be rejected, which matches the Hennigian 
argumentation scheme (Fig. S6). Thus, the genus is 
split here only into two subgenera differing in morphol-
ogy and probably in their ITS2 secondary structure (Li 
et al. 2013).

Subgenus Novistrombidium Song and Bradbury, 
1998 nov. stat. (Fig. S11)

Diagnosis: Extrusome attachment sites in question 
mark-shaped pattern directly posterior to adoral mem-
branelles and in an arc on posterior dorsal side. Oral 
primordium between question mark-shaped pattern of 
extrusome attachment sites and girdle kinety.

Type species: Strombidium testaceum Anigstein, 
1913.

Species assignable: Novistrombidium (Novistrom­
bidium) testaceum (Anigstein, 1913) Song and Brad-
bury, 1998 and Novistrombidium (Novistrombidium) 
apsheronicum (Alekperov and Asadullayeva, 1997) 
Agatha, 2003.

Subgenus Propecingulum nov. subgen. (Fig. S10)
Diagnosis: Extrusome attachment sites directly 

anterior to girdle kinety. Anterior portion of girdle ki-
nety elongated, performing further dextral spirals. Oral 
primordium anterior to stripe of extrusome attachment 
sites extending along girdle kinety.

Type species: Novistrombidium sinicum Liu et al., 
2009.

Etymology: Composite of the Latin prefix prope 
(near) and the noun cingulum (girdle), referring to the 
extrusome stripe directly anterior to the girdle kinety; 
neuter gender.

Discussion: Novistrombidium (Propecingulum) 
sinicum Liu et al., 2009 and Novistrombidium (Pro­
pecingulum) orientale Liu et al., 2009 are assigned to 
the new subgenus. While the affiliations of Strombidium 
ioanum and S. platum with the genus Novistrombidium 
are not disputable because of their dextrally spiralled 
girdle kinety abutting on a longitudinal ventral kinety 
(the orientation of the dikinetids indicates the pres-
ence of both a girdle and a ventral kinety in S. platum), 
their assignment to the subgenus Propecingulum has to 
be verified by live observations. However, the reticu-
lar silverline system directly anterior to the dextrally 
spiralled girdle kinety probably indicates the arrange-
ment of the extrusomes in S. ioanum, which is there-
fore tentatively affiliated, becoming Novistrombidium 
(Propecingulum) ioanum (Lynn and Gilron, 1993) nov. 
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comb. Likewise, extrusomes were merely found in the 
posterior cell portion close to the girdle kinety in S. pla­
tum, which is thus also tentatively affiliated, becoming 
Novistrombidium (Propecingulum) platum (Song and 
Packroff, 1997) nov. comb.

Pelagostrobilidium kimae nov. spec. (Fig. S19)
Diagnosis: Size after protargol impregnation ~ 30 

× 18 µm; obovoidal to pyriform. Invariably one micro-
nucleus. Invariably six somatic kineties commencing 
at same level, except for anteriorly shortened kinety 2: 
longitudinal kineties 1 and 3–6 posteriorly shortened; 
kinety 2 slightly sigmoidal, on the left of kinety 3. 
About 24 collar membranelles and invariably one buc-
cal membranelle.

Etymology: Dedicated to Y.-O. Kim (Korea Insti-
tute of Ocean Science & Technology, Geoje, Republic 
of Korea) due to her contributions to the ecology and 
taxonomy of marine planktonic ciliates.

Comparison with congeners: There is only one 
congener sharing the posteriorly shortened somatic ki-
neties 3–6, namely, P. conicum as authoritatively de-
scribed by Agatha and Riedel-Lorjé (1998). However, 
the Korean specimens deviate in the length of somatic 
kineties 1 (posteriorly shortened vs. unshortened) and 
2 (anteriorly vs. posteriorly shortened) and an argyro-
philic C-shaped structure near the collar membranelles 
(present vs. absent), justifying the establishment of 
a new species.

Family Eutintinnidae Bachy et al., 2012
Improved diagnosis: Lorica cylindroidal with an-

terior and posterior openings at truncate ends, wall 
hyaline, rarely agglomerated, compact, with regular 
transverse striation in transmission electron micro-
graphs. Usually four macronucleus nodules and two 
micronuclei. Somatic ciliature comprises (i) a right and 
left ciliary field with monokinetidal kineties having one 
dikinetid anteriorly, (ii) a short, monokinetidal ventral 
kinety, and (iii) two, rarely three dorsal kineties. 
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Fig. S1. Profile Neighbor Joining tree of the Oligotrichida inferred from small subunit ribosomal RNA (SSU rRNA) gene sequences (66 taxa 
and 1823 nucleotide positions) aligned with the Muscle algorithm (Edgar 2004) implemented in MEGA ver. 5.1 (Tamura et al. 2011). The 
tree was computed with ProfDistS (Wolf et al. 2008). Support values are listed at the nodes. Values below 50% are represented by dashes. 
* – initially published as Spirostrombidium sp.; ** – initially published as Parallelostrombidium sp.
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Fig. S2. Profile Neighbor Joining tree of the Choreotrichida inferred from small subunit ribosomal RNA (SSU rRNA) gene sequences (138 
taxa and 1859 nucleotide positions) aligned with the Muscle algorithm (Edgar 2004) implemented in MEGA ver. 5.1 (Tamura et al. 2011). 
The tree was computed with ProfDistS (Wolf et al. 2008). Support values are listed at the nodes. Values below 50% are represented by 
dashes. Branches with unambiguously clustered taxa are collapsed, species of the genus Tintinnopsis grouped in 5 different clades numbered 
I–V. * – after Kofoid and Campbell (1929) a synonym of Codonella cratera; ** – does not correspond with the redescription of Agatha and 
Riedel-Lorjé (2006); *** – possibly incorrectly identified, might be Dadayiella acutiformis; **** – invalid taxon, very likely a replacement 
lorica (see text).
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Fig. S3. Maximum parsimony tree calculated with PAUP* vers. 4.0b10 (Swofford 2002), equally weighted morphologic characters (Tables 
S1, S2), and hypotrichs as outgroup. 83 out of 94 characters parsimony-informative, tree length 227, consistency index 0.71, homoplasy in-
dex 0.29, retention index 0.95. 1 – halteriids, 2 – oligotrichids, 3 – choreotrichids, 4 – tintinnids, 5 – Cyrtostrombidiidae, 6 – Strombidiidae, 
7 – Pelagostrombidiidae, 8 – Tontoniidae. Most common lorica structures:  – flexible, agglomerated,  – hard, agglomerated,  – hard, 
entirely hyaline,  – hard, composed of hyaline collar and agglomerated bowl. Pelagostrobilidium spec. sensu Ota and Taniguchi (2003).
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Fig. S5. Strict consensus tree of the Oligotrichea calculated with the computer program Hennig86 by a heuristic analysis of equally weighted 
morphologic characters (Tables S1, S2) and the branch-swapping algorithm, using the hypotrichs as outgroup. It has a length of 180, a con-
sistency index of 66, and a retention index of 90. 1 – halteriids, 2 – oligotrichids, 3 – choreotrichids, 4 – tintinnids, 5 – Cyrtostrombidiidae, 
6 – Strombidiidae, 7 – Pelagostrombidiidae, 8 – Tontoniidae. Most common lorica structures:  – flexible, agglomerated,  – hard, ag-
glomerated,  – hard, entirely hyaline,  – hard, composed of hyaline collar and agglomerated bowl. Pelagostrobilidium spec. sensu Ota 
and Taniguchi (2003).
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Fig. S6. Monophyletic oligotrichid ciliates in the maximum parsimony tree of the Oligotrichea generated by the Hennigian argumentation 
method. For character coding, see Table S1. Black squares mark apomorphies, open squares denote reversals to plesiomorphic states, and 
asterisks mark homoplasies. 5 – Cyrtostrombidiidae, 6 – Strombidiidae, 7 – Pelagostrombidiidae, 8 – Tontoniidae.

Figs S7–S11. Evolution of somatic ciliary patterns in the genera Parallelostrombidium and Novistrombidium [originals based on illustra-
tions of Montagnes and Taylor 1994 (7), Xu et al. 2006 (8), Liu et al. 2009 (10), and Agatha 2003 (11); protargol impregnation]. The pattern 
of Parallelostrombidium (Parallelostrombidium) siculum (7) probably gave rise to the pattern of Parallelostrombidium (Asymptokinetum) 
paralatum (8), which possibly represents the transition stage to the genus Novistrombidium (9). The hypothetic ancestor of that genus had 
the stripe of extrusome attachment sites associated with the girdle kinety as usual, and both structures are posterior to the oral primordium. 
It represents the origin of the subgenus Propecingulum (10; with N. ioanum nov. comb., N. orientale, N. platum nov. comb., and N. sinicum) 
and the subgenus Novistrombidium (11; with N. apsheronicum and N. testaceum). EX – extrusome attachment sites, GK – girdle kinety, 
OP – oral primordium, VK – ventral kinety.
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Figs S14–S27. Evolution of somatic ciliary patterns in choreotrichid genus Pelagostrobilidium [originals based on Lynn and Montagnes 
1988 (21, 26), Montagnes and Taylor 1994 (25), Agatha and Riedel-Lorjé 1998 (16), Song and Bradbury 1998 (24), Ota and Taniguchi 2003 
(23), Küppers et al. 2006 (18), Lee et al. 2011 (19), Liu et al. 2012 (17, 27); protargol impregnation]. 14 – Hypothetic Rimostrombidium-
like ancestor; 15, 20, 22 – hypothetic intermediate states; 16 – P. conicum; 17 – P. minutum; 18 – P. wilberti; 19 – P. kimae nov. spec.; 21 – 
P. epacrum; 23 – Pelagostrobilidium spec.; 24 – P. simile; 25 – P. neptuni; 26 – P. spirale; 27 – P. paraepacrum. 1–5 – somatic kineties 1–5.
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Figs S28–S38. Structure and texture of hyaline loricae [28–31, 33, 35–38, originals from specimens collected at the U.S. east coast (28, 
29, 31, 35) and in the Mediterranean Sea (30, 33, 36–38); 32, after Abboud-Abi Saab 2008; 34, after Gold and Morales 1977; scanning 
electron micrographs]. 28, 29 – Favella panamensis, lateral view of lorica (28) and lorica wall with removed outer surface (29) showing the 
monolaminar texture with alveoli; 30 – Climacocylis sp., lateral view of lorica. The monolaminar texture with alveoli is recognizable in the 
posterior portion of the lorica, where the surface layer has been removed; 31, 35 – Schmidingerella arcuata, lateral view of lorica (31) and 
fracture of lorica wall (35). The lorica wall has minute pores and reticulate ridges on the outer surface; 32 – Epiplocyloides, lateral view of 
lorica. The wall has minute pores and reticulate ridges; 33, 34, 36 – Rhabdonella spiralis (33, 36) and Rhabdonellopsis apophysata (34), 
lateral views of loricae (33, 34) and fracture of lorica wall (36). The walls have minute pores and spiralled, anastomosing ridges; 37, 38 – 
Xystonella longicauda, lateral view of lorica (38) and fracture of lorica wall (37). Scale bars: 200 µm (28, 30, 31, 33, 34, 38), 50 µm (32), 
and 5 µm (29, 35–37).
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Figs S39–S51. Structure and texture of agglomerated loricae (39–48, originals from specimens collected in the Mediterranean Sea; 49, after 
Burns 1983; 50, 51, after Gold and Morales 1977; scanning electron micrographs). 39–41, 48 – Codonella aspera, lateral view of lorica 
(39), detail of outer bowl surface with impressions of formerly incrustrated coccoliths (40), fracture surface of bowl (41), and inner collar 
surface (48). The wall seems to be composed of compact matrix material, in which particles are/were embedded, and an inner layer (ar-
rowhead); 42–44 – Codonellopsis schabi, lateral view of lorica (42) and surfaces and fracture surfaces of bowl (43, 44). Apparently, the 
agglomerated particles are embedded into compact matrix material and an inner layer (arrowheads) lines the bowl; 45–47 – Stenosemella 
ventricosa, lateral view of lorica (45) and fracture surfaces of bowls (46, 47) showing compact matrix material, in which particle are em-
bedded, and a continuous inner layer (arrowheads); 49 – Dictyocysta reticulata, transition zone between collar and bowl. The impressions 
of the formerly embedded coccoliths strongly resemble those in Codonella (Figs S39, S40); accordingly, we assume a similar wall texture; 
50, 51 – Codonaria oceanica, lateral view of lorica (50) and lorica matrix (51) after hydrochloric acid treatment that removed the coccoliths. 
The impressions of the formerly embedded coccoliths strongly resemble those in Codonella (Figs S39, 40); thus, a similar wall texture is 
supposed. Scale bars: 50 µm (50), 40 µm (39, 42, 45), 10 µm (40, 43, 47–49, 51), and 4 µm (41, 44, 46).

Figs S52–S61. Obliquely orientated adoral zones of membranelles in tintinnids (52–56, originals from specimens collected in the Mediter-
ranean Sea; 57, from Fauré-Fremiet 1924; 58, redrawn by Kent 1880–1882; 59, from Entz 1884; 60, 61, from Small and Lynn 1985; 52–59, 
from life; 60, 61, protargol impregnation). 52, 53, 57 – Amphorides quadrilineata, extended (52, 57) and contracted (53) specimens; 54–56 
– Salpingella attenuata, just extending (54) and contracted specimens (55, 56). Arrowhead marks oblique adoral zone (55); 58 – Bursaopsis 
obliqua, extending specimen. Size taken from Kent (1881–1882); 59 – Steenstrupiella entzi. Entz (1884) and Kofoid and Campbell (1929) 
identified the cell in the lorica with a hypotrich ciliate, possibly based on the oblique and thus untypical orientation of the adoral zone; 
60 – Salpingacantha sp., contracted specimen without lorica (size not mentioned); 61 – Amphorellopsis acuta, contracted specimen without 
lorica (size not mentioned). Scale bars: 100 µm (52, 57–59) and 20 µm (53–56). AZM – adoral zone of membranelles, L – lorica, MA – 
macronucleus, MI – micronucleus, P – peduncle, SK – somatic kineties.





S. Agatha and M. C. Strüder-Kypke12

Table S1. Character states and coding used for construction of a cladogram with the Hennigian argumentation method (first or only code; 
Figs. S6, S12, S13) and for computer analyses (only or second code; Figs. S3–S5). The coding is mainly based on outgroup comparison with 
the hypotrichs. If not stated otherwise, the characters are ordered/additive (the states have a certain sequence; Wagner/Farris optimisation).

Characters

Apomorphic states Plesiomorphic states

1 Cell usually globular to obconical (coded 1) Cell usually distinctly dorsoventrally flattened (coded 0)

2 Usually planktonic (coded 1) Usually benthic (coded 0)

3 Adoral zone of membranelles mainly apical (coded 1) or secondarily 
ventral in contracted specimens (coded 2)

Adoral zone of membranelles mainly ventral (coded 0)

4 Adoral zone of membranelles circular (coded 1) or secondarily with 
minute ventral gap (coded 2)

Adoral zone of membranelles C-shaped (coded 0)

5 30–50% (coded 1) or 0% (coded 2) of adoral polykinetids composed of 
four rows of basal bodies

> 90% of adoral polykinetids composed of four rows of basal bodies 
(coded 0)

6 Postciliary and transverse microtubules absent in adoral membranelles 
(coded 1)

Postciliary and transverse microtubules present in adoral membranelles 
(coded 0)

7 Collar polykinetids bipartite (coded 1) Collar polykinetids continuous (coded 0)

8 Adoral zone bipartite, i.e., composed of buccal membranelles with small 
polykinetids and short cilia and collar membranelles with broad polykin-
etids and long cilia (coded 1), buccal membranelles absent (coded 2) 

Adoral zone not bipartite, i.e., polykinetids and cilia of membranelles 
gradually decrease in size towards the cytostome (coded 0)

9 Last collar membranelles with proximally elongated polykinetids (coded 
1) or proximally and distally elongated polykinetids (coded 2)

All collar membranelles with similar-sized polykinetids (coded 0)

10 Undulating membrane(s) often diplostichomonad (two parallel rows of 
basal bodies) or polystichomonad (more than two parallel rows of basal 
bodies; coded 1)

Undulating membrane(s) monostichomonad (single row of basal bodies; 
coded 0)

11 Paroral membrane absent (coded 1), paroral and endoral membranes 
absent (coded 2)

Usually endoral and paroral membranes present (coded 0)

12 Cyrtos-like (conspicuously strong) pharyngeal fibres (coded 1) Common pharyngeal fibres (coded 0)

13 Cirri absent (coded 1) Cirri present (coded 0)

14 a Somatic kinetids unciliated (coded 1) or with clavate cilia (coded 2) Somatic kinetids with rod-shaped or fusiform cilia (coded 0)

15 a Usually one or two somatic kineties (coded 1), usually ten or more so-
matic kineties (coded 2)

Usually 3–9 somatic kineties (coded 0)

16 ≥ 40% of unspecialised somatic kineties shortened or entirely reduced 
(coded 1)

Unspecialised somatic kineties extend from adoral zone of mem-
branelles to posterior cell end (coded 0)

17 a Some unspecialised somatic kineties curved (coded 1) or forming a pos-
terior spiral (coded 2)

Unspecialised somatic kineties longitudinal (coded 0)

18 a Pelagostrobilidium – somatic kinety 1: anteriorly (coded 1) or posteri-
orly shortened (coded 2)

Pelagostrobilidium – somatic kinety 1: unshortened (coded 0)

19 b Pelagostrobilidium – somatic kinety 2: posteriorly shortened (coded 1; 
coded 10000); anteriorly shortened (coded 2; coded 01000); distinctly 
sigmoidal (coded 3; coded 01100); semicircular (coded 4; coded 01110); 
or performs ~ 270° curvature (coded 5; coded 01111)

Pelagostrobilidium: somatic kinety 2 unshortened and slightly sigmoidal 
(coded 0; coded 00000)

20 Pelagostrobilidium – somatic kineties 3 and 4: posteriorly shortened 
(coded 1)

Pelagostrobilidium – somatic kineties 3 and 4: unshortened (coded 0)

21 Pelagostrobilidium – somatic kinety 5: posteriorly shortened (coded 1) 
or absent (coded 2)

Pelagostrobilidium – somatic kinety 5: unshortened (coded 0)

22 b Pelagostrobilidium – somatic kinety 6: posteriorly shortened (coded 1; 
coded 1000); absent (coded 2; coded 1100); L-shaped (coded 3; coded 
0010); or U-shaped (coded 4; coded 0011)

Pelagostrobilidium – somatic kinety 6: longitudinal and unshortened 
(coded 0)

23 a Oligotrichid ventral kinety erected (coded 1), usually indistinct or absent 
(coded 2)

Oligotrichid ventral kinety dextrally spiralled (coded 0)
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Characters

Apomorphic states Plesiomorphic states

24 b Oligotrichid girdle kinety: dextrally spiralled with posterior end inverse-
ly orientated (coded 1; coded 10000000000); horizontally orientated 
anterior to oral primordium (coded 2; coded 01000000000); sinistrally 
spiralled (coded 3; coded 01100000000); horizontally orientated anterior 
to oral primordium with dorsal gap (coded 4; coded 01010000000); hor-
izontally orientated at level of oral primordium, with dorsal gap (coded 
5; coded 01011000000); horizontally orientated posterior to oral pri-
mordium and separate from extrusome attachment sites (coded 6; coded 
01000100000); horizontally orientated posterior to oral primordium to-
gether with extrusome attachment sites (coded 7; coded 01000010000); 
Ω-shaped anterior to oral primordium (coded 8; coded 01000001000); 
Ω-shaped posterior to oral primordium (coded 9; coded 00000000100); 
extends to posterior cell end on ventral and dorsal sides, in two or three 
fragments (coded 10; coded 00000000110); in several mostly clockwise 
inclined fragments (coded 11; coded 00000000101)

Oligotrichid girdle kinety dextrally spiralled (coded 0; coded 
00000000000)

25 Somatic kineties arranged in a right and left ciliary field (coded 1) Somatic kineties more or less equidistantly arranged (coded 0)

26 a Two ventral organelles (coded 1) or one specialised tintinnid ventral 
kinety (coded 2)

Specialised ventral organelles or tintinnid ventral kinety absent  
(coded 0)

27 Tintinnid ventral kinety composed of a monokinetidal anterior and 
a dikinetidal posterior portion (coded 1)

Tintinnid ventral kinety monokinetidal (coded 0)

28 Right ciliary field and tintinnid ventral kinety separated by a broad un-
ciliated stripe (coded 1)

Right ciliary field abuts on ventral kinety (coded 0)

29 Two dorsal kineties (coded 1) or one dorsal kinety (coded 2) Specialised dorsal kinety/kineties absent (coded 0)

30 Posterior kinety present (coded 1) Specialised posterior kinety absent (coded 0)

31 Lateral ciliary field present (coded 1) Lateral ciliary field absent (coded 0)

32 b Unspecialised somatic kineties: some dikinetids with cilia only at the 
anterior basal bodies, other dikinetids with two cilia (coded 1; coded 
10000000); all dikinetids with two cilia (coded 2; coded 11000000); 
most dikinetids with cilia only at the posterior basal bodies, few diki-
netids with two cilia (coded 3; coded 11100000); all dikinetids with 
cilia only at the posterior basal bodies (coded 4; coded 11110000); some 
dikinetids with cilia only at the posterior basal bodies, some ciliated 
monokinetids (coded 5; coded 11111000); ciliated monokinetids (coded 
6; coded 11111100); mostly ciliated monokinetids, some dikinetids with 
two cilia, some dikinetids with cilia only at the posterior basal bodies 
(coded 7; coded 11100010); mostly ciliated monokinetids, some dikinet-
ids with two cilia (coded 8; coded 11100011)

Unspecialised somatic kineties composed of dikinetids, each has a dis-
tinct cilium associated only with the anterior basal body (coded 0; coded 
00000000)

33 Somatic kinetids condensed (coded 1) Somatic kinetids distinctly separate (coded 0)

34 a Majority of members with one ellipsoidal macronucleus nodule (coded 
1), one C-shaped macronucleus (coded 2), or more than two macronu-
cleus nodules (coded 3)

Majority of members with two macronucleus nodules (coded 0)

35 a Tintinnid extrusomes (capsules) and/or structures usually associated 
with tintinnid extrusomes (coded 1) or oligotrichid extrusomes (trichites; 
coded 2) present

Extrusomes absent (coded 0)

36 Stripe of extrusome (trichite) attachment sites distinctly apart from oli-
gotrichid girdle kinety (coded 1)

Stripe of extrusome (trichite) attachment sites directly anterior to oli-
gotrichid girdle kinety (coded 0)

37 a Capsule Type II (coded 1) Capsule Type I (coded 0)

38 Mucocyst Type A (coded 1) Mucocysts absent (coded 0)

39 a Contractility of peduncle (coded 1) or tail (coded 2) Posterior cell portion acontractile (coded 0)

40 a Anterior cell portion with contractile tentacles (coded 1) or tentaculoids 
(coded 2)

Anterior cell portion without cytoplasmic appendages (coded 0)

41 Polysaccharidic cortical platelets (coded 1) Cortical platelets absent (coded 0)

42 Kinetal lips covering bases of somatic cilia present (coded 1) Kinetal lips covering bases of somatic cilia absent (coded 0)
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Characters

Apomorphic states Plesiomorphic states

43 Vesicular reticulum present (coded 1) Vesicular reticulum absent (coded 0)

44 Lorica present (coded 1) Lorica absent (coded 0)

45 a Lorica types: bowl agglomerated, collar hyaline (coded 1); entirely hya-
line (coded 2)

Lorica entirely agglomerated (coded 0)

46 b Lorica flexible with subterminal membrane (coded 1; coded 010), hard 
(coded 2; coded 100), or hard and collapsible (coded 3; coded 101)

Lorica flexible (coded 0; coded 000)

47 a Texture of lorica wall: monolaminar alveolar (coded 1); collar monol-
aminar alveolar, bowl bilaminar (coded 2); or collar monolaminar com-
pact, bowl bilaminar (coded 3)

Texture of lorica wall monolaminar compact (coded 0)

48 a Closing apparatus: foldable with lorica sac (coded 1) or diaphragm-like 
without lorica sac (coded 2)

Lorica sac and closing apparatus absent (coded 0)

49 Enantiotropy (coded 1) Homeotropy (coded 0)

50 b Stomatogenesis hypoapokinetal in transient tube (coded 1; coded 100), 
in permanent tube (coded 2; coded 110), or in transient pouch (coded 3; 
coded 101)

Stomatogenesis epiapokinetal (coded 0; coded 000)

51 Undulating membranes originate de novo (coded 1) Undulating membranes originate from oral primordium or cirral anlagen 
(coded 0)

52 Unspecialised somatic kineties originate de novo (coded 1) Unspecialised somatic kineties originate usually by intrakinetal prolif-
eration of basal bodies (coded 0)

53 Reorganisation of somatic kineties present (coded 1) Reorganisation of somatic kineties absent (coded 0)

54 Preformed emergence pore of resting cyst closed with a plug (coded 1) Preformed emergence pore and plug absent in resting cyst (coded 0)

55 Ectocyst (outer cyst layer) bipartite and granular (coded 1) Ectocyst comprises a single microfibrillar or membranous layer  
(coded 0)

56 Wall of resting cyst with inorganic layers (coded 1) Wall of resting cyst without inorganic layers (coded 0)

57 a Lepidosome structure tubular (coded 1) or fibrous (coded 2) Lepidosomes absent (coded 0)

58 Lepidosome shape conical/spine-like (coded 1) Lepidosomes globular (coded 0)

59 “Curious structures” in cytoplasm of resting cyst present (coded 1) “Curious structures” in cytoplasm of resting cyst absent (coded 0)

60 Cyst wall precursors of halteriid type (coded 1) Cyst wall precursors of hypotrich type (coded 0)

61 Inner cyst membrane that encloses the ciliate emerging from the cyst 
absent (coded 1)

Inner cyst membrane that encloses the ciliate emerging from the cyst 
present (coded 0)

62 Pycnosis of vegetative macronucleus without fragmentation (coded 1) Fragmentation of vegetative macronucleus prior to pycnosis (coded 0)

63 a Interlocking arrangement (coded 1) or oblique arrangement (coded 2) of 
conjugants

Parallel arrangement of conjugants (coded 0)

64 Transient dimorphism of conjugants (coded 1) Isomorphic conjugants (coded 0)

65 Conjugants share membranelles (coded 1) Conjugants do not share membranelles (coded 0)

66 Single derivative of first maturation division performs second division 
(coded 1)

All derivatives of first maturation division participate in second division 
(coded 0)

a Non-additive (unordered) character states, i.e., each state can change into any other state by one step.
b Binary coding of character state trees (first code for Hennigian argumentation scheme; second code for computer analyses).
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Table S2. Distribution of character states over the taxa cladistically analysed with the computer programs PAUP* and Hennig86 (Figs 
S3–S5). Note that the character state trees of Characters 19, 22, 24, 32, 46, and 50 (Table S1) were converted into additive binary coding. 
Shades of grey mark the most common (in ≥ 50% of species) character state in a polymorphic taxon and the presumed character state of 
a taxon adopted from the state in its closest relatives.

Characters 
Taxona 10 20 30 40 50 60 70 80 90  

Hypo  00000000-1 0000000--- ---------- ---------- --------00 000000000- --000000-- ----000000 1000100000 2110 

Mese 1110100100 0010000--- ---------- ---------- --------00 000000010- --000000-- ----100011 1010201100 ?111 

Halt 1110100100 0010010--- ---------- ---------- --------00 000000110- --000000-- ----100011 10102111?0 1111 

Phal 1110100100 0010010--- ---------- ---------- --------00 000000110- --000000-- ----100011 10?0??11?0 ?111 

Cyrt 111020020- 2110111--- ---------1 0101000000 0-------00 0000000120 --001000-- ----110010 01?1?1???? 000? 

Will 1110200100 1010111--- ---------2 0101100000 0-------00 0000000120 --00?000-- ----110010 01?1?????? 000? 

Plst 1110200100 1011111--- ---------2 0100000000 0-------00 0000000120 --001000-- ----111010 011121??1? 000? 

Limn 1110200100 1012111--- ---------1 0100000000 0-------00 0000000120 --001000-- ----111010 01?10-???? 000? 

Labo 1110200100 1010111--- ---------2 0110000000 0-------00 0000000320 --001000-- ----110010 01?1?????? 000? 

Noap 1110200100 1010111--- ---------1 0000000000 0-------00 0000000021 --001000-- ----110010 01?1?????? 000? 

Nosi 1110200100 1010111--- ---------1 0000000000 0-------00 0000000120 --001000-- ----110010 01?1?????? 000? 

Omeg 1110200100 1010111--- ---------2 0000000010 0-------00 0000000120 --001000-- ----110010 01?1?????? 000? 

Opis 1110200100 1010111--- ---------1 0100001000 0-------00 0000000120 --001000-- ----110010 01?1?????? 000? 

Fois 1110200100 1010111--- ---------1 0100010000 0-------00 0000000021 --001000-- ----110010 01?1?????? 000? 

Plle 1110200100 1010111--- ---------0 0000000000 0-------00 0000000120 --001000-- ----110010 01?1?????? 000? 

Spir 1110200100 1010111--- ---------1 1000000000 0-------00 0000000120 --001000-- ----110010 01?1?????? 000? 

Stro 1110200100 1010111--- ---------1 0100000000 0-------00 0000000120 --001000-- ----110010 01?121??1? 000? 

Pato 1110200100 1010111--- ---------2 0100000100 0-------00 0000000320 --201000-- ----110010 01?1?????? 000? 

Psto 1110200100 1010111--- ---------1 0100000000 0-------00 0000000320 --211000-- ----110010 01?1?????? 000? 

Spto 1110200100 1010111--- ---------2 0110000000 0-------00 0000000320 --201000-- ----110010 01?1?????? 000? 

Tont 1110200100 1010111--- ---------2 0000000000 0-------00 0000000320 --201000-- ----110010 01?1?????? 000? 

Apos 1110200100 1010111--- ---------2 0000000011 0-------00 0000000120 --00?000-- ----110010 01?1?????? 000? 

Vari 1110200100 1010111--- ---------2 0000000010 1-------00 0000000120 --00?000-- ----110010 01?1?????? 000? 

Lova 1111201110 1010111--- ---------- ---------- --------00 000000010- --000000-- ----110110 01?1?????1 ?000 

Lelb 1111201110 1010010--- ---------- ---------- --------10 000000000- --000000-- ----110110 01?1?????1 ?000 

Lsol 1111201110 1010010--- ---------- ---------- --------11 000000000- --000000-- ----110110 01?1?????1 ?000 

Lohm 1111200110 1010010--- ---------- ---------- --------11 110000010- --000000-- ----110110 01?1?????1 ?000 

Pcon 1111200110 1010011010 000111000- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pmin 1111200110 1010011100 000121100- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pwil 1111200110 1010011001 000000000- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pkim 1111200110 1010011201 000111000- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pepa 1111200110 1010011001 100101100- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pota 1111200110 1010011001 111100000- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Psim 1111200110 1010011001 111111100- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pnep 1111200110 1010011001 110120010- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Pspi 1111200110 1010011001 110120011- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Ppep 1111200110 1010011001 100110000- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 1000 

Rimo 1111200110 1010010--- ---------- ---------- --------11 111100120- --000100-- ----110110 01?10-???1 ?000 
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a Amph – Amphorellopsis, Apos – Apostrombidium, bras – Tintinnopsis brasiliensis, Ccra – Codonella cratera, Cpsi – Codonellopsis, cyda – Tintinnopsis 
cylindrata, cyli – Tintinnopsis cylindrica, Cyma – Cymatocylis, Cyrt – Cyrtostrombidium, Euti – Eutintinnus, Fehr – Favella ehrenbergii, fluv – Tintinnidium 
fluviatile of subgenus Tintinnidium, Fois – Foissneridium, Halt – Halteria, Hypo – hypotrichs, Laac – Laackmanniella, Labo – Laboea, lacu – Stenosemella 
lacustris, Lelb – Leegaardiella elbraechteri, Limn – Limnostrombidium, Lohm – Lohmanniella, Lova – Leegaardiella ovalis, Lsol – Leegaardiella sol, Lynn 
– Lynnella, Memb – Membranicola, Mese – Meseres, Noap – Novistrombidium apsheronicum, Nola – Nolaclusilis, Nosi – Novistrombidium sinicum, Ocod 
– other Codonella species, Omeg – Omegastrombidium, Opis – Opisthostrombidium, Oste – other Stenosemella species, Otsp – other Tintinnopsis species, 
Parb – Parastrombidium, Parp – Parastrombidinopsis, Pato – Paratontonia, Pcon – Pelagostrobilidium conicum, Pepa – Pelagostrobilidium epacrum, 
Phal – Pelagohalteria, Pkim – Pelagostrobilidium kimae, Plle – Parallelostrombidium, Plst – Pelagostrombidium, Pmin – Pelagostrobilidium minutum, 
Pnep – Pelagostrobilidium neptuni, Pota – Pelagostrobilidium studied by Ota and Taniguchi (2003), Ppep – Pelagostrobilidium paraepacrum, Psim – Pel­
agostrobilidium simile, Pspi – Pelagostrobilidium spirale, Psto – Pseudotontonia, pusi – Tintinnidium pusillum of subgenus Tintinnidium, Pwil – Pelago­
strobilidium wilberti, radi – Tintinnopsis radix, Rhiz – Rhizodomus, Rimo – Rimostrombidium, Scan – Salpingacantha, Schm – Schmidingerella arcuata, 
semi – Tintinnidium semiciliatum of subgenus Semitintinnidium, Spir – Spirostrombidium, Spsi – Strombidinopsis, Spto – Spirotontonia, Strb – Strobilidium, 
Stro – Strombidium, toca – Tintinnopsis tocantinensis, Tont – Tontonia, Vari – Varistrombidium, Will – Williophrya.

 

Characters 
Taxona 10 20 30 40 50 60 70 80 90  

Strb  1111200110 1010012--- ---------- ---------- --------11 111100120- --000100-- ----110110 01?1?????1 ?000 

Spsi 1111200110 1010200--- ---------- ---------- -00--00011 000000000- --000000-- ----110110 01?10-???1 ?000 

Parp 1112200110 1010200--- ---------- ---------- -00--00011 000000000- --000000-- ----110110 01?1?????1 ?000 

Parb 1112200220 1010200--- ---------- ---------- -00--00011 000000030- --000000-- ----110110 01?1?????1 ?000 

Lynn 1112200210 1010110--- ---------- ---------- -00--00011 111000000- --000000-- ----110110 01?1?????1 ?000 

semi  1111210210 1010210--- ---------- ---------- -11--00011 100010011- ??10001100 0000110110 0????????1 0000 

fluv  1111210210 1010210--- ---------- ---------- -11--00011 100000011- ??10001100 0000110110 0????????1 0000 

pusi  1111210210 1010210--- ---------- ---------- -11--00011 100000011- ??10001100 0000110110 0????????1 0000 

cyda  1111210210 1010210--- ---------- ---------- -11--00011 111100011- ??10001100 0000110110 0????????1 0000 

Memb  1111210210 1010210--- ---------- ---------- -11--00011 11000000?- ??10001100 1000110110 0????????1 0000 

Amph 112121021? ?010210--- ---------- ---------- -2?020000 00000003?- ??1?001121 00001101?0 0????????1 0000 

Scan 112121021? ?010010--- ---------- ---------- -2?0?00?? ??????01?- ??1?001121 00021101?0 0????????1 0000 

Nola 1111210110 1010210--- ---------- ---------- -20000011 100011001- ??1?001121 0100110110 0????????1 0000 

Euti  1111210110 1010210--- ---------- ---------- -20010011 100011031- ??12001121 0000110110 00??0-???1 0000 

Fehr  1111210110 1010210--- ---------- ---------- -20010111 100011000- -?10001121 0010110110 0????????1 0000 

Schm  1111210110 1010210--- ---------- ---------- -21120111 100011001- ??12001121 0010110110 01??0-???1 0000 

bras  1111210?10 1010210--- ---------- ---------- -20020111 10001100?- ??1?001101 00?0110110 0????????1 0000 

Ocod 1111210110 1010210--- ---------- ---------- -20021111 100011031- 1112001101 0031110110 0????????1 0000 

Ccra  1111210210 1010210--- ---------- ---------- -20021111 100011000- -?10001101 0000110110 0????????1 0000 

Cpsi  1111210110 1010210--- ---------- ---------- -20021111 100011031- 1112001111 0021110110 0????????1 0000 

Cyma  1111210110 1010210--- ---------- ---------- -20021111 100011001- ??1?001121 0010110110 0????????1 0000 

Otsp  1111210110 1010210--- ---------- ---------- -20021111 100011001- 0012001101 00?0110110 00??0-???1 0000 

lacu  1111210110 1010210--- ---------- ---------- -20021111 10001100?- ??1?001101 00?0110110 0????????1 0000 

Oste  1111210110 1010210--- ---------- ---------- -20021111 100011001- 1112001111 0030110110 0????????1 0000 

toca  1111210110 1010210--- ---------- ---------- -21020111 100011000- -?10001101 00?0110110 0???0-???1 0000 

radi  1111210110 1010210--- ---------- ---------- -20021111 100011000- -?10001101 00?0110110 0???0-???1 0000 

cyli  1111210110 1010210--- ---------- ---------- -21020111 100011000- -?10001101 00?0110110 00??0-???1 0000 

Rhiz  1111210110 1010210--- ---------- ---------- -20021111 100011001- ??10001101 0010110110 00??0-???1 0000 

Laac  1111210110 1010210--- ---------- ---------- -20021111 10001103?- ??1?001111 00?0110110 0????????1 0000 
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Table S3. Alphabetical list of all sequences used in the phylogenetic analyses of this study: genus and species name, isolate or strain desig-
nation if necessary, and GenBank Accession Number. 

Taxa Accession 
numbers

Amphorellopsis acuta EU399530

Amphorellopsis acuta JX101847

Amphorellopsis quinquealata JQ924058

Amphorides amphora JX101849

Amphorides quadrilineata JQ408193

Amphorides quadrilineata JX101850

Anteholosticha parawarreni JQ289923

Apostrombidium parakielum JX025560

Aspidisca steinii AF305625

Climacocylis scalaria JQ408213

Codonaria cistellula JQ408202

Codonaria sp. JQ408172

Codonella apicata EU399531

Codonella aspera JQ408179

Codonellopsis americana AY143571

Codonellopsis gaussi JQ924053

Codonellopsis morchella JQ408173

Codonellopsis nipponica FJ196072

Codonellopsis orthoceras JQ408180

Coxliella sp. JX101851

Cymatocylis calyciformis JQ924046

Cymatocylis convallaria JQ924050

Cymatocylis drygalskii JQ924052

Cyttarocylis ampulla (formerly Petalotricha ampulla) JQ408168

Cyttarocylis cassis JQ408203

Cyttarocylis eucecryphalus JQ408169

Dadayiella ganymedes JX101852

Dictyocysta lepida JQ408188

Dictyocysta reticulata EU399532

Diophrys appendiculata AY004773

Epiplocylis acuminata JQ715615

Epiplocyloides ralumensis JX101854

Euplotes aediculatus X03949

Eutintinnus apertus JQ408195

Eutintinnus fraknoi EU399534

Eutintinnus lusus-undae (agglomerated-form) JX101858

Eutintinnus pectinis AY143570

Eutintinnus stramentus JX101859

Eutintinnus tenuis JN871721

Eutintinnus tubulosus (agglomerated-form) JX101856

Eutintinnus tubulosus JQ408187

Favella adriatica JQ408215

Taxa Accession 
numbers

Favella campanula FJ422984

Favella ehrenbergii GU574767

Favella markusovszkyi JN871725

Favella panamensis AY143572

Halteria grandinella AF194410

Helicostomella subulata JN831781

Helicostomella subulata JN831786

Histriculus histrio FM209294

Laackmanniella prolongata JQ924056

Laboea strobila AF399154

Laboea strobila AY302563

Lynnella semiglobulosa FJ876965

Meseres corlissi (strain AU5) EU399524

Meseres corlissi (strain CHI) EU399529

Meseres corlissi (strain DR) EU399522

Metacylis angulata AF399146

Metacylis angulata AY143568

Metacylis jörgensenii JQ408183

Metacylis pithos JX101862

Moneuplotes crassus AJ310492

Novistrombidium orientale FJ422988

Novistrombidium sinicum population 1 FJ422989

Novistrombidium sinicum population 2 FJ422990

Novistrombidium apsheronicum FJ876958

Novistrombidium testaceum AJ488910

Omegastrombidium elegans EF486862

Oxytricha granulifera X53486

Oxytricha longa AF164125

Parallelostrombidium sp. (3-GD-08040807) FJ422991

Parallelostrombidium sp. (WS-2012) JN712657

Parastrombidinopsis minima DQ393786

Parastrombidinopsis shimi AJ786648

Parundella aculeata JQ408204

Pelagostrobilidium minutum FJ876959

Pelagostrobilidium neptuni AY541683

Pelagostrobilidium paraepacrum FJ876963

Protorhabdonella curta JX101863

Pseudokeronopsis rubra DQ640314

Pseudotontonia simplicidens FJ422993

Pseudouroleptus caudatus DQ910904

Rhabdonella elegans JQ408175

Rhabdonella hebe AY143566
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Taxa Accession 
numbers

Rhabdonella poculum JX101864

Rhabdonella spiralis JQ408158

Rhizodomus tagatzi JQ392572

Rimostrombidium lacustris DQ986131

Rimostrombidium sp. EU024986

Rimostrombidium veniliae FJ876964

Salpingella acuminata JQ408155

Salpingella acuminata EU399536

Schmidingerella arcuata JQ837816

Schmidingerella taraikaensis FJ196073

Spirostrombidium sp. JN712658

Spirotontonia taiwanica FJ715634

Spirotontonia turbinata FJ422994

Steenstrupiella steenstrupii JQ408194

Steenstrupiella steenstrupii EU399537

Stenosemella nivalis FJ196074

Stenosemella pacifica JN831792

Stenosemella ventricosa JQ408170

Stenosemella ventricosa EU399538

Strobilidium caudatum AY143573

Strobilidium sp. AF399124

Strombidinopsis acuminatum AJ877014

Strombidinopsis jeokjo AJ628250

Strombidinopsis sp. (LFS-2012b) JQ028734

Strombidinopsis sp. AM412524

Strombidium apolatum DQ662848

Strombidium biarmatum AY541684

Strombidium basimorphum FJ480419

Strombidium conicum FJ422992

Strombidium crassulum HM140389

Strombidium purpureum U97112

Strombidium rassoulzadegani AY257125

Strombidium stylifer DQ631805

Strombidium sulcatum DQ777745

Stylonychia lemnae AF508773

Styxophrya quadricornuta X53485

Taxa Accession 
numbers

Tintinnidium balechi JN831797

Tintinnidium fluviatile JQ408163

Tintinnidium mucicola AY143563

Tintinnidium pusillum DQ487200

Tintinnopsis baltica JN831805

Tintinnopsis beroidea EF123709

Tintinnopsis bütschlii JN831810

Tintinnopsis cylindrica FJ196075

Tintinnopsis cylindrica JQ408206

Tintinnopsis dadayi AY143562

Tintinnopsis fimbriata AY143560

Tintinnopsis lacustris JQ408161

Tintinnopsis lobiancoi JN831814

Tintinnopsis lohmanni FJ196076

Tintinnopsis major JN831816

Tintinnopsis nana JN831821

Tintinnopsis parva JN831824

Tintinnopsis parvula JN831830

Stylicauda platensis (as Tintinnopsis) JN831832

Tintinnopsis radix EU399540

Tintinnopsis rapa JN831834

Tintinnopsis rara JQ408200

Tintinnopsis subacuta EU399541

Tintinnopsis tocantinensis AY143561

Tintinnopsis tubulosoides AF399109

Tintinnopsis uruguayensis EU399542

Undella claparedei JQ408164

Undella hyalina JQ408171

Undella marsupialis JQ408190

Uroleptus piscis AF508780

Uroleptus willii EU399543

Uronychia transfuga AF260120

Urostyla grandis AF508781

Varistrombidium kielum DQ811090

Williophrya maedai FJ876966

Xystonella longicauda JQ408160
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