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Sergio A. CELANI

A SEMANTIC ANALYSIS OF SOME

DISTRIBUTIVE LOGICS WITH NEGATION

A b s t r a c t. In this paper we shall study some extensions of the

semilattice based deductive systems S (N) and S (N, 1), where N

is the variety of bounded distributive lattices with a negation op-

erator. We shall prove that S (N) and S (N, 1) are the deductive

systems generated by the local consequence relation and the global

consequence relation associated with ¬-frames, respectively. Us-

ing algebraic and relational methods we will prove that S (N) and

some of its extensions are canonical and frame complete.

.1 Introduction

In [8] and [9] Dosěn introduces negation as a kind of impossibility operator

(or non-necessity modal operator) in intuitionistic logics. In [10] J. Michael
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Dunn and C. Zhou give a detailed analysis of different negations in dis-

tributive logics. Some of these negations can be treated as a generalization

of the intuitionistic negation or as a generalization of a dual intuitionistic

negation (as for instance in [16]). Another interesting propositional logic

with negation is the Subminimal logic introduced recently in [2]. This logic

is based on the implicationless fragment of Johansson’s propositional logic.

In [5] it was introduced the variety N of distributive lattices with a nega-

tion operator, or ¬-lattices, as a generalization of some algebraic structures

like Boolean algebras, pseudocomplemented distributive lattices [3], and

quasi-Stone algebras [15]. The variety of ¬-lattices (called bounded dis-

tributive lattices with a negative modal operator in [10]) is the algebraic

interpretation of the calculus Ki of the preminimal negation defined in [10],

and it is also just the {∨,∧,¬,⊥,�}-fragment of Dosěn’s system N [8]. In

[13] S. P. Odintsov studied the logic N∗ (an axiomatic extension of N).

The adequate algebraic semantics for N∗ is the variety of Heyting algebras

endowed with an Ockham negation.

In [12] (see also [11]) R. Jansana develops the theory of the selfexten-

sional logics with a conjunction ∧. A variety of algebras V of algebraic type

L is called a semilattice class relative to ∧ if for every A ∈ V the reduct

〈A,∧, 1〉 is a ∧-semilattice with top element 1. For any of these varieties it

is possible to define the deductive system S (V), called the semilattice based

deductive system relative to ∧ and V, and the deductive system S (V, 1),

called the assertional logic of V. Since each ¬-lattice has a ∧-semilattice

reduct, we can use the variety N to define the deductive systems S (N) and

S (N, 1). The aim of this paper is to study these deductive systems and

some of their extensions using algebraic and relational methods.

The paper is divided in six sections. In the second section we shall

introduce all the preliminary notions and results relevant to the paper.

In the third section we will define the basis deductive system S¬. This

deductive system is essentially the same as the logical system Ki defined

by J. Michael Dunn and C. Zhou in [10]. From the general results given

by Jansana in [12] we have that S¬ is also the deductive system S (N), i.e.,

S¬ = S (N).

In Section 4 we will define the frames for the deductive system S (N),

called ¬-frames. These frames were first defined by K. Dosěn in [9], and

also were used in the representation theory developed in [5] and [6] for

distributive lattices with a negation operator (see also [7] for related re-
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sults). We shall prove that the deductive systems S (N) and S (N, 1) are

the deductive system generated by the local consequence relation and the

global consequence relation, respectively, associated with the models of the

{∨,∧,¬,⊥,�}-fragment of Dosěn’s system N . In Section 5 we will consider

some sequents which correspond to first-order conditions on ¬-frames. A

variety V of ¬-lattices is canonical if for any A ∈ V, we have that the

canonical extension A(F(A)) belongs to V, where F(A) is the ¬-frame

of A. The notion of canonical varieties is the algebraic interpretation of

canonical modal logics (see [4]). It is easy to see that the variety N is

canonical. In Section 6 we will prove that the varieties WA, QS, WQS, and

PA are also canonical, and thus the associate semilattice deductive systems

are canonical and frame complete.

.2 Preliminaries

Given L an algebraic similarity type, we will consider Fm the absolutely

free algebra of type L with a denumerable set of generators, called propo-

sitional variables. The elements of Fm are called formulas. All algebras

considered will be of this type. The set of all homomorphisms from an

algebra A to an algebra B is denoted by Hom(A,B). A substitution is a

homomorphism from Fm into itself. A (finitary) logic or deductive system

of type L is a pair S = 〈Fm,�S〉, where �S⊆ P (Fm) × Fm is a stan-

dard consequence relation between sets of formulas and formulas, i.e., it is

a finitary consequence relation invariant under substitutions. A sequent of

type L will be a pair 〈Γ, ϕ〉 where Γ is a finite subset of Fm and ϕ is a

formula in Fm. Usually, we will note a sequent 〈Γ, ϕ〉 by Γ � ϕ, and we

will say that a sequent Γ � ϕ is a sequent of S if Γ �S ϕ. We say that a

formula ϕ is deducible in a deductive system S from a set of formulas Δ,

in symbols Δ �S ϕ, if there is a finite set of formulas Γ ⊆ Δ such that the

sequent Γ � ϕ belongs to S. A deductive system S ′ is an extension of a

deductive system S if S ⊆ S ′.
A deductive system S is selfextensional, that is, its relation of inter-

derivability ��S defined by ϕ ��S φ iff ϕ �S φ and φ �S ϕ is a congruence

in the formula algebra Fm.

Let S be a deductive system over an algebraic type L. A binary con-

nective ∧ ∈ L is called a conjunction of S if for every formula ϕ, ψ the
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following conditions hold:

ϕ, ψ �S ϕ ∧ ψ ϕ ∧ ψ �S ϕ, ϕ ∧ ψ �S ψ.

A class of algebras V of an algebraic type L is called a semilattice class

relative to ∧ if for every algebra A ∈ V the reduct 〈A,∧〉 is a ∧-semilattice.

We suppose that every algebra in the semilattice based class V has a top

element 1. We use the symbol ≈ to represent formal equations. If the

equation φ ≈ ϕ is valid an algebraA we write A � φ ≈ ϕ. We shall say that

a sequent {ϕ1, ..., ϕn} � ϕ is valid in an algebra A iff ∀h ∈ Hom(Fm,A),

h(ϕ1) ∧ . . . ∧ h(ϕn) ≤ h(ϕ), i.e., A � ϕ ∧ ... ∧ ϕn ∧ ϕ ≈ ϕ ∧ ... ∧ ϕn. We

write V � φ ≈ ϕ, when A � φ ≈ ϕ for all A ∈ V.

Let V be a semilattice class relative to ∧ such that it is a variety. Now

we shall define a deductive system S (V) as:

ϕ1, ..., ϕn �S(V) ϕ iff V � ϕ ∧ ... ∧ ϕn ∧ ϕ ≈ ϕ ∧ ... ∧ ϕn,

∅ �S(V) ϕ iff V � ϕ ≈ 1.

(2.1)

In [12], the author proves that if V is a variety, then the reduced generalized

matrices of S (V) are exactly the members of V, and that the filters of the

logic S (V) in each algebra in V are the semilattice filters of the algebra

(plus the empty set if the logic S (V) do not have theorems). The deductive

system S (V) is called the semilattice based deductive system relative to ∧
and V.

The other deductive system is the assertional logic S (V, 1), also called

the logic that preserves truth with respect to the class V (where truth is

represented by the constant 1) (see [1] or [11]). This logic S (V, 1) is defined

by:

ϕ1, ..., ϕn �S(V,1) ϕ iff V � ϕ1 ≈ 1 & · · · & ϕn ≈ 1 ⇒ ϕ ≈ 1

∅ �S(V,1) ϕ iff V � ϕ ≈ 1.

Since {1A} is a semilattice filter for every A in V, S (V, 1) is an extension

of S (V). By the results given in [12] we have S (V) =
〈
Fm,�S(V)

〉
and

S (V, 1) =
〈
Fm,�S(V,1)

〉
are (finitary) deductive systems.

We note that the deductive system S (V) is selfextensional. Moreover,

ϕ ��S(V) φ iff V � ϕ ≈ φ (see Lemma 2 of [11]).
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A negated lattice, or ¬-lattice or bounded distributive lattice with a neg-

ative modal operator [5], is an algebra A = 〈A,¬〉, where A is a bounded

distributive lattice, and ¬ is a unary operation defined on A such that

N1 ¬(a ∨ b) = ¬a ∧ ¬b,
N2 ¬0 = 1.

A ¬-lattice A is a bounded weak-algebra if it satisfies the equations:

W1 a ∧ ¬(a ∧ b) ≤ ¬b,
W2 a ≤ ¬¬a.

A quasi-Stone algebra (QS-algebra) [15] is a ¬-lattice A satisfying the

following equations

Q1 a ∧ ¬¬a = a,

Q2 ¬a ∨ ¬¬a = 1.

A weak-quasi-Stone algebra (WQS-algebra) [7] is a ¬-latticeA satisfying

the following conditions:

WQ1 ¬a ∧ ¬¬a = 0,

WQ2 ¬a ∨ ¬¬a = 1.

A pseudocomplemented distributive lattice (or p-algebra) [3] is a pair

〈A,¬〉 where A is a bounded distributive lattice and ¬ is a unary operation

on A satisfying the following identities:

SP1 a ∧ ¬ (a ∧ b) = a ∧ ¬b,
SP2 a ∧ ¬0 = a,

SP3 ¬¬0 = 0.

The variety of quasi-Stone algebras was introduced in [15]. The variety

of weak-quasi-Stone algebra was defined and studied in [7] as a natural gen-

eralization of the quasi-Stone algebras. The variety of weak-algebras with-

out zero was introduced in [2]. The varieties of ¬-lattices, bounded weak-

algebras, quasi-Stone algebras, weak-quasi-Stone algebras, and p-algebras

are denoted by N, WA, QS, WQS, and PA, respectively. All these varieties

are semilattice classes relative to ∧. Thus we can consider the deductive

systems S(N), S(WA), S(QS), S(WQS), and S(PA).
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.3 The basic deductive system S¬

A distributive lattice logic with a negation is a binary consequence system

� ⊆ Fm × Fm in the language {∨,∧,¬,⊥,�} containing the following

postulates and rules:

ϕ � ϕ ϕ � � ⊥ � ϕ � � ¬⊥

ϕ ∧ ψ � ϕ ϕ ∧ ψ � ψ ϕ � ϕ ∨ ψ ψ � ϕ ∨ ψ

ϕ ∧ (ψ ∨ α) � (ϕ ∧ ψ) ∨ (ϕ ∧ α)
ϕ � ψ ϕ � α

ϕ � ψ ∧ α

ϕ � α ψ � α

ϕ ∨ ψ � α

ϕ � ψ

¬ψ � ¬ϕ ¬ϕ ∧ ¬ψ � ¬ (ϕ ∨ ψ)

We shall say that a sequent {ϕ1, ..., ϕn} � ϕ is derivable iff the pair

ϕ1 ∧ ... ∧ ϕn � ϕ is derivable by means of the previous sequents and rules.

Define a deductive system S¬ = 〈Fm,�S¬〉 as follows:

Γ �S¬ ϕ iff ∃ {ϕ1, ..., ϕn} ⊆ Γ such that {ϕ1, ..., ϕn} � ϕ is derivable.

We note that {ϕ1, ..., ϕn} �S¬ ϕ iff ϕ1∧ ...∧ϕn �Ki ϕ is a consequence pair

in the logical system Ki defined in [10]. It is easy to see that the system

Ki is essentially the deductive system S¬. We note that S¬ is also the

{∨,∧,¬,⊥,�}-fragment of Dosěn’s system N from [8].

It is clear that the deductive system S¬ is selfextensional, because re-

lation of interderivability ��S¬ given by ϕ ��S¬ φ iff ϕ �S¬ φ and φ �S¬ ϕ

is a congruence in the formula algebra Fm. Let AS¬ = Fm/ ��S¬ be

the Lindenbaum-Tarski algebra of S¬. It is immediate to see that AS¬ is a

¬-lattice. Let π : Fm → AS¬ be the canonical projection homomorphism.

It is clear that ϕ �S¬ φ iff π(ϕ) ∧ π(φ) = π(ϕ) iff AS¬ � ϕ ∧ φ ≈ ϕ. Thus,

ϕ ��S¬ φ iff π(ϕ) = π(φ) iff AS¬ � ϕ ≈ φ.

Let S (N) be the semilattice based deductive system relative to ∧ and

N. Now we can give the following algebraic completeness of S¬.

Theorem 3.1 (Algebraic completeness). Let N be the variety of all ¬-
lattices. Then Γ �S¬ ϕ iff Γ �S(N) ϕ, for any set of formulas Γ and any

formula ϕ, i.e., S¬ = S (N).
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Proof. Let Γ∪ {ϕ} be a set of formulas. Assume that Γ �S¬ ϕ. Then

there exists a finite subset {ϕ1, ..., ϕn} of Γ such that ϕ1, ..., ϕn �S¬ ϕ, i.e.,

ϕ1 ∧ ... ∧ ϕn �S¬ ϕ. So, AS¬ � ϕ1 ∧ ... ∧ ϕn ∧ ϕ ≈ ϕ1 ∧ ... ∧ ϕn. We

prove that ϕ1, ..., ϕn �S(N) ϕ. Let A ∈ N. Let h ∈ Hom(Fm,A). We

consider the homomorphism h̄ : AS¬ → A defined by h̄(π(ϕ)) = h(ϕ),

for ϕ ∈ Fm, where π : Fm → AS¬ is the canonical projection map. So,

AS¬ � ϕ1∧ ...∧ϕn∧ϕ ≈ ϕ1∧ ...∧ϕn iff π(ϕ1∧ ...∧ϕn∧ϕ) = π(ϕ1∧ ...∧ϕn).

So, h̄(π(ϕ1 ∧ ... ∧ ϕn ∧ ϕ)) = h̄(π(ϕ1 ∧ ... ∧ ϕn)), i.e., h(ϕ1 ∧ ... ∧ ϕn ∧ ϕ) =

h(ϕ1∧ ...∧ϕn). Thus, A � ϕ1∧ ...∧ϕn∧ϕ ≈ ϕ1∧ ...∧ϕn, and consequently

N � ϕ ∧ ... ∧ ϕn ∧ ϕ ≈ ϕ ∧ ... ∧ ϕn. Therefore, ϕ1, ..., ϕn �S(N) ϕ, i.e.,

Γ �S(N) ϕ.

Assume that Γ �S(N) ϕ. Then there exists a finite subset {ϕ1, ..., ϕn}
of Γ such that ϕ1, ..., ϕn �S(N) ϕ, i.e., N � ϕ ∧ ... ∧ ϕn ∧ ϕ ≈ ϕ ∧ ... ∧ ϕn.

As AS¬ is a ¬-lattice, we have AS¬ � ϕ∧ ...∧ ϕn ∧ ϕ ≈ ϕ∧ ...∧ ϕn. Then,

ϕ1 ∧ ... ∧ ϕn �S¬ ϕ, and thus we get that ϕ1, ..., ϕn �S¬ ϕ, i.e., Γ �S¬ ϕ. �

We shall now introduce several sequents that we will used to define

extensions of the basic deductive system S (N). Some of these extensions

have been considered by J. Michael Dunn and Chunlai Zhou in [10].

Given a deductive system S and a set of sequents {Γi � ϕi : i ∈ I}, we
denote by S ∪ {Γi � ϕi : i ∈ I} the least deductive system S ′ that extends
S and for each i ∈ I and for any substitution instance of Γi � ϕi belong to

S ′. Let us consider the following sequents:

(1) � � ¬(ϕ ∧ ¬ϕ) (5) ¬ϕ ∧ ϕ � ⊥

(2) ϕ � ¬¬ϕ (6) ϕ ∧ ¬(ϕ ∧ ψ) � ¬ψ

(2) � ¬ϕ ∨ ¬¬ϕ (7) ¬ϕ ∧ ¬¬ϕ � ⊥

(4) ϕ ∧ ¬ϕ � ¬ψ (8) ¬� � ⊥.

From Theorem 3.1, and taking into account that for each sequent ϕ � ψ

we can consider the identity ϕ ∧ ψ ≈ ψ, we can affirm that for extension

of the deductive system S (N) by means of some subset of the set of se-

quents {(1), (2), (3), (4), (5), (6), (7) , (8)} is complete with respect to the
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corresponding variety of ¬-lattices. In particular we have that:

S(WA) = S (N) ∪ {ϕ ∧ ¬(ϕ ∧ ψ) � ¬ψ,ϕ � ¬¬ϕ} ,
S(QS) = S (N) ∪ {ϕ � ¬¬ϕ,� � ¬ϕ ∨ ¬¬ϕ} ,
S(WQS) = S (N) ∪ {¬ϕ ∧ ¬¬ϕ � ⊥,� � ¬ϕ ∨ ¬¬ϕ} ,
S(PA) = S(WA) ∪ {¬ϕ ∧ ϕ � ⊥} .

The proofs of the following results are easy and left to the reader.

Lemma 3.2. (1) The deductive systems S (N)∪{ϕ ∧ ¬(ϕ ∧ ψ) � ¬ψ} is

equivalent to the deductive system S (N) with the rule (ANT) (antilogism)
ϕ, ψ � α

ϕ,¬α � ¬ψ .

(2) The deductive system S(PA) is equivalent to the deductive system

S (N) with the rules (ANT) and (NI)
ϕ � α

ϕ,¬α � ⊥ .

Proof. We only prove (1). By Theorem 3.1 we can give an algebraic

proof. Let A be a ¬-lattice. Let a, b, c ∈ A. Suppose that a ∧ b ≤ c. Then

¬c ≤ ¬(a ∧ b). So, a ∧ ¬c ≤ a ∧ ¬(a ∧ b) ≤ ¬b.
We prove the converse. As a ∧ b ≤ a ∧ b, we get a ∧ ¬(a ∧ b) ≤ ¬b. �

.4 Relational semantics and Completeness

Let 〈X,≤〉 be a poset. A subset Y of X is increasing if for every x ∈ Y

and for all y ∈ X, if x ≤ y it holds that y ∈ Y . The power set of a set

X will be denoted by P(X). The set of all increasing subsets of X will be

denoted by Pi(X). Given a binary relation R on a set X, let R(x) = {y ∈
X | (x, y) ∈ R}, for x ∈ X. The composition between two relations R, and

S of X is the relation R ◦ S = {(x, y) | ∃z ∈ X((x, z) ∈ R and (z, y) ∈ S}.
Define the operator ¬R as

¬R(U) = {x ∈ X | R (x) ∩ U = ∅} ,

for each U ⊆ X. We consider the auxiliary relation R¬ defined by R¬ =

R ◦ ≤−1. The proofs of the following results can be found in [5], or [6].

Proposition 4.1. Let 〈X,≤〉 be a poset and let R be a binary relation

on X. Then
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1. ¬R(U) = ¬R◦≤−1 (U), for all U ∈ Pi (X).

2. ≤ ◦R ⊆ R ◦ ≤−1 iff ¬R (U) ∈ Pi (X), for all U ∈ Pi (X).

Definition 4.2. A compatibility frame, or ¬-frame, is a relational

structure F = 〈X,≤, R〉 where 〈X,≤〉 is a poset, and R is a binary re-

lation on X such that ≤ ◦R ⊆ R ◦ ≤−1.

By Proposition 4.1 we have that the structure F = 〈X,≤, R〉 is a ¬-
frame iff ¬R (U) ∈ Pi (X), i.e., A(F) = 〈Pi (X) ,¬R〉 is a ¬-lattice.

A valuation on a frame F = 〈X,≤, R〉 is a function V : V ar → Pi (X).

A valuation V can be extended recursively to the set of all formulas Fm

by means of the following clauses:

1. V (�) = X,

2. V (⊥) = ∅,

3. V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ),

4. V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),

5. V (¬ϕ) = {x ∈ X | R (x) ∩ V (ϕ) = ∅}.

A model is a pair M = 〈F , V 〉, where F is a ¬-frame and V is a

valuation on it. By induction and using the condition ≤ ◦R ⊆ R◦ ≤−1 we

can to prove that V (ϕ) ∈ Pi (X), for all ϕ ∈ Fm. From Proposition 4.1

we deduce that V (¬ϕ) = ¬R¬(V (ϕ)), for each formula ϕ. A formula ϕ is

valid in a frame F , in symbols F � ϕ, if V (ϕ) = X, for all valuation V

defined on it. We note that a function V : Fm → Pi (X) is a valuation on

F iff it is a homomorphism between Fm and A(F). Consequently

F � ϕ iff A(F) � ϕ ≈ 1,

for every formula ϕ.

Lemma 4.3. Let F be a frame. Then for each x ∈ X, the set X −
R¬(x) = R¬(x)c is increasing.

Proof. Let x, y, z ∈ X, such that z ≤ y and z ∈ R¬(x)c. If y ∈ R¬(x),
there exists w ∈ X such that (x,w) ∈ R and y ≤ w. As z ≤ y ≤ w we have
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z ∈ R¬(x), which is a contradiction. Thus, R¬(x)c is an increasing subset

of X. �
For sequents we can give two notions of validity. These notions are

similar to the notions of global and local validity in Kripke frames for

sequents in modal logic (see for instance [4]).

Definition 4.4. Let Γ � ϕ be a sequent and let F be a ¬-frame. Then:

1. Γ � ϕ is locally valid in F if and only if
⋂

{V (ψ) : ψ ∈ Γ} ⊆ V (ϕ)

for each valuation V based on F , in symbols F |=l Γ � ϕ.

2. Γ � ϕ is globally valid in F if and only if
⋂

{V (ψ) : ψ ∈ Γ} 
= X or

V (ϕ) = X for each valuation V based on F , in symbols F |=g Γ � ϕ.

We note that

F |=l {ϕ1, . . . , ϕn} � ϕ iff A(F) � ϕ1 ∧ . . . ∧ ϕn ∧ ϕ ≈ ϕ1 ∧ . . . ∧ ϕn,

and

F |=g {ϕ1, . . . , ϕn} � ϕ iff A(F) � ϕ1 ≈ 1 & . . .& A(F) � ϕn ≈ 1,

implies that A(F) � ϕ ≈ 1.

Let F be a class of frames. We denote by �l(F) the consequence relation

defined by Γ �l(F) ϕ iff the sequent Γ � ϕ is locally valid in every ¬-frame F
in F. Similarly, we define the consequence �g(F) as Γ �g(F) ϕ iff the sequent

Γ � ϕ is globally valid in every ¬-frame F in F. We note that if Γ � ϕ is

locally valid in F , then Γ � ϕ is globally valid in F .

Let be S any deductive system that is an extension of the deductive sys-

tem S (N). We will denote by Fr(S) the class of all frames where every se-

quent of S is locally valid, i.e., Fr(S) = {F | F |=l Γ � ϕ, for any Γ �S ϕ}.
A deductive system S is characterized by a class F of frames or it is com-

plete relative to a class F of frames, when Γ � ϕ ∈ S iff F |=l Γ � ϕ, for

any F ∈ F. Moreover, it is frame complete when Γ � ϕ ∈ S iff F |=l Γ � ϕ,

for any F ∈ Fr(S). It is clear that a deductive system S is frame complete

if and only if it is characterized by some class of frames.

Let A be a ¬-lattice. The set of all prime filters of A is denoted by

X (A). The ¬-frame of A is the structure F (A) = 〈X(A),⊆, R〉, where
the relation R ⊆ X(A)×X(A) is given by:

(x, y) ∈ R iff ¬−1(x) ∩ y = ∅,
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where ¬−1(x) = {a ∈ A : ¬a ∈ x} (see [5] or [6] for more details).

Lemma 4.5. [5] Let A ∈ N. Let x ∈ X(A). Then for each a ∈ A,

¬a /∈ x iff there is y ∈ X(A) such that (x, y) ∈ R and a ∈ y.

Lemma 4.6. [5] Let A ∈ N. Then F (A) is a ¬-frame and the mapping

σ : A → Pi (X(A)) is a one to one homomorphism form A into A(F (A)) =〈Pi(X(A)),¬R¬
〉
, where σ (a) = {P ∈ X(A) | a ∈ P} .

From Lemma 4.6 we have that A(F (A)) = 〈Pi(X(A)),¬R〉 is a ¬-
lattice, called the canonical extension of A.

Proposition 4.7 (Soundness). Let V be a variety of ¬-lattices. Let

Γ ∪ {ϕ} ⊆ Fm.

1. If Γ �S(V) ϕ then Γ �l(Fr(S(V))) ϕ.

2. If Γ �S(V,1) ϕ then Γ �g(Fr(S(V))) ϕ.

Proof. (1) Suppose that Γ �S(V) ϕ. Let F be a ¬-frame of S(V),
i.e. F ∈ Fr(S(V)). Let V be a valuation based on F . Let x ∈ V (ψ), for

all ψ ∈ Γ. As before we have V is a homomorphism from Fm into the

¬-lattice A(F). Since F is a ¬-frame of S(V), we have A(F) ∈ V. Thus

by definition of S (V), there exist ψ1, . . . , ψn ∈ Γ such that V (ψ1 ∧ . . . ∧
ψn) = V (ψ1) ∩ . . . ∩ V (ψn) ⊆ V (ϕ). Then x ∈ V (ϕ). We conclude that

Γ �l(Fr(S(V))) ϕ.
(2) Suppose that Γ �S(V,1) ϕ. Let F be a ¬-frame of S(V), i.e. F ∈

Fr(S(V)). Let V a valuation based on F such that V (ψ) = X for each

ψ ∈ Γ. Consider the ¬-lattice A(F). Since V is a homomorphism from

Fm into A(F), we get by definition of �S(WN,1) that V (ϕ) = X. Thus we

conclude that F |=g(Fr(S(V))) Γ � ϕ. �

Definition 4.8. Let V be a variety of ¬-lattices. We shall say that V

is canonical if A(F (A)) ∈ V whenever A ∈ V.

The notion of canonical varieties is the algebraic counterpart of canon-

ical modal logics (see [4]). Now we are ready to prove one of the main

results of this paper.

Theorem 4.9. Let V be a variety of ¬-lattices. If V is canonical, then

Γ �g(Fr(S(V))) ϕ implies that Γ �S(V,1) ϕ.
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Proof. Suppose that Γ �g(F) ϕ. LetA be an algebra, and h : Fm → A

a homomorphism such that h (ψ) = 1 for each ψ ∈ Γ. As σ : A → A(F (A))

is an one to one homomorphism, the composition σ ◦h is a homomorphism

from Fm into A(F (A)), i.e., σ ◦ h is a valuation based on the ¬-frame

F (A) = 〈X(A),⊆, R〉. By hypothesis (σ ◦ h) (ϕ) = σ(h (ϕ)) = X (A) =

σ(1). As σ is injective, h (ϕ) = 1. Thus, Γ �S(N,1) ϕ. �

Let A be a ¬-lattice . The filter generated by a set H ⊂ A is denoted

by F (H).

Theorem 4.10. Let V be a variety of ¬-lattices. If V is canonical, then

Γ �l(Fr(S(V))) ϕ implies that Γ �S(V) ϕ.

Proof. Assume that Γ �l(Fr(S(V))) ϕ. But suppose that Γ �S(V) ϕ.

Then there exists A ∈ V, and there exists a homomorphism h : Fm → A

such that h (ϕ) /∈ F ({h (ψ) | ψ ∈ Γ}). Then there exist a prime filter x of

A such that h (ϕ) /∈ x and h (ψ) ∈ x, for all ψ ∈ Γ. Recall the composition

σ ◦ h is a homomorphism from Fm into A(F (A)). As V is canonical, we

get A(F (A)) ∈ V. So σ ◦ h is a valuation based in a ¬-frame F (A) =

〈X(A),⊆, R〉 of Fr(S(V)). Since, x ∈ (σ ◦ h) (ψ) = σ(h(ψ)) for each

ψ ∈ Γ, we get x ∈ (σ ◦ h) (ϕ) = σ(h(ϕ)), i.e.,
⋂

{(σ ◦ h) (ψ) : ψ ∈ Γ} �
(σ ◦ h) (ϕ), which is a contradiction. Thus, h (ϕ) ∈ F ({h (ψ) | ψ ∈ Γ}). �

As consequence of Theorem 3.1 and Theorem 4.10 we have that

�S¬= �S(N)= �l(F),

where F is the class of all ¬-frames.

.5 Correspondence results

In this section we will characterize the class of ¬-frames for some extensions

of S¬ considered in section 3. Let F = 〈X,≤, R〉 be a ¬-frame. Recall that

R¬ is the composition R ◦ ≤−1.

Theorem 5.1. Let F be a ¬-frame. Then

1. The rule (ANT)
ϕ, ψ � α

ϕ,¬α � ¬ψ is valid in F iff ∀xy(xRy ⇒ [x)∩ [y)∩
R¬(x) 
= ∅).
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2. The rule (NE)
ϕ � ¬ψ
ϕ, ψ � ⊥ is valid in F iff ∀x ([x) ⊆ R¬(x)).

3. The rule (NI)
ϕ � α

ϕ,¬α � ⊥ is valid in F iff ∀xy(xRy ⇒ [x)∩ [y) 
= ∅).

Proof. (1) ⇒) Let x, y ∈ X such that (x, y) ∈ R. Suppose that

[x) ∩ [y) ∩R¬(x) = ∅. Let V be the valuation defined by

V (p) = [x) , V (q) = [y) , and V (r) = R¬(x)c.

Then V (p) ∩ V (q) = V (p ∧ q) ⊆ V (r). So by the assumption, V (p) ∩
V (¬r) ⊆ V (¬q). Since x ∈ V (p), and R(x) ∩ R¬(x)c = ∅, we get that

x ∈ V (p) ∩ V (¬r) ⊆ V (¬q). Then R(x) ∩ [y) = ∅, which is a contradiction

because y ∈ R(x). Thus [x) ∩ [y) ∩ R̄(x) 
= ∅.
⇐) Let ϕ, ψ ∈ Fm be such that ϕ, ψ � α. Then V (ϕ) ∩ V (ψ) ⊆ V (α).

We prove that V (ϕ) ∩ V (¬α) ⊆ V (¬ψ). Let x ∈ V (ϕ) ∩ V (¬α). Suppose

that x /∈ V (¬ψ) = ¬R¬(V (ψ)). Then there exists y ∈ R¬(x) and y ∈ V (ψ).

As [x) ∩ [y) ∩ R¬(x) 
= ∅, there exists z ∈ X such that x ≤ z, y ≤ z, and

(x, z) ∈ R¬. As V (ϕ) and V (ψ) are increasing sets, z ∈ V (ϕ) ∩ V (ψ). So,

z ∈ V (α). Then z ∈ V (α)∩R¬(x) which is impossible, because x ∈ V (¬α).
Thus, V (ϕ) ∩ V (¬α) ⊆ V (¬ψ).

(2) ⇒) Consider the valuation V defined in F by

V (p) = [x) and V (q) = Rc
¬(x).

From Lemma 4.3 we get that V is well-defined. We prove that V (p) ⊆
V (¬q). Let z ∈ [x). As x ≤ z, R(z) ⊆ R¬(x). So, R(z) ∩ Rc¬(x) = ∅, i.e.
z ∈ V (¬q). Thus, V (p) ∩ V (q) = [x) ∩Rc¬(x) = ∅, i.e. [x) ⊆ R¬(x).

⇐) Suppose that V (ϕ) ⊆ V (¬ψ). If there exists x ∈ V (ϕ)∩V (ψ), then

x ∈ V (¬ψ), i.e., x ∈ N and R¬(x)∩V (ψ) = ∅. By hypothesis [x) ⊆ R¬(x).
Then, x ∈ R¬(x) ∩ V (ψ) = ∅, which is a contradiction.

The proof of (3) is similar to the proof of (1). �

Corollary 5.2. Let F be a ¬-frame. Then ϕ ∧ ¬(ϕ ∧ ψ) � ¬ψ is valid

in F iff ∀xy(xRy ⇒ [x) ∩ [y) ∩R¬(x) 
= ∅).

Proof. It follow by Lemma 3.2 and item (1) of Theorem 5.1. �
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Corollary 5.3. Let F be a frame. If the rules (NI) and (NE) are valid

in F , then

∀x∀y ([x) ∩ [y) 
= ∅ ↔ xR¬y),

i.e. R¬ is definable by ≤.

Proof. ⇒) Let x, y ∈ X such that [x) ∩ [y) 
= ∅. Then there exists

z ∈ X such that x ≤ z and y ≤ z. By point 2 of Theorem 5.1, z ∈ R¬(x).
So, there exists w ∈ X such that (x,w) ∈ R and z ≤ w. As y ≤ z ≤ w, we

get (x, y) ∈ R¬.
⇐) Let x, y ∈ X such that (x, y) ∈ R¬. By point (3) of Theorem 5.1

we get [x) ∩ [y) 
= ∅. �

By the previous corollary we have that the class of ¬-frames of the

deductive system S(PA) is the class of all posets, because the binary relation

R¬ is defined by the order ≤.

Theorem 5.4. Let F be a ¬-frame.

1. � � ¬(ϕ ∧ ¬ϕ) is valid in F iff ∀x∀y ∈ X(xRy ⇒ yR¬y).

2. ϕ � ¬¬ϕ is valid in F iff R¬ is symmetrical.

3. � ¬ϕ ∨ ¬¬ϕ is valid in F iff R¬◦ R−1¬ ⊆ R¬ (R¬ is euclidean)

4. ϕ ∧ ¬ϕ � ⊥ is valid in F iff R¬ is reflexive.

5. ϕ ∧ ¬ϕ � ¬ψ is valid in F iff ∀x∀y ∈ X(xRy ⇒ xR¬x).

6. ¬� � ⊥ is valid in F iff ∀x∃y (xR¬y) (R¬ is serial).

Proof. (1) ⇒) Let x, y ∈ X be such that (x, y) ∈ R. Suppose that

(y, y) /∈ R¬, i.e. y /∈ R¬(y). Let us consider the valuation V defined by

V (p) = R¬(y)c.

So, y ∈ R(x) ∩ V (p). Since by the assumption x ∈ V (¬(p ∧ ¬p)) = X,

R(x) ∩ V (p) ∩ V (¬p) = ∅.

Since y ∈ R(x) ∩ V (p), we get y /∈ V (¬p). It follows that

R(y) ∩ V (p) = R(x) ∩R¬(y)c 
= ∅,
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which is a contradiction. Thus, y ∈ R¬(y).
⇐) Suppose that F � � � ¬(ϕ ∧ ¬ϕ), for some formula ϕ. Then

there exists a valuation V on F such that V (¬(ϕ ∧ ¬ϕ)) 
= X. Then

there exists x ∈ X such that R(x) ∩ V (ϕ) ∩ V (¬ϕ) 
= ∅. So there exists

y ∈ R(x), y ∈ V (ϕ), and R(y)∩V (ϕ) = R¬(y)∩V (ϕ) = ∅. But y ∈ R¬(y),
and as y ∈ V (ϕ), we get y ∈ R¬(y) ∩ V (ϕ), which is impossible. Thus,

V (¬(ϕ ∧ ¬ϕ)) = X.

(2) ⇒) Let x, y ∈ X be such that (x, y) ∈ R¬. Suppose that x /∈
R¬(y), i.e. x ∈ R¬(y)c. From Lemma 4.3 we can consider the valuation

V (p) = R(y)c. As x ∈ R¬(y)c = V (p) ⊆ V (¬¬p), R¬(x) ∩ V (¬p) = ∅.
Then y /∈ V (¬p), i.e. R¬(y) ∩ V (p) = R¬(y) ∩ R¬(y)c 
= ∅, which is a

contradiction. Thus, x ∈ R(y).

⇐) Let ϕ be a formula. Let x ∈ V (ϕ). We need to prove that R¬(x) ∩
V (¬ϕ) = ∅. If there exists y ∈ R¬(x) ∩ V (¬ϕ), we get R¬(y) ∩ V (ϕ) = ∅,
but as R¬ is symmetrical, x ∈ R¬(y), and since x ∈ V (ϕ), we deduce that

R¬(y) ∩ V (ϕ) 
= ∅, which is impossible.

(3) ⇒) Let x, y, z ∈ X be such that (x, y) ∈ R¬ and (x, z) ∈ R¬.
Suppose that z /∈ R¬(y). Consider the valuation V defined by V (p) =

R¬(y)c. Then z ∈ R¬(x) ∩ V (p). It follows that x /∈ V (¬p). Since by the

assumption V (¬p ∨ ¬¬p) = X, we have that x ∈ V (¬¬p), i.e. R¬(x) ∩
V (¬p) = ∅. But as R¬(y) ∩ R¬(y)c = ∅, y ∈ V (¬p), and consequently

y ∈ V (¬p) ∩R¬(x), which is impossible. Therefore z ∈ R¬(y).
⇐) It is easy.

(4) ⇒) Suppose that x /∈ R¬(x). Consider the valuation V defined by

V (p) = R¬(x)c. As form the assumption follows that V (p ∧ ¬p) = V (p) ∩
V (¬p) = ∅, we get that x /∈ V (¬p), i.e., R¬(x)∩V (p) = R¬(x)∩R¬(x)c 
= ∅,
which is an absurd. Thus R¬ is serial.

⇐) It is easy.

(5) ⇒) Let x, y ∈ X be such that (x, y) ∈ R. Suppose that (x, x) /∈ R¬.
Consider the valuation V defined by V (p) = R¬(x)c. Then x ∈ V (p), and

as R¬(x)c ∩ V (p) = ∅, x ∈ V (¬p). Then x ∈ V (p) ∩ V (¬p) = V (p ∧ ¬p) ⊆
V (¬�). So, R(x)∩ V (�) = R(x)∩X = ∅. But this implies that R(x) = ∅,
which is impossible because y ∈ R(x). Thus (x, x) ∈ R¬.

⇐) It is easy.

(6) It is easy. �

Theorem 5.5. If the sequents � ¬ϕ ∨ ¬¬ϕ and ¬� � ⊥ are valid in a
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¬-frame F , then ¬ϕ ∧ ¬¬ϕ � ⊥ is valid in F iff R¬ is transitive.

Proof. ⇒) Assume that ¬ϕ ∧ ¬¬ϕ � ⊥ is valid in F . Let x, y, z ∈ X

such that (x, y) ∈ ∀x∀y ∈ X(if (x, y) ∈ R, then (y, y) ∈ R¬). and (y, z) ∈
R¬. Suppose that (x, z) /∈ R¬. Consider the valuation V (p) = R¬(x)c.
Then y /∈ V (¬p). As � ¬ϕ ∨ ¬¬ϕ is valid in F , V (¬ϕ) ∪ V (¬¬ϕ) = X.

So, y ∈ V (¬¬ϕ). As R¬(x) ∩ R¬(x)c = ∅, x ∈ V (¬p), and since V (¬ϕ) ∩
V (¬¬ϕ) = ∅, we get x /∈ V (¬¬ϕ). So, x ∈ V (¬¬¬ϕ), because V (¬¬ϕ) ∪
V (¬¬¬ϕ) = X. As (x, y) ∈ R¬, y /∈ V (¬¬ϕ), which is a contradiction.

Thus, R̄ is transitive.

⇐) Suppose that there exists a formula ϕ such that the sequent ¬ϕ ∧
¬¬ϕ � ⊥ is not valid in F . Then there exists a valuation V on F such

that V (¬ϕ ∧ ¬¬ϕ) 
= ∅. Then there exists x ∈ V (¬ϕ) ∩ V (¬¬ϕ). Since

¬� � ⊥ is valid in frame F , R¬ is serial. Thus, there exists y ∈ X such that

(x, y) ∈ R¬. Then y /∈ V (ϕ) and y /∈ V (¬ϕ). So there exists z ∈ X such

that (y, z) ∈ R¬ and z ∈ V (ϕ). Since R¬ is transitive, (x, z) ∈ R¬, and as

x ∈ V (¬ϕ),we get z /∈ V (ϕ), which is an absurd. Thus, ¬ϕ ∧ ¬¬ϕ � ⊥ is

valid in F . �

The above results allow us to characterize the class of frames of some

extensions of the deductive system S (N). Recall that Fr(S(V)) denotes the
class of all ¬-frames that satisfies all the sequent of S(V).

The class Fr(S(WA))) is the class of ¬-frames F = 〈X,≤, R〉 such that

satisfy the following first-order conditions:

∀x∀y(xRy ⇒ [x) ∩ [y) ∩R¬(x) 
= ∅).
∀x∀y(xR¬y ⇒ yR¬x).

The class Fr(S(QS) is the class of ¬-frames where R¬ is an equivalence;

the class of ¬-frames of S(WQS) is the class of¬-frames where R¬ is serial,

transitive and euclidean and, as noted earlier, the class of ¬-frames of S(PA)
is the class of all posets.

.6 Completeness of extensions of S (N)

To prove that some of the extensions of S¬ are complete with respect to

their frames we will use the representation theory developed in Section 4
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for ¬-lattices. First we note that in the ¬-frame F(A) = 〈X(A),⊆, R〉 of a
¬-lattice A the relation R satisfies the condition R = R◦ ⊆−1, i.e., R = R¬.

Theorem 6.1. Let A ∈ N and let F(A) = 〈X(A),⊆, R〉 be its ¬-frame.

1. ¬(a ∧ ¬a) = 1 is valid in A iff ∀x∀y(xRy ⇒ yRy).

2. a ∧ ¬(a ∧ b) ≤ ¬b is valid in A iff ∀x∀y(xRy ⇒ ∃z ∈ X(A) (x ⊆
z & y ⊆ z & xRz).

3. a ∧ ¬a ≤ ¬b is valid in A iff ∀x∀y(xRy ⇒ xRx).

4. a ≤ ¬¬a is valid in A iff R is symmetrical.

5. ¬a ∨ ¬¬a = 1 is valid in A iff R ◦R−1 ⊆ R.

6. ¬1 = 0 iff R is serial, i.e. R (x) 
= ∅ for any x ∈ X (A).

Proof. (1) Let x, y ∈ X(A) be such that (x, y) ∈ R. Suppose that

(y, y) /∈ R. Then there exists a ∈ A such that ¬a ∈ y and a ∈ y. As y is a

filter, ¬a ∧ a ∈ y. Then ¬(a ∧ ¬a) /∈ x, which is a contradiction, because

1 ∈ x.

Suppose that there exists a ∈ A such that ¬(a ∧ ¬a) 
= 1. Then there

exists a prime filter x of A such that ¬(a ∧ ¬a) /∈ x. By Lemma 4.5 there

exists y ∈ X(A) such that (x, y) ∈ R and a ∧ ¬a ∈ y. As (y, y) ∈ R, and

a ∈ y, we have that ¬a /∈ y, which is a contradiction. Thus, ¬(a ∧ ¬a) = 1

is valid in A.

(2) Let x, y ∈ X(A) such that (x, y) ∈ R. Let F be the filter generated

by the set x ∪ y. Since (x, y) ∈ R¬, ¬1 /∈ P . So, ¬−1(x) 
= A. We prove

that F ∩ ¬−1(x) = ∅. If there exist a ∈ x, b ∈ y and c ∈ ¬−1(x) such

that a ∧ b ≤ c, then ¬c ≤ ¬(a ∧ b). So ¬(a ∧ b) ∈ x, and as a ∈ x, and

a ∧ ¬(a ∧ b) ≤ ¬b, we get that ¬b ∈ x, but this implies that b /∈ y, which is

an absurd. Thus F ∩¬−1(x) = ∅. By the Prime filter theorem, there exists

z ∈ X(A) such that x ⊆ z, y ⊆ z and (x, z) ∈ R¬.
Suppose that there exist a, b ∈ A such that a ∧ ¬(a ∧ b) � ¬b. Then

there exists x ∈ X(A) such that a∧¬(a∧b) ∈ x and ¬b /∈ x. So, there exists

y ∈ X(A) such that (x, y) ∈ R and b ∈ y. Then there exists z ∈ X(A) such

that x ⊆ z, y ⊆ z, and xRz. So, a, b ∈ z, but as ¬(a∧ b) ∈ x, we have that

a ∧ b /∈ z, which is impossible. Thus, a ∧ ¬(a ∧ b) ≤ ¬b is valid in A.
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(3) It is easy and left to the reader, and the items (4) to (6) were proved

in [7]. �

Proposition 6.2. Let A ∈ N and let F(A) = 〈X(A),⊆, R〉 be its ¬-
frame. Then the following conditions are equivalent:

1. a ∧ ¬a = 0, is valid in A.

2. If a ≤ ¬b, then a ∧ b = 0, for all a, b ∈ A.

3. R is reflexive.

4. ∀x∀y(x ⊆ y, implies that (x, y) ∈ R).

Proof. (1) ⇒ (2) Let a, b ∈ A such that a∧¬b = a. Then, a∧¬b∧b =

a ∧ b = 0.

(2) ⇒ (3) Let x ∈ X(A). Let ¬a ∈ x. As ¬a ≤ ¬a, a ∧ ¬a = 0. Thus,

a /∈ x.

(3) ⇒ (4)Let x, y ∈ X(A). Suppose that x ⊆ y. Let ¬a ∈ x. Then

¬a ∈ y, and as R¬ is reflexive, a /∈ y. Thus, (x, y) ∈ R¬.
(4) ⇒ (1) If ¬a ∧ a 
= 0, there exists x ∈ X(A) such that ¬a ∧ a ∈ x.

Since x ⊆ x, (x, x) ∈ R¬, which is a contradiction. Thus, ¬a ∧ a = 0. �

Proposition 6.3. Let A ∈ N and let F(A) = 〈X(A),⊆, R〉 be its ¬-
frame. Then the following conditions are equivalent:

1. If a ∧ b = 0, then a ≤ ¬b, for all a, b ∈ A.

2. ∀x∀y(xRy ⇒ ∃z(x ⊆ z and y ⊆ z).

Proof. (1) ⇒ (2). Let x, y ∈ X(A) such that (x, y) ∈ R¬. Let F (x∪y)
be the filter generated by x ∪ y. If 0 ∈ F (x ∪ y), there exists a ∈ x, and

b ∈ y such that a∧ b = 0. Then a ≤ ¬b, and thus ¬b ∈ x, but as (x, y) ∈ R,

b /∈ y, which is a contradiction.

(2) ⇒ (1). Suppose that there exists a, b ∈ A such that a ∧ b = 0

but a � ¬b. Then a ∈ x and ¬b /∈ x, for some prime filter x. So, there

exists y ∈ X(A) such that (x, y) ∈ R and b ∈ y. By hypothesis there exists

z ∈ X(A) such that x ⊆ z and y ⊆ z. So, a∧b = 0 ∈ z, which is impossible.

�
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Corollary 6.4. [5] Let A ∈ N. Then A is a bounded distributive

pseudocomplemented iff ∀x∀y((x, y) ∈ R iff F (x ∪ y) 
= A).

We note that from the previous results, if A belong to some of the

varieties WA, QS, WQS, or PA, then A(F(A)) belongs to the same variety.

Thus, we have that the varieties WA, QS, WQS, and PA, are canonical. As

consequence we have the following result.

Theorem 6.5. The varieties N, WA, QS, WQS, and PA are canonical,

and the deductive systems S(N), S(WA), S(QS), S(WQS), and S(PA) are

frame complete.
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