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INCLUSIONS BETWEEN
PSEUDO-EUCLIDEAN
MODAL LOGICS

A bstract We describe properties of simply axiomatized
modal logics, which are called pseudo-Euclidean modal logics. For
fixed non-negative integers m and n, let E;"" be the logic which
is obtained from the smallest normal propositional modal logic
K by adding the pseudo-Euclidean axiom (F¢ — O0™("¢, where
k > 0. We will then give a complete description of the inclusion
relationship among these logics by showing inclusion relationships
for pairs of their logics with fixed m and n.

1. Introduction

One of the simplest kinds of modal axioms are modal reduction principles
(MRP) first introduced by Fitch (1973) [5], and further studied by different
authors. Probably, the two most striking results on MRP are the follow-
ing: the non-elementarity of K + 00¢ — O0¢ (Van Benthem - Goldblatt,
1975) [1] [6] and the finite model property of uniform modal logics (Fine,
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1975) [4]. Among many natural properties of MRP-logics, only elementar-
ity is completely investigated for the monomodal case by Van Benthem;
the polymodal case remains unclear. The situation with other properties
is much worse. Very little is known on the finite model property of non-
uniform logics and nothing is known on completeness of non-uniform logics
beyond Sahlqvist’s theorem. The works by Chagrov-Shehtman (1995) [2]
and Kracht (1999) [8] give examples of undecidable polymodal and tem-
poral MRP-logics; the proofs are based on encoding the word problem for
semigroups. This technique can also be used to show that inclusion between
finitely axiomatizable polymodal MRP-logics is undecidable. But the same
problem for the monomodal case remains a big challenge.

Inclusion relationships among various propositional modal logics have
been found since the early work on modal logics. For example, the inclu-
sion relationship among a class of logics above K45 is shown in [9]. Our
work throws light on the proof theoretical strength of logical systems among
pseudo-Euclidean modal logics.

Throughout this paper, m and n are fixed non-negative integers. Let
E;n’n be the logic which is obtained from the smallest normal modal logic
K by adding the axiom OF¢ — O™O"¢, where k > 0. Here, OF¢ and
Dk/¢ denote formulas ¢ - - - 0¢ with k diamonds and OJ- - - ¢ with &’ boxes,
respectively. We call any logic of the form Ezb’n , a pseudo-Euclidean modal
logic. Since each axiom OF¢ — O™O"¢ is a Sahlqvist formula, we can
show that the logic EZL’" is Kripke complete for each k. In fact, let us say
that a binary relation R on a set W is (k, m,n)-pseudo-Euclidean if for any
z,y,z € W, zRFy and zR™z imply zR™y. Then, it is easy to see that EZL’"
is Kripke complete with respect to the class of all Kripke frames of the form
(W, R) with a (k,m,n)-pseudo-Euclidean relation R on W. Note that R is
(1,1,1)-pseudo-Euclidean if and only if it is Euclidean. Let PE;"" be the
class of all Kripke frames of the form (W, R), where R is a (k, m, n)-pseudo-
Euclidean relation on W. Then it is easy to see that EZ”L ) EZ,”L if and
only if PE™™ C PET". In the rest of this paper, we identify the axiom
system EZL’" with the set of all formulas provable in Ezb’n . Our main goal
in this paper is to show when E;" D E;" holds. Note that E"" > E/7"
trivially holds when k = k’. So, we assume k # k' in the following. Our
result is summarized in the following theorem where we use “ | ” to mean
that z | y if and only if y is divisible by x.

Theorem 1. 1. Fork>k: E"" DE " iffm=0 and k' =n.
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2. Fork'>k: 2a Ifm=0andn=Fk then E]"" DE" .
2b.  Suppose that either m >0 orn # k.
If one of the following (1), (2), (3) holds
(1) k>m+n,
(2) m >k and m > n,
(3) m=n>k>0,
then
E"" DET" iff (k—m—n)| (K —m—n).
2c.  Otherwise, E;"" 2 E" .

A detailed proof of our theorem is given also in Ph.D. thesis [7] written
by the first author.

2. Proof of the theorem

The rest of the paper will be devoted to an outline of the proof of Theorem 1.
It is obvious that EJ"" = E;7" when k = k. Henceforth, we assume k #
k. Also, when m = 0 and k' = n, the axiom OF¢ — O™0O"¢ becomes
O™p — O"¢, which is obviously provable in K. That is, E2™ coincides with
K. Hence, we have the following.

Lemma 2. If m =0 and n = k' then E;"" D E7" =K.
When k > K/, the converse of Lemma 2 holds as shown below.
Lemma 3. If k> k' and either m >0 or n # k' then E;"" 2 E" .

Proof. Suppose first that & > m. We define a frame F = (W, R)
as follows: W = {w; | 0 < i < k' 4+ m}, and the binary relation R is
defined by 1) w;Rw;—q for each i = 1,--- ;m, and 2) w;Rw;11 for each
i=m,m-+1,--- K +m —1.

Then, we can show that both mek/wk/+m and w,, R™wy hold, while
wo R™ w4 doesn’t, since either m > 0 or k' # n. Thus, if w; = ¢ only for
i = k' + m then wy, & E" . Therefore F ¢ PE". On the other hand,
for each & € W, there is no y € W such that R*y since k > k' and k > m.
Therefore F € PE".

Suppose next that & < m. Let us take a frame G = (V,S) defined as
follows: V = {w; | 0 <i <k + 1}, and the binary relation S is defined by
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1) woSwy, 2) wiSwy, and 3) w;Sw;11 for each i = 1,--- | k’. Similar to the
above, we can show that G € PE"" but G & PE". O

Thus, we have proved the first part of Theorem 1. The following lemma
holds for arbitrary k and k’.

Lemma 4. IfE;"" D E7" then (k —m —n) | (K —m —n).

Proof. Suppose that k # m +n and E"" D E7" but (k —m —n)
(k' —m—n) doesn’t hold. Let a = k—m —n and define a frame F = (W, R)
as follows: W = {w; | 0 <i <a—1}, and wiRw; iff j =i+ 1 (mod a).

By the assumption, since &' — m # n + h(k —m —n) for any h € Z,
ie. ¥ —m # n (mod a), we do not have w,, R"wy,. On the other hand,
both woR¥ wy, and woR™w,, hold. Thus F ¢ PE,". Next, suppose that
w; R*w; and w; R™ws. Then, j —i = k (mod a) and s —i = m (mod a).
Hence j —s =k—m (mod a). But k—m =n (mod a) since a = k—m —n.
Thus j — s =n (mod a), i.e. wsR™w;. Hence F € PE;"". This contradicts
our assumption that E,"" D E;;"™ .

Suppose that & = m + n. Let b = max(k’,m) and define a frame G =
(V,S) as follows: V = {w; | 0 <i < b}, and w;Sw;;1 for each i =0, ,b—
1. Then G € PE"" holds since k = m + n. In this frame, both woSK wyy
and wpS™w,, hold. But we do not have w,, S"wy since k¥’ —m # n. Hence
G ¢ PE."". Thus we have E]"" 2 E" . O

In the following, we will find sufficient conditions by which the converse
of Lemma 4 holds. We can assume that & > k, and moreover that either
m >0 or n # k', by Lemma 2.

Lemma 5. If k' > k>m+n and (k—m—n) | (K —m —n) then E;""
DE;".
Proof. By the assumption, ¥ — m —n = h(k — m — n), that is ¥’ =

k+ (h —1)(k — m — n), for a certain number h € Z. Since k¥’ > k and
k —m —n > 0, we can assume that ¥’ = k+ (h —1)(k —m —n) with h > 1.

To show that E,"" 2 E)" = Ezlf(bhq)(kfmfn)v it is enough to show that
every (W, R) € PE;"" belongs also to szlf(bh—l)(k—m—n) for any h > 1. This

can be shown by induction on h.
The base step, that is the case of h = 2, can be shown in a way similar to
the induction step. So, we assume that this holds for A. To show that (W, R)

belongs to szniz(kimin), we assume that z RFt(=m=n)y and 2 R™z. Then,
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for some w € W, both zRF+(h=Dk=m=n)y, and wR*" "y hold, since k +
(h—1)(k—m—n) > 0and kK —m —n > 0. Since (W, R) belongs to

ket (h—1) (k—m—n) the induction hypothesis gives xRFT(=1)(k=m=n)y, and
zR™z imply zR"w. Since xR™z, zR™w and wR* ™ "y hold, we have 2 RFy.
But since (W, R) is in PE ;n’n, we also have zR™y. Thus, we have shown that

(W, R) belongs to PEZ:’LT,;(#mfn)- O

Lemma 6. Suppose that m > k and either 1) m > n or 2) m = n
and k > 0. Let (W,R) be in PE;"™™. Then for any 1 > 0 and any M >
max(m —n — 1,k — 1), if tR" "y, 2R'2 and 2/ RMx then zR™y.

Proof. We will proceed by induction on [. If [ = 0, this is trivial. When
[ = 1, we will divide the case into two. First, suppose that k& > m — n.
Then, for some w,u € W, each of 2/ RM~k=Dy wRk-1z xR™ k+1y and
uRFt"=my hold, since M > k—1>0, m—k+1>0and k+n—m >
0. Since wR* 'z and Rz hold, we have wR*z. Also, since wR* 'z and
xR™ * 1y hold, we have wR™u. Since (W, R) is in PE"", we have uR"z.
Then, for some v € W, we have o/ RM+m—k+1=(m=n)y, and v R™ ", since
M+m—k+1—(m—n)>0and m—mn > 0. Since vR™ "u and uRFt"~™y
hold, we have vRFy. Also, since vR™ ™u and uR"z hold, we have vR™z.
Therefore zR™y since (W, R) is in PE"".

m—n—k—1

~ " . 2
Tz’ “w u x| "
n n+1
(a) k>m—n (b)y k<m—n
Figure 1:

When k < m—n, for some w,u € W, we must have 2/ RM—k—(m-—n—k=1),,

wR*u and uR™ " F~lg since M > k+(m—n—k—1), k>0 and m —
n—k—12>0. Since wR*u, uR™ " %=1z and zR"*'y hold, we have wR™y.
Since (W, R) is in PE;"", we have yR™u. Then, for some v € W, we must
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have wR™ *v and vRFy, since m — k > 0 and k > 0. Since vR*y, yR"u,
uR™ "% 1z and xRz hold, we have vR™z. Since (W, R) is in PE", we
have zR™y. Therefore, we have shown the lemma for [ = 1.

Now, for the induction step, we assume that this holds for some [ > 1.
To show the lemma for [+ 1, we assume that 2 R"* 1y, 2Rz and 2/ RMx.
Then, for some 3/, 2 € W, we must have zR" 1y, o/ Ry, Rz' and 2'R!z.
Hence 2’ R™y' by the result when I = 1. Since 2/ R™y’ and v’ R'y hold, we have
2Ry, Since 2/RMz and zR2' hold, we have o/ RM+12/. Since 2/ R*ty,
ZRlz, o’ RM*1Y and M +1 > M > max(m —n — 1,k — 1), we have zR"y
by the induction hypothesis. O

Lemma 7. Suppose k' > k and m > k. Moreover suppose that either
1)m>nor2)m=mnandk >0. Then (k —m —n) | (K —m —n) implies

Proof. By the assumption, ¥ — m —n = h(m +n — k), that is k' =
k+ (h+ 1)(m +n — k), for a certain number h € Z. Since ¥ > k and
m+n—k >0, we can assume that ¥’ = k+ (h+1)(m+n — k) with h > 0.

To show that E;"" D E}}" = EZ:’_’(Lh_H)(m_m_k), it is enough to show that
every (W, R) € PE;"" belongs also to P‘(“‘Z:—T(Lh—kl)(m-kn—k) for any h > 0. This

can be shown by induction on h.

If h = 0 then &’ = m+n. we assume that (W, R) € PE"", and also that
xR™ "y and xR™z for x,y,z € W. Then, for some w € W, we must have
zR*w and wR™T ky, since m +n — k > 0. Then zR"w and wR™ " ky
by the assumption, so zR™ %+2%y Then, for some u,v € W, we must
have zR™ *u, uR*z, zR™ *v and vR?"y, since m — k > 0. Since uR™v
and uR*z, we obtain vR"z. But by using Lemma 6, we also have zR"y by
taking [ = n. Hence (W, R) € PE, "

m—+n-*
Since the essence of the proof is involved in the base step, we can check
the induction step in a way similar to the base step. O

Thus, combining Lemma 7 with Lemma 4 and 5 we have the following.

Corollary 8. Suppose that k' > k and that either m > 0 or k' # n. If
one of the following (1), (2), (3) holds

(1) k>m+n

(2) m>k and m >n

(3) m>k, m=mnandk >0
then B;"™ D E7" iff (k—m —n)| (K —m —n).
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Figure 2:

m

Finally, we will show that E,
cases. So, we assume that none of (1), (2) and (3) in the above corollary
holds.

First, suppose that m > 0. Suppose moreover that k > m. Note that
m +n > k holds, because (1) of Corollary 8 doesn’t hold.

D EZ,“" never hold in the remaining

Lemma 9. If k' >k and m+n >k >m >0 then E;"" 2 E" .

Proof. Define a frame F = (W, R) as follows: W = {w; | 0 < i <
m+n+ 1}, and 1) w;Rw; for each it = m+1,--- ,;m+n+1; 2) w;Rw; 41
foreach i =0,--- ;m+mn; 3) w;Rw;—q foreachi=m+2,--- m+n+1;4)
woRW 4 n1-k-

First, we will show that F € ngm’n. Ifi>1, wiRkwj and w; R™w; then
both w; and wj are between wp,;1 and wy, 441 since i +k > m + 1 and
i+m > m+1. Thus wy R"w;. If woRkwj and woR™w;s then w;y R™w; since
m+1<j<m-+nandm<j <m-+n. Hence]—“ePEZ”’". On the other
hand, wy, R™"wWminy1 doesn’t hold since m # 0, while both wORk,mernJrl
and woR™w, hold. (Note here that woRk“mernH and k+1 < k’.) Hence
F ¢ PEL". d

Suppose next that m > k. Because requirement (2) of Corollary 8 doesn’t
hold, we know that n > m. We assume first that n > m > 0. Then we have
the following.

Lemma 10. If k' >k, m >k >0 and n > m > 0 then E;"" 2 E’" .
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Proof. If ¥ <m+nthenm+n—k>m+n—k >0,s0 (k—m—n) ‘

(k' — m — n) doesn’t hold. Thus, we can derive our conclusion by using
Lemma 4. It is therefore sufficient to consider the case where k' > m + n.
We will divide the case into two.

For n > k + m, we define a frame 7 = (W, R) as follows: W = {w; |
0 <i < m+n}, and wRw; iff i — j| < 1. Since m +n > n by m >
0, woR™Wy4yn doesn’t hold while both wyR™wy and woRk,mem hold for
k' > m + n. Therefore F ¢ PE". We will next show that F € PE".
We first note that w;R'w; holds if and only if |i — j| < ¢t. Now, suppose
that w; R¥w; and w; R™ws. Then, |i — j| < k and |i — s| < m. Therefore,
|s —j] <|s—1i|+|i —j| <m+k <n. Hence, wsR"w;.

For n < k 4+ m, define a frame G = (V,5) as follows (see Figure 3):
V={v;|0<i<k+m+1}, and

v;Svj & either
1) i—j|<1if0<i,j<k+m+1or
)j=k4+m-n+2ifl<i<k+m-—-n+2or
3)j=n—-1lifn—-1<i<k+m.

O o]
Vo U1 Uk+m7n+2 l:ln—l Vk+m  Vk4+m+1
S T g g Ty [ — FHR— T g gy T ————
k+m—1
Figure 3:

Note that the frame takes at least n 4+ 1 steps from vg to vgima1 by
the relation S. Thus voS™ vk mr1 doesn’t hold. But both vak/karmH and
U S™vg hold because of k+m + 1 < k' +m. Thus G ¢ PE".

Assume that 2S*y and £S™z for any z,y,z € V. Then both y and z
must be either between vg and vg4,, or between vy and vg4 41, depending
on z. For each case, y is accessible from z by n steps, i.e. 25™y. Therefore
GePEM". O

Next, assume that n = m > 0. Since requirement (3) on Corollary 8
doesn’t hold, k£ must be equal to 0. Then, we have the following.

Lemma 11. If k' >k, m =n >0 and k =0 then E;"" 2 E" .
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Proof. We define a frame F = (W, R) as follows;

W = {w; |0<i<m+1},

Then wo R™wm,+1 doesn’t hold while both wle/wo and wy R™wp, 1 hold.
Hence F ¢ PEZ’”. On the other hand, z R™y implies yR™x since the frame
R is symmetric. Thus F € PEJ™". O

Finally suppose that m = 0. Then by our assumption, we have n # k’.
Since the condition (1) & > m +mn = n on Corollary 8 doesn’t hold, we have
n > k. Then, we have the following.

Lemma 12. If K’ >k, m =0, n >k and k' # n then E;"" 2 E?" .

Proof. Similarly to Lemma 10, we can show our lemma easily when
k' < n. So, suppose that ¥ > n. If ¥ < 2n —k thenn —k > k' —n > 0,

so (k—n) ‘ (k' — n) doesn’t hold. This case has been discussed already in

Lemma 4. It is therefore sufficient to consider the case k' > 2n — k. Then
we define a frame F = (W, R) as follows;

W = {w; |0<i<2n—k},
wiij =2 ’Z—]’Sl

Since 2n — k > n by n — k > 0, we cannot have wgR" ws,_; while
woR* way,_1, must hold, therefore F ¢ PEZ}’". On the other hand, if zR*y
then zR"y for any x,y € W, since n > k. Thus F € PE;"". O

3. Concluding remarks

For non-negative integers m and n, we have shown when EZL’" ) EZL’" holds.
An interesting generalization of our results is what happens if we allow both
m and n to change. More precisely, let EZL’" be the logic which is obtained
from the smallest normal logic K by adding the axiom {¥¢ — O™O"¢,
where k,m,n > 0. Then it is to see when E?’n 2 EZ’” holds.

This paper presented a result in the case that m and n are fixed. The
other cases are left unanswered, that is, inclusions between pseud-Euclidean
logics in the cases that two of the numbers £ and m are fixed, and k and n
are fixed, respectively.
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