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INCLUSIONS BETWEEN

PSEUDO-EUCLIDEAN

MODAL LOGICS

A b s t r a c t. We describe properties of simply axiomatized

modal logics, which are called pseudo-Euclidean modal logics. For

fixed non-negative integers m and n, let E
m,n

k be the logic which

is obtained from the smallest normal propositional modal logic

K by adding the pseudo-Euclidean axiom ♦kφ → �m♦nφ, where

k ≥ 0. We will then give a complete description of the inclusion

relationship among these logics by showing inclusion relationships

for pairs of their logics with fixed m and n.

.1 Introduction

One of the simplest kinds of modal axioms are modal reduction principles
(MRP) first introduced by Fitch (1973) [5], and further studied by different
authors. Probably, the two most striking results on MRP are the follow-
ing: the non-elementarity of K + �♦φ → ♦�φ (Van Benthem - Goldblatt,
1975) [1] [6] and the finite model property of uniform modal logics (Fine,
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1975) [4]. Among many natural properties of MRP-logics, only elementar-
ity is completely investigated for the monomodal case by Van Benthem;
the polymodal case remains unclear. The situation with other properties
is much worse. Very little is known on the finite model property of non-
uniform logics and nothing is known on completeness of non-uniform logics
beyond Sahlqvist’s theorem. The works by Chagrov-Shehtman (1995) [2]
and Kracht (1999) [8] give examples of undecidable polymodal and tem-
poral MRP-logics; the proofs are based on encoding the word problem for
semigroups. This technique can also be used to show that inclusion between
finitely axiomatizable polymodal MRP-logics is undecidable. But the same
problem for the monomodal case remains a big challenge.

Inclusion relationships among various propositional modal logics have
been found since the early work on modal logics. For example, the inclu-
sion relationship among a class of logics above K45 is shown in [9]. Our
work throws light on the proof theoretical strength of logical systems among
pseudo-Euclidean modal logics.

Throughout this paper, m and n are fixed non-negative integers. Let
E

m,n
k be the logic which is obtained from the smallest normal modal logic

K by adding the axiom ♦kφ → �m♦nφ, where k ≥ 0. Here, ♦kφ and
�k′φ denote formulas ♦ · · ·♦φ with k diamonds and � · · ·�φ with k′ boxes,
respectively. We call any logic of the form E

m,n
k

, a pseudo-Euclidean modal
logic. Since each axiom ♦kφ → �m♦nφ is a Sahlqvist formula, we can
show that the logic E

m,n
k

is Kripke complete for each k. In fact, let us say
that a binary relation R on a set W is (k,m, n)-pseudo-Euclidean if for any
x, y, z ∈ W , xRky and xRmz imply zRny. Then, it is easy to see that Em,n

k

is Kripke complete with respect to the class of all Kripke frames of the form
(W,R) with a (k,m, n)-pseudo-Euclidean relation R on W . Note that R is
(1, 1, 1)-pseudo-Euclidean if and only if it is Euclidean. Let PEm,n

k be the
class of all Kripke frames of the form (W,R), where R is a (k,m, n)-pseudo-
Euclidean relation on W . Then it is easy to see that E

m,n
k ⊇ E

m,n
k′ if and

only if PEm,n
k

⊆ PEm,n
k′

. In the rest of this paper, we identify the axiom
system E

m,n
k

with the set of all formulas provable in E
m,n
k

. Our main goal
in this paper is to show when E

m,n
k

⊇ E
m,n
k′

holds. Note that Em,n
k

⊇ E
m,n
k′

trivially holds when k = k′. So, we assume k 6= k′ in the following. Our
result is summarized in the following theorem where we use “ | ” to mean
that x | y if and only if y is divisible by x.

Theorem 1. 1. For k > k′: E
m,n
k

⊇ E
m,n
k′

iff m = 0 and k′ = n.
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2. For k′ > k : 2a. If m = 0 and n = k′ then E
m,n
k ⊇ E

m,n
k′

.

2b. Suppose that either m > 0 or n 6= k′.

If one of the following (1), (2), (3) holds

(1) k ≥ m+ n,

(2) m ≥ k and m > n,

(3) m = n ≥ k > 0,

then

E
m,n
k ⊇ E

m,n
k′

iff (k −m− n) | (k′ −m− n).

2c. Otherwise, Em,n
k 6⊇ E

m,n
k′ .

A detailed proof of our theorem is given also in Ph.D. thesis [7] written
by the first author.

.2 Proof of the theorem

The rest of the paper will be devoted to an outline of the proof of Theorem 1.
It is obvious that E

m,n
k

= E
m,n
k′

when k = k′. Henceforth, we assume k 6=

k′. Also, when m = 0 and k′ = n, the axiom ♦k′φ → �m♦nφ becomes
♦nφ → ♦nφ, which is obviously provable in K. That is, E0,n

n coincides with
K. Hence, we have the following.

Lemma 2. If m = 0 and n = k′ then E
m,n
k

⊇ E
m,n
k′

= K.

When k > k′, the converse of Lemma 2 holds as shown below.

Lemma 3. If k > k′ and either m > 0 or n 6= k′ then E
m,n
k

6⊇ E
m,n
k′

.

Proof. Suppose first that k > m. We define a frame F = (W,R)
as follows: W = {wi

∣

∣ 0 ≤ i ≤ k′ + m}, and the binary relation R is
defined by 1) wiRwi−1 for each i = 1, · · · ,m, and 2) wiRwi+1 for each
i = m,m+ 1, · · · , k′ +m− 1.

Then, we can show that both wmRk′wk′+m and wmRmw0 hold, while
w0R

nwk′+m doesn’t, since either m > 0 or k′ 6= n. Thus, if wi |= φ only for
i = k′ + m then wm 6|= E

m,n

k′
. Therefore F /∈ PEm,n

k′
. On the other hand,

for each x ∈ W , there is no y ∈ W such that xRky since k > k′ and k > m.
Therefore F ∈ PEm,n

k .
Suppose next that k ≤ m. Let us take a frame G = (V, S) defined as

follows: V = {wi

∣

∣ 0 ≤ i ≤ k′ + 1}, and the binary relation S is defined by
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1) w0Sw0, 2) w1Sw0, and 3) wiSwi+1 for each i = 1, · · · , k′. Similar to the
above, we can show that G ∈ PEm,n

k but G 6∈ PEm,n
k′

. �

Thus, we have proved the first part of Theorem 1. The following lemma
holds for arbitrary k and k′.

Lemma 4. If Em,n
k ⊇ E

m,n
k′ then (k −m− n)

∣

∣

∣
(k′ −m− n).

Proof. Suppose that k 6= m + n and E
m,n
k

⊇ E
m,n
k′

but (k − m − n)
∣

∣

∣

(k′−m−n) doesn’t hold. Let a = k−m−n and define a frame F = (W,R)
as follows: W = {wi

∣

∣ 0 ≤ i ≤ a− 1}, and wiRwj iff j ≡ i+ 1 (mod a).
By the assumption, since k′ − m 6= n + h(k − m − n) for any h ∈ Z,

i.e. k′ − m 6≡ n (mod a), we do not have wmRnwk′ . On the other hand,
both w0R

k′wk′ and w0R
mwm hold. Thus F /∈ PEm,n

k′
. Next, suppose that

wiR
kwj and wiR

mws. Then, j − i ≡ k (mod a) and s − i ≡ m (mod a).
Hence j− s ≡ k−m (mod a). But k−m ≡ n (mod a) since a = k−m−n.
Thus j − s ≡ n (mod a), i.e. wsR

nwj . Hence F ∈ PEm,n
k . This contradicts

our assumption that Em,n
k ⊇ E

m,n
k′

.
Suppose that k = m + n. Let b = max(k′,m) and define a frame G =

(V, S) as follows: V = {wi

∣

∣ 0 ≤ i ≤ b}, and wiSwi+1 for each i = 0, · · · , b−

1. Then G ∈ PEm,n
k holds since k = m + n. In this frame, both w0S

k′wk′

and w0S
mwm hold. But we do not have wmSnwk′ since k′ −m 6= n. Hence

G /∈ PEm,n
k . Thus we have E

m,n
k 6⊇ E

m,n
k′ . �

In the following, we will find sufficient conditions by which the converse
of Lemma 4 holds. We can assume that k′ > k, and moreover that either
m > 0 or n 6= k′, by Lemma 2.

Lemma 5. If k′ > k ≥ m+n and (k−m−n)
∣

∣

∣

(k′ −m−n) then E
m,n
k

⊇ E
m,n
k′ .

Proof. By the assumption, k′ − m − n = h(k − m − n), that is k′ =
k + (h − 1)(k − m − n), for a certain number h ∈ Z. Since k′ > k and
k−m− n ≥ 0, we can assume that k′ = k+ (h− 1)(k −m−n) with h > 1.
To show that E

m,n
k ⊇ E

m,n
k′

= E
m,n

k+(h−1)(k−m−n), it is enough to show that

every (W,R) ∈ PEm,n
k belongs also to PEm,n

k+(h−1)(k−m−n) for any h > 1. This
can be shown by induction on h.

The base step, that is the case of h = 2, can be shown in a way similar to
the induction step. So, we assume that this holds for h. To show that (W,R)
belongs to PEm,n

k+h(k−m−n), we assume that xRk+h(k−m−n)y and xRmz. Then,
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for some w ∈ W , both xRk+(h−1)(k−m−n)w and wRk−m−ny hold, since k +
(h − 1)(k − m − n) ≥ 0 and k − m − n ≥ 0. Since (W,R) belongs to
PEm,n

k+(h−1)(k−m−n) the induction hypothesis gives xRk+(h−1)(k−m−n)w and

xRmz imply zRnw. Since xRmz, zRnw and wRk−m−ny hold, we have xRky.
But since (W,R) is in PEm,n

k , we also have zRny. Thus, we have shown that
(W,R) belongs to PEm,n

k+h(k−m−n). �

Lemma 6. Suppose that m ≥ k and either 1) m > n or 2) m = n
and k > 0. Let (W,R) be in PEm,n

k . Then for any l ≥ 0 and any M ≥
max(m− n− 1, k − 1), if xRn+ly, xRlz and x′RMx then zRny.

Proof. We will proceed by induction on l. If l = 0, this is trivial. When
l = 1, we will divide the case into two. First, suppose that k ≥ m − n.
Then, for some w, u ∈ W , each of x′RM−(k−1)w, wRk−1x, xRm−k+1u and
uRk+n−my hold, since M ≥ k − 1 ≥ 0, m − k + 1 > 0 and k + n − m ≥
0. Since wRk−1x and xRz hold, we have wRkz. Also, since wRk−1x and
xRm−k+1u hold, we have wRmu. Since (W,R) is in PEm,n

k , we have uRnz.
Then, for some v ∈ W , we have x′RM+m−k+1−(m−n)v and vRm−nu, since
M +m−k+1− (m−n) ≥ 0 and m−n ≥ 0. Since vRm−nu and uRk+n−my
hold, we have vRky. Also, since vRm−nu and uRnz hold, we have vRmz.
Therefore zRny since (W,R) is in PEm,n

k .
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Figure 1:

When k < m−n, for some w, u ∈ W , we must have x′RM−k−(m−n−k−1)w,
wRku and uRm−n−k−1x, since M ≥ k + (m − n − k − 1), k ≥ 0 and m −
n−k−1 ≥ 0. Since wRku, uRm−n−k−1x and xRn+1y hold, we have wRmy.
Since (W,R) is in PEm,n

k
, we have yRnu. Then, for some v ∈ W , we must
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have wRm−kv and vRky, since m − k ≥ 0 and k ≥ 0. Since vRky, yRnu,
uRm−n−k−1x and xRz hold, we have vRmz. Since (W,R) is in PEm,n

k , we
have zRny. Therefore, we have shown the lemma for l = 1.

Now, for the induction step, we assume that this holds for some l ≥ 1.
To show the lemma for l+1, we assume that xRn+l+1y, xRl+1z and x′RMx.
Then, for some y′, z′ ∈ W , we must have xRn+1y′, y′Rly, xRz′ and z′Rlz.
Hence z′Rny′ by the result when l = 1. Since z′Rny′ and y′Rly hold, we have
z′Rn+ly. Since x′RMx and xRz′ hold, we have x′RM+1z′. Since z′Rn+ly,
z′Rlz, x′RM+1z′ and M + 1 ≥ M ≥ max(m − n − 1, k − 1), we have zRny
by the induction hypothesis. �

Lemma 7. Suppose k′ > k and m ≥ k. Moreover suppose that either

1) m > n or 2) m = n and k > 0. Then (k −m− n)
∣

∣

∣

(k′ −m− n) implies

E
m,n
k

⊇ E
m,n
k′

.

Proof. By the assumption, k′ − m − n = h(m + n − k), that is k′ =
k + (h + 1)(m + n − k), for a certain number h ∈ Z. Since k′ > k and
m+ n− k ≥ 0, we can assume that k′ = k+ (h+1)(m+ n− k) with h ≥ 0.
To show that E

m,n
k ⊇ E

m,n
k′ = E

m,n

k+(h+1)(m+n−k), it is enough to show that

every (W,R) ∈ PEm,n
k

belongs also to PEm,n

k+(h+1)(m+n−k) for any h ≥ 0. This
can be shown by induction on h.

If h = 0 then k′ = m+n. we assume that (W,R) ∈ PEm,n
k , and also that

xRm+ny and xRmz for x, y, z ∈ W . Then, for some w ∈ W , we must have
xRkw and wRm+n−ky, since m + n − k ≥ 0. Then zRnw and wRm+n−ky
by the assumption, so zRm−k+2ny. Then, for some u, v ∈ W , we must
have xRm−ku, uRkz, zRm−kv and vR2ny, since m − k ≥ 0. Since uRmv
and uRkz, we obtain vRnz. But by using Lemma 6, we also have zRny by
taking l = n. Hence (W,R) ∈ PEm,n

m+n.

Since the essence of the proof is involved in the base step, we can check
the induction step in a way similar to the base step. �

Thus, combining Lemma 7 with Lemma 4 and 5 we have the following.

Corollary 8. Suppose that k′ > k and that either m > 0 or k′ 6= n. If
one of the following (1), (2), (3) holds

(1) k ≥ m+ n

(2) m ≥ k and m > n

(3) m ≥ k, m = n and k > 0

then E
m,n
k

⊇ E
m,n
k′

iff (k −m− n) | (k′ −m− n).
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Figure 2:

Finally, we will show that E
m,n
k ⊇ E

m,n
k′

never hold in the remaining
cases. So, we assume that none of (1), (2) and (3) in the above corollary
holds.

First, suppose that m > 0. Suppose moreover that k > m. Note that
m+ n > k holds, because (1) of Corollary 8 doesn’t hold.

Lemma 9. If k′ > k and m+ n ≥ k > m > 0 then E
m,n
k 6⊇ E

m,n
k′

.

Proof. Define a frame F = (W,R) as follows: W = {wi

∣

∣ 0 ≤ i ≤
m+ n + 1}, and 1) wiRwi for each i = m+ 1, · · · ,m + n + 1; 2) wiRwi+1

for each i = 0, · · · ,m+n; 3) wiRwi−1 for each i = m+2, · · · ,m+n+1; 4)
w0Rwm+n+1−k.

First, we will show that F ∈ PEm,n
k . If i ≥ 1, wiR

kwj and wiR
mwj′ then

both wj and wj′ are between wm+1 and wm+n+1 since i + k ≥ m + 1 and
i+m ≥ m+1. Thus wj′R

nwj . If w0R
kwj and w0R

mwj′ then wj′R
nwj since

m+ 1 ≤ j ≤ m+ n and m ≤ j′ < m+ n. Hence F ∈ PEm,n
k . On the other

hand, wmRnwm+n+1 doesn’t hold since m 6= 0, while both w0R
k′wm+n+1

and w0R
mwm hold. (Note here that w0R

k+1wm+n+1 and k+1 ≤ k′.) Hence
F /∈ PEm,n

k′
. �

Suppose next thatm ≥ k. Because requirement (2) of Corollary 8 doesn’t
hold, we know that n ≥ m. We assume first that n > m > 0. Then we have
the following.

Lemma 10. If k′ > k, m ≥ k ≥ 0 and n > m > 0 then E
m,n
k

6⊇ E
m,n
k′

.
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Proof. If k′ < m+n then m+n− k > m+n− k′ > 0, so (k−m−n)
∣

∣

∣

(k′ − m − n) doesn’t hold. Thus, we can derive our conclusion by using
Lemma 4. It is therefore sufficient to consider the case where k′ ≥ m+ n.
We will divide the case into two.

For n ≥ k + m, we define a frame F = (W,R) as follows: W = {wi

∣

∣

0 ≤ i ≤ m + n}, and wiRwj iff |i − j| ≤ 1. Since m + n > n by m >
0, w0R

nwm+n doesn’t hold while both w0R
mw0 and w0R

k′wm+n hold for
k′ ≥ m + n. Therefore F /∈ PEm,n

k′
. We will next show that F ∈ PEm,n

k .
We first note that wiR

twj holds if and only if |i − j| ≤ t. Now, suppose
that wiR

kwj and wiR
mws. Then, |i − j| ≤ k and |i − s| ≤ m. Therefore,

|s− j| ≤ |s− i|+ |i− j| ≤ m+ k ≤ n. Hence, wsR
nwj .

For n < k + m, define a frame G = (V, S) as follows (see Figure 3):
V = {vi

∣

∣ 0 ≤ i ≤ k +m+ 1}, and
viSvj ⇔ either

1) |i− j| ≤ 1 if 0 ≤ i, j ≤ k +m+ 1 or
2) j = k +m− n+ 2 if 1 ≤ i < k +m− n+ 2 or
3) j = n− 1 if n− 1 ≤ i ≤ k +m.

c c c c c c c c
v0 v1 vk+m−n+2 vn−1 vk+m vk+m+1

k+m−n+1 k+m−n+1
k+m−1

� - � -� � � ��- - - --? ?

' $' $
' $' $

· · ·

· · ·

···

···

Figure 3:

Note that the frame takes at least n + 1 steps from v0 to vk+m+1 by
the relation S. Thus v0S

nvk+m+1 doesn’t hold. But both vmSk′vk+m+1 and
vmSmv0 hold because of k +m+ 1 ≤ k′ +m. Thus G /∈ PEm,n

k′
.

Assume that xSky and xSmz for any x, y, z ∈ V . Then both y and z
must be either between v0 and vk+m, or between v1 and vk+m+1, depending
on x. For each case, y is accessible from z by n steps, i.e. zSny. Therefore
G ∈ PEm,n

k . �

Next, assume that n = m > 0. Since requirement (3) on Corollary 8
doesn’t hold, k must be equal to 0. Then, we have the following.

Lemma 11. If k′ > k, m = n > 0 and k = 0 then E
m,n
k

6⊇ E
m,n
k′

.
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Proof. We define a frame F = (W,R) as follows;

W = {wi

∣

∣ 0 ≤ i ≤ m+ 1},

wiRwj ⇔ |i− j| ≤ 1.

Then w0R
nwm+1 doesn’t hold while both w1R

k′w0 and w1R
mwm+1 hold.

Hence F /∈ PEm,n
k′ . On the other hand, xRmy implies yRnx since the frame

R is symmetric. Thus F ∈ PEm,n
0 . �

Finally suppose that m = 0. Then by our assumption, we have n 6= k′.
Since the condition (1) k ≥ m+n = n on Corollary 8 doesn’t hold, we have
n > k. Then, we have the following.

Lemma 12. If k′ > k, m = 0, n > k and k′ 6= n then E
m,n
k 6⊇ E

m,n
k′

.

Proof. Similarly to Lemma 10, we can show our lemma easily when
k′ < n. So, suppose that k′ > n. If k′ < 2n − k then n − k > k′ − n > 0,

so (k − n)
∣

∣

∣

(k′ − n) doesn’t hold. This case has been discussed already in

Lemma 4. It is therefore sufficient to consider the case k′ ≥ 2n − k. Then
we define a frame F = (W,R) as follows;

W = {wi

∣

∣ 0 ≤ i ≤ 2n− k},

wiRwj ⇔ |i− j| ≤ 1.

Since 2n − k > n by n − k > 0, we cannot have w0R
nw2n−k while

w0R
k′w2n−k must hold, therefore F /∈ PEm,n

k′
. On the other hand, if xRky

then xRny for any x, y ∈ W , since n > k. Thus F ∈ PEm,n
k

. �

.3 Concluding remarks

For non-negative integers m and n, we have shown when E
m,n
k ⊇ E

m,n
k′

holds.
An interesting generalization of our results is what happens if we allow both
m and n to change. More precisely, let Em,n

k be the logic which is obtained
from the smallest normal logic K by adding the axiom ♦kφ → �m♦nφ,
where k,m, n ≥ 0. Then it is to see when E

m,n
k ⊇ E

m,n

k′
holds.

This paper presented a result in the case that m and n are fixed. The
other cases are left unanswered, that is, inclusions between pseud-Euclidean
logics in the cases that two of the numbers k and m are fixed, and k and n
are fixed, respectively.
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