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ON SEMILATTICE-BASED LOGICS

WITH AN ALGEBRAIZABLE

ASSERTIONAL COMPANION

A b s t r a c t. This paper studies some properties of the so-called

semilattice-based logics (which are defined in a standard way us-

ing only the order relation from a variety of algebras that have

a semilattice reduct with maximum) under the assumption that

its companion assertional logic (defined from the same variety of

algebras using the top element as representing truth) is algebraiz-

able. This describes a very common situation, and the conclusion

of the paper is that these semilattice-based logics exhibit some of

the good behaviour of protoalgebraic logics, without being nec-

essarily so. The main result is that all these logics have enough

Leibniz filters, a fact previously known in the literature to occur

only for protoalgebraic logics. Another significant result is that

the two companion logics coincide if and only if one of them en-

joys the characteristic property of the other, that is, if and only

if the semilattice-based logic is algebraizable, and if and only if

its assertional companion is selfextensional. When these condi-

tions are met, then the (unique) logic is finitely, regularly and
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strongly algebraizable and fully Fregean; this places it at some

of the highest ranks in both the Leibniz hierarchy and the Frege

hierarchy.

Let K be a class of algebras of the same (arbitrary) similarity type.

The class K is said to be semilattice-based when each algebra in K has

a semilattice reduct uniformly defined by some primitive or term-defined

operation. All such algebras have a natural order relation 6 such that the

semilattice operation is its meet or infimum; accordingly, the semilattice

operation will be denoted by ∧. In this paper K will always be a variety of

semilattice-based algebras with maximum 1, which is the interpretation of a

constant term denoted by 1 as well. In the present paper, phrases like “for

all algebras” or “an arbitrary algebra” refer to all algebras of the similarity

type under consideration.

Two (finitary) logics can be naturally associated with each such variety

K:

Definition 1. The logic ⊢1
K

, called the assertional logic associated

with K, is the finitary logic defined by the conditions

ϕ1, . . . , ϕn ⊢1
K ϕ iff K |= ϕ1 ≈ 1 & · · · & ϕn ≈ 1 ⇒ ϕ ≈ 1 ,

∅ ⊢1
K ϕ iff K |= ϕ ≈ 1 .

(1)

Its filters on an arbitrary algebra A will be denoted by Fi1A.

The logic ⊢6
K

, called the semilattice-based logic associated with K, is

the finitary logic defined by the conditions

ϕ1, . . . , ϕn ⊢6
K
ϕ iff K |= ϕ1 ∧ . . . ∧ ϕn 4 ϕ ,

∅ ⊢6
K
ϕ iff K |= ϕ ≈ 1 .

(2)

Its filters on an arbitrary algebra A will be denoted by Fi6A.

These two logics are said to be companions of each other; more precisely,

⊢6
K

is the semilattice-based companion of ⊢1
K

, and this one is the

assertional companion of the former.

In this definition, the symbol |= denotes the usual first-order (or quasi-

equational) satisfaction; the symbols & and ⇒ denote first-order con-

junction and implication, respectively; the symbol ≈ stands for a formal
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equation, to be interpreted as real equality; and the symbol 4 stands for

a formal ordering relation, to be interpreted by the natural order relation

of the algebras in K. Because of the semilattice structure, the formal order

relation ϕ 4 ψ is equivalent to the equation ϕ ∧ ψ ≈ ϕ over the algebras

in K. The meaning of Definition 1 is thus clear.

In the literature these logics have also been called “the logic preserving

truth” (for ⊢1
K

) and “the logic preserving degrees of truth” (for ⊢6
K

) with

respect to K; see [4, 9, 11, 26, 27, 29]. These denominations arise in situa-

tions where the points in the algebras of K are interpreted as truth values,

and specifically where 1 represents some kind of “absolute” truth in each

A. This is clearer in the case of ⊢1
K

, since (1) is equivalent to

ϕ1, . . . , ϕn ⊢1
K ϕ iff if v(ϕ1) = · · · = v(ϕn) = 1 then v(ϕ) = 1

for all v : Fm → A and all A ∈ K ,

∅ ⊢1
K ϕ iff v(ϕ) = 1 for all v : Fm → A and all A ∈ K .

(3)

The connection between the given definition of ⊢6
K

and the idea of a

logic preserving degrees of truth lies in the fact that, due to the semilattice

structure of the algebras in K, (2) is equivalent to

ϕ1, . . . , ϕn ⊢6
K
ϕ iff if v(ϕi) > a for all i = 1, . . . , n, then v(ϕ) > a

for all v : Fm → A , all A ∈ K and all a ∈ A ,

∅ ⊢6
K
ϕ iff v(ϕ) = 1 for all v : Fm → A and all A ∈ K .

(4)

Incidentally, this equivalence shows that the presence of conjunction ∧ in (2)

is not the result of any a priori metalogical choice of conjunction as the

formal counterpart of the grammatical comma, but rather a consequence

of the order having a meet-semilattice structure.

From the discussion in [10, 11] let me highlight the suggestion of inter-

preting the points a in the models not exactly as representing degrees of

truth themselves, but as determining the degree of truth “to have a truth-

value greater than or equal to a”. Then, (4) says that a formula follows

in ⊢6
K

from a certain set of premises if and only if each valuation giving

all premises truth values with a certain degree of truth also gives that for-

mula a truth value with that degree of truth. It is in this sense that the

consequence ⊢6
K

can be understood as preserving these degrees of truth.
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It can be argued that such interpretations make sense truly only in situa-

tions where it is natural to interpret the elements in the models as truth

values. For instance, this happens when using definitions (1) and (2) not

for a whole class of algebras K but for a single algebra which is supposed

to represent the structure of truth-values of a certain semantics. From (2)

it is however clear that ⊢6
K

depends only on the equations satisfied by the

chosen algebra, and hence one can equally consider the generated variety,

even if it may contain algebras where such truth-value interpretation makes

less sense.

Semilattice-based logics were introduced and studied in the context of

abstract algebraic logic in [14] under the name of “selfextensional logics

with conjunction”, and were christened and more thoroughly studied in [24];

specifically Section 3.1 of [24] is devoted to study when can ⊢6
K

coincide

with ⊢1
K

, under the assumption that ⊢6
K

is protoalgebraic. Here I will

study some relations between the two logics under a different assumption.

The key will be the study of Leibniz filters of ⊢6
K

.

If L is a logic, an L-filter F on an algebra A is a Leibniz filter (of L)

when it is the smallest L-filter on A having the same Leibniz congruence

Ω
AF . This notion was introduced and studied in [15, 23] in the context of

protoalgebraic logics. The starting result was that if a logic is protoalge-

braic, then each of its filters has an associated Leibniz filter with the same

Leibniz congruence. The logic defined by the Leibniz filters of a given (pro-

toalgebraic) logic was also studied. In the present paper I will show that

some of the results of [15] can also be obtained for (not necessarily protoal-

gebraic) semilattice-based logics ⊢6
K

, provided their assertional companion

⊢1
K

is algebraizable. Some proofs in this case are more direct than those

in [15].

The reason for considering the alternative assumption that ⊢1
K

is alge-

braizable is that it seems to describe a more common situation than that

of assuming that ⊢6
K

is protoalgebraic; although in general this assump-

tion does not imply the alternative one, all the examples analyzed in [15]

actually fall also under the scope of the alternative assumption. Moreover,

several examples falling under this assumption but not under the original

one have been separately studied in the literature, always coming to similar

results but in each case obtained by working with the particular logics and

classes of algebras. In [4] the logics ⊢6
K

for varieties K of commutative

and integral residuated lattices have been studied, and it has been proved
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that for many of these varieties the logic is not protoalgebraic (later I will

mention examples), while the associated assertional logic ⊢1
K

, which is the

logic usually associated with K in the context of substructural logics [21], is

always algebraizable. In this case, for each A ∈ K, Fi6A equals the family

of all lattice filters of A while Fi1A equals the family of all implicative

filters of A. Something similar had already been found in [9, 12] when K is

the variety of MV-algebras; in this case ⊢1
K

is the usual (finitary) infinite-

valued  Lukasiewicz logic  L∞, while ⊢6
K

is the so-called “ Lukasiewicz logic

preserving degrees of truth”  L
6
∞

, which was shown to be non-protoalgebraic.

The main group of (protoalgebraic) examples analyzed in [15], and the

one which actually provided most of the starting intuitions for that research,

corresponds to the field of modal logic. In this case, K is a variety of modal

algebras, and the logic ⊢1
K

is the so-called “global consequence” of the

normal modal logic associated with K (i.e., the one having the Necessitation

Rule in the strong sense: ϕ ⊢1
K
�ϕ) while ⊢6

K
is the corresponding “local

consequence” (the one with the Necessitation Rule in the weak sense: ⊢6
K
ϕ

implies ⊢6
K
�ϕ); the terms “local” and “global” come from the semantical

characterizations of these logics in terms of classes of Kripke frames. Both

logics are protoalgebraic, and for each A ∈ K, Fi6A equals the family of all

filters of A (since A is a Boolean algebra lattice filters and implicative filters

coincide) and Fi1A equals the family of all open filters. The case where K

is a variety of orthomodular lattices is also analyzed in [15], resulting in a

similar situation (but in this case the filters of the assertional companion

are not determined as those of the semilattice-based logic that are also

closed under certain rule).

The present paper treats this situation in general, that is, it deals with

the common features of these cases that do not depend on logical connec-

tives other than conjunction (such as join, implication, fusion, necessity). I

assume from now on the following:

Basic assumption: K is a variety of semilattice-based algebras

with maximum, ⊢6
K

is the semilattice-based logic determined

by K, and its assertional companion ⊢1
K

is algebraizable with K

as its equivalent algebraic semantics and with x ≈ 1 as defining

equation.

At the beginning of the paper I assumed the constant 1 is already in the

similarity type; this is just a simple way of ensuring that the maximum of
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the order in the algebras is term-definable, which implies that both logics

have theorems; otherwise these facts would have to be postulated.

If A ∈ K and F ⊆ A ,F 6= ∅, one says that F is a semilattice filter

when a, b ∈ F iff a∧ b ∈ F (if A is a lattice this is just the usual notion of

lattice filter). Note that this implies that 1 ∈ F , and that if a ∈ F and a 6 b

then b ∈ F . The next result summarizes the main basic properties of the

two logics needed here; when the symbol ⊢ appears in a property it means

that the two logics ⊢1
K

and ⊢6
K

have the stated property. For a logic L,

the notations Alg(L) and Alg∗(L) refer respectively to the classes of algebra

reducts of all reduced generalized models of L and of the algebra reducts

of the reduced models of L. The class Alg(L) is arguably the algebraic

counterpart of L. See [6, 14, 17, 29] for more details and discussion, and

for background on abstract algebraic logic.

Lemma 2.

1. ⊢1
K

and ⊢6
K

have the same theorems.

2. ⊢1
K

is an extension of ⊢6
K
; in symbols, ⊢6

K
⊆ ⊢1

K
. Therefore, in any

algebra A , Fi1A ⊆ Fi6A.

3. Both logics are conjunctive, that is, they satisfy:

ϕ,ψ ⊢ ξ iff ϕ ∧ ψ ⊢ ξ . (5)

4. As a consequence, each of them satisfies, for all n > 1,

ϕ1 , . . . , ϕn ⊢ ψ iff ϕ1 ∧ · · · ∧ ϕn ∧ ψ ⊣⊢ ϕ1 ∧ · · · ∧ ϕn , (6)

where ⊣⊢ is the respective relation of interderivability. Thus, the con-

sequences of finite non-empty assumptions are determined by the inter-

derivability relation.

5. The logic ⊢6
K

is selfextensional, that is, its relation of interderivability

⊣⊢6
K
is a congruence of the formula algebra Fm. Actually,

ϕ ⊣⊢6
K
ψ iff K |= ϕ ≈ ψ . (7)

6. If A ∈ K then Fi6A is the family of all semilattice filters of A. The

smallest one is {1}, which is also a filter of ⊢1
K
, and the smallest one

as well.
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7. Alg(⊢6
K

) = Alg(⊢1
K

) = K.

8. Alg∗(⊢1
K

) = K, and a matrix 〈A, F 〉 is a reduced model of ⊢1
K

if and

only if A ∈ K and F = {1}.

Proofs. 1. Obvious from the definitions.

2. Same, because 1 is the maximum of the order in the algebras in K.

3. Being conjunctive is a property inherited by extensions, because it is

equivalent to the three following Hilbert-style rules:

ϕ ∧ ψ ⊢ ϕ ϕ ∧ ψ ⊢ ψ ϕ,ψ ⊢ ϕ ∧ ψ (8)

So it is only necessary to check it for ⊢6
K

. But for this logic, (5) is trivially

true.

4. Just use the rules in (8).

5. By definition, ϕ ⊣⊢K ψ iff ϕ ⊢6
K
ψ and ψ ⊢6

K
ϕ. Therefore, ϕ ⊣⊢K

ψ iff K |= ϕ 4 ψ and K |= ψ 4 ϕ iff K |= ϕ ≈ ψ. This relation is

obviously a congruence, hence the logic is selfextensional.

6. The first statement is proved in Lemma 3.8 of [24], modulo the obser-

vation that here the empty set has to be excluded, as all the logics have

theorems by assumption. Then clearly {1} is the smallest semilattice filter

and hence the smallest filter of the two logics.

7. That Alg(⊢6
K

) = K is proved in Theorem 3.12 of [24], and by algebraiz-

ability, using Proposition 3.2 of [14], it follows that Alg(⊢1
K

) = K.

8. The first equality is again a consequence of the just mentioned result,

and the characterization of reduced models is a general property of alge-

braizable logics, given that their filter is uniquely determined by the defined

equations, which in this case reduce to x ≈ 1, so that the filter reduces to

the set {1}. �

Note that neither the general results of abstract algebraic logic nor the

more specific ones in [24] yield a workable description of reduced models of

⊢6
K

nor of their algebraic reducts, the class Alg∗(⊢6
K

). Later on I will give

one.

The general theory of abstract algebraic logic can be used to obtain an

alternative picture of the situation under scrutiny, this time in terms of

properties of the class K of algebras:

Lemma 3. Let K be a semilattice-based variety of algebras with maxi-

mum. Then the following conditions are equivalent:
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(i) The assertional logic ⊢1
K

is algebraizable, with x ≈ 1 as defining

equation and K as its equivalent algebraic semantics.

(ii) There is a binary term ↔ such that

K |= x↔ x ≈ 1, (9)

K |= x↔ y ≈ 1 ⇒ x ≈ y. (10)

If these conditions hold, then ⊢1
K

is finitely, regularly and strongly alge-

braizable.

Proof. Notice that, since K is a variety, the relative equational con-

sequence |=K associated with K is finitary, and hence the assertional logic

⊢1
K

defined from K for all Γ ∪ {ϕ} ⊆ Fm, as

Γ ⊢1
K
ϕ iff {γ ≈ 1 : γ ∈ Γ} |=K ϕ ≈ 1 (11)

coincides with the finitary one defined in (1). By definition, this logic has

K as its equivalent algebraic semantics.

(i)⇒(ii) If ⊢1
K

is algebraizable, there is a set of binary terms {δi(x, y) :

i ∈ I} such that

x ≈ y =||=
K

{

δi(x, y) ≈ 1 : i ∈ I
}

.

By finitarity of the consequence |=K, there is a finite family of terms

δ1 , . . . , δk such that actually

x ≈ y =||=
K

{

δ1(x, y) ≈ 1 , . . . , δk(x, y) ≈ 1
}

.

Then, define x ↔ y = δ1(x, y) ∧ · · · ∧ δk(x, y). The fact that ∧ is the

semilattice operation and 1 is the maximum of the associated order in the

algebras in K implies that

{

δ1(x, y) ≈ 1 , . . . , δk(x, y) ≈ 1
}

=||=
K
x↔ y ≈ 1,

therefore

x ≈ y =||=
K
x↔ y ≈ 1 , (12)

which is trivially equivalent to having both (9) and (10).

(ii)⇒(i) Now, assume that there is a binary term ↔ satisfying conditions (9)

and (10). As observed before, these amount to the condition (12), which
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is equivalent to the property that ⊢1
K

is algebraizable with the defining

equation x ≈ 1 and with K as its equivalent algebraic semantics (given that

it is already its algebraic semantics).

Finally, the fact that algebraizability is witnessed by a single equivalence

formula implies that the logic is finitely algebraizable; that the defining

equation is of the form x ≈ 1 means it is regularly algebraizable; and that

its equivalent algebraic semantics is a variety is described by saying that it

is strongly algebraizable (see [17] for details). �

It is interesting to notice that the assumption that K is semilattice-

based with maximum can be weakened in Lemma 3 to require that the

binary term ∧ and the constant 1 just satisfy

{

x ≈ 1 , y ≈ 1
}

=||=
K
x ∧ y ≈ 1 .

This assumption is strictly weaker than that of K being semilattice-based

with maximum; as an example, in residuated lattices this property is satis-

fied both by the ordinary (additive) conjunction ∧ and by the multiplica-

tive conjunction or fusion operation ⋆, while they are semilattice-based

only with respect to ∧ and not with respect to ⋆ (unless they are Heyting

algebras, where the two operations coincide).

Putting the semilattice properties in algebraic form quickly gives:

Corollary 4. Let K be a variety of algebras. Then the basic assump-

tions of this paper hold (that is, K is semilattice-based with maximum and

its assertional logic ⊢1
K

is algebraizable with defining equation x ≈ 1 and

equivalent algebraic semantics K) if and only if the following equations and

quasi-equations are satisfied in K,

x ∧ x ≈ x (13)

x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (14)

x ∧ y ≈ y ∧ y (15)

x ∧ 1 ≈ x (16)

x↔ x ≈ 1 (9)

x↔ y ≈ 1 ⇒ x ≈ y (10)

for certain binary terms ∧ ,↔ and some constant term 1. �
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As a particular case of (10), the following apparently weaker property

is obtained

K |= 1 ↔ y ≈ 1 ⇒ 1 ≈ y . (17)

The fact that properties (9) and (17) are satisfied means that the class K

is 1-protoregular in the sense of [3]; the classes of algebras of this kind are

very interesting from the point of view of abstract algebraic logic, and in [7,

Theorem 6.8] it is shown that their associated assertional logic is always

weakly algebraizable. But, by Theorem 3.10 of [14], if a weakly algebraiz-

able logic has a variety as its algebraic counterpart, then the logic is actually

algebraizable, which is the present situation, so here (17) implies (10) and

can thus replace it in Corollary 4. Notice that this result concerns a variety

and that all properties appearing in it are equations, save for (10) or (17)

which are quasi-equations1.

Leaving the previous results aside, no explicit use of ↔ will be made in

the paper; the key properties of ⊢1
K

will be

• that Alg(⊢1
K

) = K, and

• that in each algebra A the Leibniz operator ΩA is an order-isomorphism

between Fi1A and CoKA.

Both are consequences of the algebraizability of ⊢1
K

with respect to K.

That they are indeed necessary is discussed at the end of the paper, where it

is shown by a counterexample that regular algebraizability can be replaced

neither by regular weak algebraizability nor by ordinary algebraizability.

It is also worth recalling that just monotonicity of this operator on the

filters of some logic on every algebra characterizes that logic as protoalge-

braic; see [2, 6] for more details.

The central result in the present paper is the following one:

Theorem 5. For every A and every F ∈ Fi6A, there exists a unique

Leibniz filter F+ ∈ Fi6A such that ΩAF+ = Ω
AF , namely

F+ = min{G ∈ Fi6A : ΩAG = Ω
AF} ⊆ F.

Moreover F+ ∈ Fi1A and it is determined from Ω
AF by the expression

F+ =
{

a ∈ A : 〈a, 1〉 ∈ Ω
AF

}

.
1An anonymous referee has pointed out the intrinsic interest of investigating whether

either of them can be replaced by an equation, or a finite set of equations. This issue is

not dealt with in the present paper.
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Proof. The proof of the second statement is actually part of the con-

struction that proves the first statement. For every A and every F ∈ Fi6A,

the matrix 〈A/ΩAF ,F/ΩAF 〉 is always reduced, hence A/ΩAF ∈Alg∗(⊢6
K

).

By Corollary 2.24 of [14] and Lemma 2.7, Alg∗(⊢6
K

) ⊆ Alg(⊢6
K

) = K, there-

fore actually Ω
AF ∈ CoKA. By the algebraizability of ⊢1

K
, there is a

unique F+ ∈ Fi1A such that ΩAF+ = Ω
AF . By Lemma 2.2, F+ ∈ Fi6A.

Thus F+ ∈ {G ∈ Fi6A : ΩAG = Ω
AF}. Now let a ∈ F+. Since x ≈ 1 is

the defining equation of ⊢1
K

, a ∈ F+ if and only if 〈a, 1〉 ∈ Ω
AF+ = Ω

AF .

Since by assumption 1 is a theorem of ⊢1
K

, by Lemma 2.1 it is also a

theorem of ⊢6
K

, and hence 1 ∈ F . Then, by compatibility it follows

that a ∈ F . This shows that F+ ⊆ F . Now it is possible to show

that F+ = min{G ∈ Fi6A : Ω
AG = Ω

AF}: let G ∈ {G ∈ Fi6A :

Ω
AG = Ω

AF} and consider G+ ∈ Fi1A constructed in the same way

as F+ but with respect to G; then Ω
AF+ = Ω

AF = Ω
AG = Ω

AG+,

and since both are filters of ⊢1
K

, it follows that F+ = G+ because Ω
A

is one-to-one on Fi1A. But G+ ⊆ G, so F+ ⊆ G. This proves that

F+ = min{G ∈ Fi6A : ΩAG = Ω
AF}. Since Ω

AF+ = Ω
AF , this fact

can also be expressed as F+ = min{G ∈ Fi6A : ΩAG = Ω
AF+}, which

means that F+ is a Leibniz filter of ⊢6
K

. �

Obviously, a filter F is Leibniz if and only if F = F+. This yields

several characterizations of the notion; the one contained in part (iv) of the

next result was proved in [14, 15] in the context of protoalgebraic logics,

and with a more involved proof:

Proposition 6. For any A, if F ∈ Fi6A, then the following conditions

are equivalent:

(i) F is a Leibniz filter of ⊢6
K
.

(ii) F ∈ Fi1A.

(iii) F/ΩAF = {1}.

(iv) F/ΩAF is the smallest filter of ⊢6
K

on A/ΩAF .

Proof. If F is Leibniz then F = F+, so F ∈ Fi1A. Conversely, if

F ∈ Fi1A, then F+ is a filter of ⊢1
K

with the same Leibniz congruence as

F , and since ΩA is one-to-one on Fi1A , F = F+, hence F is Leibniz. This

shows that (i) is equivalent to (ii). Due to the way how ⊢1
K

is algebraized

(i.e., that the defining equation is x ≈ 1), the only filter in a reduced model
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of ⊢1
K

is of the form {1}. Hence, if F is a filter of ⊢1
K

then F/ΩAF = {1}.

Conversely, if F/ΩAF = {1}, then F = π−1
[

{1}
]

, where π : A → A/ΩAF

is the canonical projection. Since by Lemma 2.6 {1} is a filter of ⊢1
K

on

the quotient algebra, by Proposition 1.19 of [14] it follows that F ∈ Fi1A.

This shows that (ii) is equivalent to (iii). Finally, (iii) is equivalent to (iv)

because if F ∈ Fi6A then A/ΩAF ∈ K and by Lemma 2.6 the smallest

filter of ⊢6
K

coincides with the smallest filter of ⊢1
K

, which is {1} by the

same property. �

The situation described in the two previous results can be summarized

in the terminology of [16] by saying that the logic ⊢6
K

has enough Leibniz

filters and that the logic ⊢1
K

is its strong version2. As a matter of fact,

here the following three senses of the notion of a strong version of the logic

⊢6
K

coincide:

• The assertional companion ⊢1
K

of ⊢6
K

, as introduced in Definition 1.

Starting from a semilattice-based variety K this construction always yields

a logic, which is stronger that ⊢6
K

.

• The logic defined by the class of matrices 〈A, F 〉 where A is an arbitrary

algebra and F is a Leibniz filter of ⊢6
K

, as introduced and studied in [15]

for protoalgebraic logics. The notion of Leibniz filter can be considered

for an arbitrary logic, and since they are a special family of the filters

of the logic, this construction always produces a logic stronger than the

original one. The phrase strong version was introduced in [15], as a

technical term, to refer to the logic defined in this way.

• The logic defined by the class of matrices 〈A, F 〉 where A is an arbitrary

algebra and F is the smallest filter of ⊢6
K

on A. This is a construction

that, again, is always possible starting from an arbitrary logic, since

the smallest filter on a given algebra always exists; it always produces

a logic stronger than that produced by the previous procedure (because

the smallest filter is always Leibniz), and hence stronger than the original

logic.

Each of the logics resulting from the three procedures can claim to be a

“strong version” of the initial logic, and by Proposition 6, in the present sit-

2These expressions however do not cover the equivalent conditions (iii) and (iv) of

Proposition 6; these appear here because the logic ⊢1

K is algebraizable, something that

is not assumed in the more general framework of [16].
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uation they coincide. Up to now this was only known to happen when the

initial logic is protoalgebraic [15]. This adds to the idea that semilattice-

based logics with an algebraizable assertional companion behave particu-

larly well and share some of the properties of protoalgebraic logics without

being so.

One property than can be obtained here, in contrast with the general

theory [14, 24] of semilattice-based logics, is the determination of the re-

duced models of ⊢6
K

. The first step is to characterize their algebra reducts,

that is, the class Alg∗(L). As already recalled, if a logic L is protoalgebraic

then Alg∗(L) = Alg(L), but since ⊢6
K

is not assumed to be protoalgebraic,

one has to find Alg∗(⊢6
K

) with a direct, ad hoc proof. As shown at the end

of the paper, for arbitrary non-protoalgebraic logics this class can be rather

weird and unexpected. In the present case the result is indeed the expected

one:

Proposition 7. Alg∗(⊢6
K

) = K.

Proof. In general Alg∗(⊢6
K

) ⊆ Alg(⊢6
K

) = K. If A ∈ K then by

Lemma 2.8 the matrix 〈A, {1}〉 is a reduced model of ⊢1
K

. Lemma 2.2

implies that it is also a model of ⊢6
K

. Since being reduced is an intrinsic

property of a matrix and does not depend on the logic envisaged to be mod-

elled, 〈A, {1}〉 is also a reduced model of ⊢6
K

. Therefore, one concludes

that A ∈ Alg∗(⊢6
K

). �

The characterization of the class of algebra reducts of the reduced mod-

els of ⊢6
K

yields one of the reduced models themselves, thus complementing

Lemma 2.8:

Proposition 8. A matrix 〈A, F 〉 is a reduced model of ⊢6
K

if and only

if A ∈ K and F is a semilattice filter of A such that F+ = {1}.

Proof. If 〈A, F 〉 is a reduced model of ⊢6
K

, then by Proposition 7,

A ∈ K, and by Lemma 2.6 this implies that F is a semilattice filter of A.

By Theorem 5, F+ ∈ Fi1A, therefore the matrix 〈A, F+〉 is a model of

⊢1
K

, and moreover Ω
AF+ = Ω

AF = Id, so that 〈A, F+〉 is a reduced

model of ⊢1
K

. By Lemma 2.8 this implies that F+ = {1}. The converse

follows also from Ω
AF+ = Ω

AF . �

Using the characterization of F+ in Theorem 5, the characterization in

Proposition 8 can be rewritten in the following, less cryptic way:
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Corollary 9. A matrix 〈A, F 〉 is a reduced model of ⊢6
K

if and only

if A ∈ K and F is a semilattice filter of A such that for all a ∈ A, if

〈a, 1〉 ∈ Ω
AF then a = 1. �

Notice how the stated condition is a restricted form of the property of

being reduced, which would be “if 〈a, b〉 ∈ Ω
AF then a = b”. It is perhaps

easier to understand it as saying that {1} constitutes an equivalence class

of ΩAF . Proposition 8 also implies:

Corollary 10. If 〈A, F 〉 and 〈A, G〉 are reduced models of ⊢6
K

on the

same algebra A, then F+ = G+. �

Another, more interesting consequence is:

Proposition 11. If 〈A, F 〉 and 〈B , G〉 are models of ⊢6
K

and h : A →

B is a strict surjective homomorphism between them, then h−1[G+] =

F+, and h is also a strict surjective homomorphism between 〈A, F+〉 and

〈B , G+〉.

Proof. Since h is strict and surjective, F = h−1[G]. Moreover, h is also

a strict and surjective homomorphism between
〈

A, h−1[G+]
〉

and 〈B , G+〉.

By Proposition 0.5.5 of [6], the Leibniz operator commutes with strict and

surjective homomorphisms between matrices, therefore

Ω
Ah−1[G+] = h−1

[

Ω
BG+

]

= h−1
[

Ω
BG

]

= Ω
Ah−1[G] = Ω

AF = Ω
AF+ .

Since G+ ∈ Fi1B, also h−1[G+] ∈ Fi1A, and since F+ ∈ Fi1A as well

and Ω
A is one-to-one on Fi1A, it follows that h−1[G+] = F+. �

The same result is shown in Theorem 8 of [15], assuming protoalgebraic-

ity of what would be here ⊢6
K

, but in a much more complicated manner;

here it is rather the assumption on ⊢1
K

that provides more powerful tools.

Straightforward consequences of this proposition are that, under the same

assumptions, F is Leibniz if and only if G is Lebniz, and that in general a

filter of ⊢6
K

is Leibniz if and only if its reduction is Leibniz as well.

In [15] it is shown that for protoalgebraic logics the Leibniz filter F+

associated with an arbitrary filter is also the largest of all Leibniz filters

included in it. This property no longer holds in the present, more general

case; on the contrary, the said property precisely characterizes the protoal-

gebraic logics among the semilattice-based logics that have an algebraizable

assertional companion:



SEMILATTICE-BASED LOGICS WITH ALGEBRAIZABLE . . . 123

Proposition 12. The following conditions are equivalent:

(i) The logic ⊢6
K

is protoalgebraic.

(ii) For each A and each F ∈ Fi6A , F+ is the largest Leibniz filter of

⊢6
K

contained in F .

(iii) For each A and each F ∈ Fi6A , F+ is the largest filter of ⊢1
K

contained in F .

Proof. (i)⇒(ii) is proved in Corollary 4 of [15].

(ii)⇒(i) Let A be any algebra, and let F ,G ∈ Fi6A with G ⊆ F . Then

G+ ⊆ G ⊆ F and G+ is a Leibniz filter of ⊢6
K

. Since by the assumption

F+ is the largest Leibniz filter of ⊢6
K

contained in F , it follows that

G+ ⊆ F+. Now the algebraizability of ⊢1
K

implies in particular that Ω
A

is monotonic on Fi1A, so that Ω
AG = Ω

AG+ ⊆ Ω
AF+ = Ω

AF . Thus

Ω
A is monotonic on Fi6A for any A, and this amounts to ⊢6

K
being

protoalgebraic.

(ii)⇔(iii) because by Proposition 6 the Leibniz filters of ⊢6
K

coincide with

the filters of ⊢1
K

. �

Notice that in [15], where all logics are assumed to be protoalgebraic,

only property (ii) holds, but not (iii); the reason is that not all items

in Proposition 6 are equivalent in the setting of [15]. Here we also have

condition (iii), which is probably more useful when looking at particular

logics.

Protoalgebraicity of semilattice-based logics in the case where K is a

variety of residuated lattices3 is analyzed in Section 4 of [4]. This (large)

group of examples happens to have stronger properties, concerning the

topic of the present paper, than the general case analyzed here. For in-

stance, surprisingly, the logic ⊢6
K

is protoalgebraic if and only if it is

finitely equivalential, and also if and only if the variety K satisfies the equa-

tion x ∧
(

(x→ y)n ⋆ (y → x)n
)

4 y for some n < ω (where ⋆ is the fusion

connective, and → is its residuum). These and other, purely algebraic

3As in other works in the literature, all residuated lattices studied in the cited paper

are assumed to be commutative and integral. This last condition amounts to saying that

1, the unit of the fusion operation, is also the maximum of the order; this condition is

thus unavoidable in order to obtain the cases that fall under the framework of the present

paper.
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characterizations allow to identify many cases where ⊢6
K

is not protoalge-

braic; for instance, this happens when K is any of the following varieties:

all residuated lattices, MV-algebras, product algebras, basic algebras, MTL

algebras, FLew-algebras, and any variety generated by a family of contin-

uous t-norms over the real unit interval which is not the variety of Gödel

algebras; general references for these classes of algebras and their associated

logics are [5, 21, 22]. This is interesting because it provides a host4 of natu-

ral and well-behaved examples of non-protoalgebraic logics; these examples

were lacking in the early stages of the development of abstract algebraic

logic, to the point that they had been considered rather pathological5.

The next result settles the precise conditions under which the descrip-

tion of reduced models of ⊢6
K

in Proposition 8 can be improved in a definite

way that avoids referring to the filter F+, thus making it more practical.

This improved characterization generalizes several ones found in the field

of modal logic, as explained below. Besides, the result is technically inter-

esting in itself:

Lemma 13. The following conditions are equivalent:

(i) A matrix 〈A, F 〉 is a reduced model of ⊢6
K

if and only if A ∈ K , F

is a semilattice filter of A and {1} is the only filter of ⊢1
K

contained

in F .

(ii) For every A and every F,G ∈ Fi6A, if G ⊆ F and 〈A, F 〉 is reduced,

then also 〈A, G〉 is reduced.

Proof. (i)⇒(ii) If the matrix 〈A, F 〉 is reduced and F ∈ Fi6A, then

〈A, F 〉 is a reduced model of ⊢6
K

and thus it satisfies the equivalent

condition in (i). Now let G ∈ Fi6A be such that G ⊆ F . Then any ⊢1
K

-

filter contained in G will also be contained in F , therefore {1} will also be

the only ⊢1
K

-filter contained in G. Moreover, A ∈ K by assumption, and

by Lemma 2.6 G is also a semilattice filter of A. Thus, the matrix 〈A, G〉

satisfies the equivalent condition in (i), and therefore it is reduced.

(ii)⇒(i) Assume that 〈A, F 〉 is a reduced model of ⊢6
K

. By Proposition 8,

A ∈ K, F is a semilattice filter of A, and F+ = {1}. Let G ∈ Fi1A

4Actually, there is at least a denumerable number (perhaps a continuum) of such

examples.
5Blok and Pigozzi, in their seminal paper [2, p. 355], wrote that “all the logics we are

aware of in the literature, except for pathological cases, are protoalgebraic”.
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be such that G ⊆ F . Then G ∈ Fi6A and by (ii) Ω
AG = Id and since

Ω
A{1} = Id, and both {1} and G are ⊢1

K
-filters, it follows that G = {1}.

Conversely, assume that the conditions are satisfied for some 〈A, F 〉. Then

clearly 〈A, F 〉 is a model of ⊢6
K

. Since F+ is a ⊢1
K

-filter contained in F ,

by the assumptions it follows that F+ = {1}, and by Proposition 8 this

means that the matrix is reduced. �

Notice how condition 13(ii) can be rephrased as a restricted version of

the monotonicity condition of the Leibniz operator:

If F,G ∈ Fi6A with G ⊆ F then Ω
AG ⊆ Ω

AF , provided that Ω
AF = Id.

Since the Leibniz operator is monotonic, without restrictions, over all filters

of protoalgebraic logics, the result corresponding to Proposition 6 of [15]

follows immediately:

Corollary 14. If ⊢6
K

is protoalgebraic, then a matrix 〈A, F 〉 is a

reduced model of ⊢6
K

if and only if A ∈ K , F is a semilattice filter of A

and {1} is the only filter of ⊢1
K

contained in F . �

Theorem 4.4 of [4] shows that the converse implication holds when K

is a variety of residuated lattices, so that the two equivalent conditions in

Lemma 13 can be added to those in Proposition 12. However, the proof

uses several properties of residuated lattices in an essential way, and it is

not likely that this converse holds in general.

The standard examples of this situation analyzed in [15] are that of

the local and the global consequences associated with a normal system of

modal logic and that of the weak and strong quantum logics associated with

a variety of orthomodular lattices, as already explained in the introductory

discussion. A close example, still not analyzed in the literature from this

point of view, is that of the weakest classical system of modal logic E . The

associated variety K is here that of all Boolean algebras expanded with

an arbitrary unary operator �, and it originates two logics, that is, two

consequence relations, which can be seen to conform to the framework of

this paper, that is, they have the forms ⊢6
K

and ⊢1
K

for the said variety K.

Syntactically, the two are separated only by the Extensionality Rule: the

logic ⊢6
K

has it in the weak form (if ⊢6
K
α↔β then ⊢6

K
�α↔�β) while ⊢1

K

is the extension of ⊢6
K

with the strong form of the rule (α↔β ⊢1
K
�α↔�β).

The logic ⊢1
K

is algebraizable, hence this example falls under the scope of

the present paper. In contrast with what happens in the case of the normal
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modal logics, here ⊢6
K

is not equivalential, but it is still protoalgebraic.

On a Boolean algebra the filters of ⊢1
K

are the filters of ⊢6
K

that are

closed under the Extensionality Rule. Therefore, Corollary 14 effectively

generalizes Malinowski’s characterization [25, Theorem II.1] of the reduced

models of ⊢6
K

as the matrices 〈A, F 〉 such that A is a Boolean algebra

with a unary operator � and F is a filter of A such that {1} is the only

filter G ⊆ F that is closed under the rule “if a↔ b ∈ G then �a↔�b ∈ G”.

The same result holds for other classical systems of modal logic extending

E ; in each case it suffices to restrict the class of algebras to those Boolean

algebras with a unary � satisfying the particular axioms or rules of the logic.

When the logic is also normal (i.e., it is stronger than the so-called Kripke’s

logic K) then the condition of being closed under the Extensionality Rule

may be replaced by that of being open, which amounts to being closed

under the Necessitation Rule. For more details see [6, § 3.4] or [25].

The last result of the paper tells us that the key abstract properties that

distinguish the logics ⊢6
K

and ⊢1
K

(that ⊢6
K

is selfextensional and ⊢1
K

is algebraizable) effectively separate them in the sense that each cannot

enjoy the characteristic property of the other unless the two are actually

the same logic. Moreover, two further equivalent properties can be added,

one concerning the location of the logic ⊢1
K

in the Frege hierarchy and the

other concerning the location of the logic ⊢6
K

in the Leibniz hierarchy; the

proof uses some notions and results of abstract algebraic logic not described

here.

Theorem 15. The following conditions are equivalent:

(i) ⊢1
K

is selfextensional.

(ii) ⊢1
K

is fully Fregean.

(iii) ⊢6
K

is algebraizable.

(iv) ⊢6
K

is weakly algebraizable.

(v) ⊢6
K

= ⊢1
K
.

Proof. (i)⇒(ii) By Lemma 2.3 the logic ⊢1
K

is conjunctive. Now the

assumption is that it is in addition selfextensional. Therefore Theorem 4.28

of [14] applies, and as a consequence it is also fully selfextensional. Since

⊢1
K

is by assumption algebraizable, it is a fortiori weakly algebraizable,

and for these logics Corollary 3.21 of the same work shows that being fully
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selfextensional is equivalent to being Fregean. Finally, being algebraizable,

it is protoalgebraic, and Corollary 80 of [8] shows that for a protoalgebraic

logic, to be Fregean implies to be fully Fregean. (ii)⇒(v) All fully Fregean

logics are fully selfextensional. This means that the natural equivalence or

Frege relation associated with the closure system of all filters of the logic

on an arbitrary algebra is a congruence, and hence it coincides with the

Tarski relation, which is the identity in algebras of Alg(⊢1
K

) = K. Thus, if

A ∈ K and a, b ∈ A are such that Fi
A
1 (a) = Fi

A
1 (b), then a = b, where Fi

A
1

is the operator of ⊢1
K

-filter generation. Now, let ϕ,ψ ∈ Fm be such that

ϕ ⊣⊢1
K
ψ, let A ∈ K and v ∈ Hom(Fm,A). The interderivability of ϕ and

ψ implies that Fi
A

1

(

v(ϕ)
)

= Fi
A

1

(

v(ψ)
)

, and by the previous observation

this implies that v(ϕ) = v(ψ). Therefore K |= ϕ ≈ ψ. Conversely, using

that ⊢1
K

is complete with respect to the class all all its matrix models over

the algebras in K, the same argument works backwards and shows that

ϕ ⊣⊢1
K
ψ if and only if K |= ϕ ≈ ψ. Now, using this fact and (6),

ϕ ⊢1
K ψ iff ϕ ∧ ψ ⊣⊢1

K ϕ iff K |= ϕ ∧ ψ ≈ ϕ iff K |= ϕ 4 ψ iff ϕ ⊢6
K
ψ .

That is, the two logics coincide on single-premise consequences. Since both

logics are finitary, have the same theorems (Lemma 2.1) and are conjunctive

(Lemma 2.3), this implies that Γ ⊢1
K
ψ if and only if Γ ⊢6

K
ψ for all Γ and

ψ, that is, that ⊢1
K

= ⊢6
K

.

(iv)⇒(v) Since Alg(⊢6
K

) = Alg(⊢1
K

) = K, in order to show that ⊢6
K

= ⊢1
K

it is enough to show that in any A ∈ K , Fi6A = Fi1A. By Lemma 2.2

one needs only prove that Fi6A ⊆ Fi1A. The assumption that the logic

⊢6
K

is weakly algebraizable implies that Ω
A is one-to-one on Fi6A, and

this implies that for every F ∈ Fi6A , F = F+. Therefore, by Theorem 5,

F ∈ Fi1A.

The remaining implications are trivial. �

Thus, if any of the conditions in this theorem holds, the two logics

coincide, and this unique logic is actually finitely, regularly and strongly

algebraizable (Lemma 3) and moreover it is fully Fregean; these properties

together place it very high in both the Leibniz and the Frege hierarchies of

abstract algebraic logic.

Classical and intuitionistic logic are examples of the coincidence of the

logics ⊢6
K

and ⊢1
K

, with K being the variety of Boolean and of Heyting

algebras respectively. Other examples are contained in the paper [4] in
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the context of substructural logics determined by varieties of residuated

lattices; in this case, the filters of the logic ⊢1
K

, which are the implicative

filters of the algebras, can be characterized as the filters of ⊢6
K

closed

under the fusion operation. This fact provides stronger algebraic tools

which allow the authors to show, among other properties, that the varieties

for which the conditions in Theorem 15 hold are exactly those contained

in the variety of Heyting algebras (more precisely, of generalized Heyting

algebras, because in the setting of [4] no minimum element is required to

exist); see Theorems 4.3 and 4.12 of [4].

Some of the equivalences in Theorem 15 correspond to those in Theorem

4.10 of [24], which assumes that the logic under consideration is protoalge-

braic; thus, this is another result showing that these logics share some of

the properties of protoalgebraic logics without being so. It is also possible

to see that the implication (iii)⇒(v) is very close to one of the two con-

tained in Theorem 3.16 of [24]; however, this one assumes and uses in an

essential way the regular algebraizability of ⊢6
K

, which is not assumed in

(iii) but appears only as a consequence of its coincidence with ⊢1
K

.

To end the paper let’s discuss the possibilities of extending its scope by

relaxing its basic assumptions.

Algebraizability of the assertional companion seems to be the key prop-

erty for all these enhanced properties to hold in a non-protoalgebraic logic.

Since this algebraizable companion is the assertional logic of the variety

K, it is in fact regularly algebraizable. Note that a semilattice-based logic

may have an algebraizable companion that is not regularly algebraizable

(which indicates it is not an assertional companion), and it need not sat-

isfy the properties found in this paper. An example showcasing this is

the weak relevance logic WR suggested by Wójcicki in [28, 29] and stud-

ied with abstract algebraic logic tools in [19]: It is a non-protoalgebraic

and semilattice-based logic, relatively to the variety of algebras called R-

algebras identified in [18]. The logic WR has an algebraizable companion,

the (usual) relevance logic R, whose equivalent algebraic semantics is the

same variety of R-algebras, but since these need not have a maximum, it

is not regularly algebraizable, the defining equation being x→ x 4 x (that

is, the equation x ∧ (x→ x) ≈ x→ x). It is possible to show that the R-

algebra described in pages 380–381 of [19] provides an example witnessing

the failure of Theorem 5; the details are dealt with in [16]. It is reasonable

to expect that similar failures will be found in the logics associated with
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other varieties of non-integral residuated lattices.

Another situation where the results do not apply is that where an as-

sertional companion does exit, but is not algebraizable. An extreme and

extremely simple example is the logic associated with the variety D1 of dis-

tributive lattices with maximum. Let 2 denote the 2-element distributive

lattice with maximum, i.e., the {∧,∨, 1}-reduct of the 2-element Boolean

algebra, which generates D1. The {∧,∨, 1}-fragment of classical logic is the

logic defined as in (1) from 2 alone. It is not difficult to see that this logic

is equal to the assertional logic ⊢1
D1

defined as in (1) from the whole variety

D1. It is then natural to consider also its semilattice-based companion ⊢6
D1

defined as in (2) from the variety D1. Again, it is possible to see that the

two logics coincide: ⊢1
D1

= ⊢6
D1

. Thus, the assertional companion logic is

here selfextensional. A very close situation, where 1 does not appear in

the similarity type, was studied in [13, 20], but its results carry over with-

out difficulty to this expanded case. Thus, one can show that this logic is

not protoalgebraic (actually, the same counterexample in Proposition 2.8

of [20] also works here, because it is a distributive lattice with maximum),

and therefore it is not algebraizable either. This shows that Theorem 15

fails. One can also show that Alg∗(⊢1
D1

) is the class of distributive lattices

with maximum 1 satisfying the condition that for all a, b ∈ A, if a < b

then there is some c ∈ A with a ∨ c 6= 1 and b ∨ c = 1. This condition is

dual to the so-called “Wallman disjunctive property” [1], and the class of

all distributive lattices satisfying it is not even a quasi-variety, therefore in

particular Alg∗(⊢1
D1

) 6= D1. These facts show that Propositions 7 and 8 fail

as well6.

Finally, another possible weakening of the basic assumptions of the pa-

per, suggested by the observed role of the conditions highlighted in page 118,

would be to require that the assertional companion is just regularly weakly

algebraizable. In this case the Leibniz operator Ω
A will still be an order-

isomorphism between Fi1A and CoKA, which is one of the key points

in several proofs. However, the other condition (that Alg(⊢1
K

) = K) may

6There are no metalogical reasons to consider this class as the real algebraic coun-

terpart of the logic. Moreover, since the logic is selfextensional and conjunctive, Theo-

rem 4.27 of [14] applies, and as a consequence Alg(⊢1

D1
) = Alg(⊢6

D1
) = D1; thus, under the

more general framework of abstract algebraic logic based on generalized matrices devel-

oped in [14], one may conclude that the class D1 is indeed the right algebraic counterpart

of the logic.
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fail, so that the proofs of the main results are blocked. Orthologics consti-

tute examples of this situation. Let K be any variety of ortholattices that

includes at least a non-orthomodular one; for instance, the variety of all or-

tholattices. The logic ⊢1
K

is known to be regularly weakly algebraizable but

non-algebraizable (see [6], Corollaries 4.7.5 and 5.6.7). Since we are dealing

with bounded semilattices, it makes sense to consider the semilattice-based

companion ⊢6
K

of ⊢1
K

, but its particular properties have not been studied.

Anyway, we know from the general theory that Alg(⊢6
K

) = K, while we also

know that Alg∗(⊢1
K

) = Alg(⊢1
K

) is strictly smaller than K; actually, it is not

a quasivariety, because it is not closed under subalgebras (this follows from

Theorem 4.7.3 of [6]). As in the previous example, Propositions 7 and 8 do

not hold in this example.
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