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BISIMULATION QUOTIENTS

OF VELTMAN MODELS

A b s t r a c t. Interpretability logic is a modal description of the

interpretability predicate. The modal system IL is an extension of

the provability logic GL (Gödel–Löb). Bisimulation quotients and

largest bisimulations have been well studied for Kripke models.

We examine interpretability logic and consider how these results

extend to Veltman models.

.1 Introduction

The idea of treating a provability predicate as a modal operator goes back

to Gödel. The same idea was taken up later by Kripke and Montague, but

only in the mid–seventies was the correct choice of axioms, based on Löb’s

theorem, seriously considered by several logicians independently: G. Boo-

los, D. de Jongh, R. Magari, G. Sambin and R. Solovay.

The system GL (Gödel, Löb) is a modal propositional logic. The ax-

ioms of system GL are all tautologies, �(A → B) → (�A → �B), and
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�(�A → A) → �A. The inference rules of GL are modus ponens and

necessitation A/�A. R. Solovay in 1976. proved arithmetical complete-

ness of modal system GL. Many theories have the same provability logic

- GL. Provability logic of Peano arithmetic, Zermelo–Fraenkel set theory

and Gödel-Bernays set theory is the system GL. It means that provability

logic GL cannot distinguish some properties, as e.g. finite axiomatizability,

reflexivity, interpretabiltiy principles etc.

Roughly, a theory S interprets a theory T if there is a natural way of

translating the language of T into the language of S in such a way that the

translations of all the axioms of T become provable in S. We write S ≥ T

if this is the case. A derived notion is that of relative interpretability over

a base theory T. Let A and B be arithmetical sentences. We say that A

interprets B over T if T+A ≥ T +B. For essentially reflexive theories, such

as Peano arithmetic and its extensions in the same language, the notion

of relative interpretability coincides with that of Π1-conservativity. For

precise definitions and details, see e.g. [8].

Modal logics for interpretability were first studied by P. Hájek (1981)

and V. Švejdar (1983). A. Visser (1990; see [7]) introduced the binary modal

logic IL (interpretability logic). The interpretability logic IL results from

the provability logic GL, by adding the binary modal operator ⊲ .

The language of the interpretability logic contains propositional letters

p0, p1, . . . , logical connectives ∧, ∨,→ and ¬, unary modal operator

� and binary modal operator ⊲ . We use ⊥ for false and ⊤ for true.

The axioms of the interpretability logic IL are all axioms of the system

GL and �(A → B) → (A ⊲ B), (A ⊲ B ∧ B ⊲ C) → (A ⊲ C),

((A ⊲ C) ∧ (B ⊲ C)) → ((A ∨ B) ⊲ C), (A ⊲ B) → (♦A → ♦B), and

♦A ⊲ A, where ♦ stands for ¬�¬ and ⊲ has the same priority as → . The

deduction rules of IL are modus ponens and necessitation.

Arithmetical semantic of interpretability logic is based on the fact that

each sufficiently strong theory S has arithmetical formulas Pr(x) and

Int(x, y); formula Pr(x) expressing that ”x is provable in S” (i.e. formula

with Gödel number x is provable in S) and formula Int(x, y) expressing that

”S+x interprets S+y.” An arithmetical interpretation is a function ∗ from

modal formulas into arithmetical sentences preserving Boolean connectives

and satisfying (�A)∗ = Pr(⌈A∗⌉), and (A ⊲ B)∗ = Int(⌈A∗⌉, ⌈B∗⌉). (⌈A∗⌉

denotes Gödel number of formula A∗). A modal formula A is valid in a

theory S if S ⊢ A∗ for each arithmetical interpretation ∗. A modal theory
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T is sound w.r.t. S if all its theorems are valid in S. The theory T is

complete w.r.t. S if it proves exactly those formulas that are valid in S.

The soundness of IL was already known and amounts to noticing that all

the axioms are PA–valid and the rules of inference preserve PA-validity.

The system IL is natural from the modal point of view, but arith-

metically incomplete. For example, IL does not prove the formula W i.e.

(A ⊲ B) → (A ⊲ (B ∧ �(¬A))), which is valid in every adequate theory.

Various extensions of IL are obtained by adding some new axioms. These

new axioms are called the principles of interpretability.

We are only interested in IL as a system of modal logic. There are

several kinds of semantics for the interpretability logic. The basic semantic

is Veltman models. De Jongh and Veltman proved in [4] the completeness

of IL w.r.t. Veltman models. We think that there are two main reasons

for other semantics. First, the proofs of arithmetical completeness of inter-

pretability logic are very complex. Second, the characteristic classes Velt-

man frames of some principles of interpretability are equal. A. Berarducci

proved the arithmetical completeness of system ILM (see [1]). System

ILM is the interpretability logic of Peano arithmetic. Berarducci did not

use Veltman models only. If the system ILM does not prove a formula A

then de Jongh-Veltman’s theorem gives the existence of a Veltman model

W satisfying W 6|= A. By means of a bisimulation we can construct a Visser

model (or a simplified Veltman model) W ′ such that the formula A is not

true in model W ′. Finally, by using Visser model W ′ Berarducci defined an

arithmetical interpretation ∗ such that the formula A∗ is not provable in

Peano arithmetic. Visser (in [7]) proved the arithmetical completeness of

the system ILP. Visser did not use Veltman models only. He used Friedman

models, too. Generalized Veltman models were defined by de Jongh. R.

Verbrugge, M. Vuković, E. Goris and J. Joosten used generalized Veltman

models for proofs of independences of interpretability principles.

We consider here Veltman models and bisimulations. Let K and K ′

be two Kripke models. If we want to study correspondence between these

models we consider an isomorphism or an elementarily equivalence. If we

want to study ”weaker” (but very useful) correspondence we can consider

a bisimulation. Roughly speaking, a bisimulation is a subset Z of K ×K ′.

The basic property of each bisimulation Z is:

if vZw then v ⊢A if and only if w ⊢A,
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for every formula A.

The notion of bisimulation is very important. A. Visser in [7] defined

bisimulation of Veltman models and proved that every Veltman model satis-

fying: xRyRzSxu ⇒ zSyu, can be bisimulated by a finite Friedman model.

This fact and de Jongh–Veltman’s theorem imply completeness of the sys-

tem ILP w.r.t. finite Friedman models. In the paper [1] Berarducci used

a bisimulation for the proof of completeness of system IL w.r.t. simplified

Veltman models. By using a bisimulation Visser (see [8]) proved that Craig

interpolation lemma is not true for systems between ILM0 and ILM. R.

de Jonge proved in [3] Hennessy–Milner theorem for Veltman semantics.

He defined the quotient structure W of a Veltman model W with respect

to reflexive, symmetric and transitive autobisimulation. R. de Jonge con-

structed a Veltman model W such that the quotient mapping π : W → W

is not a bisimulation between models W and W. For this reason, he intro-

duced the notion of strong bisimulation. It was proved in [3] that every

strong bisimulation is a bisimulation and that the quotient mapping from

W to W is a bisimulation, provided that the starting autobisimulation Z

is a strong, reflexive, transitive and symmetric bisimulation.

Let W1 and W2 be two Veltman models, and Z1 and Z2 strong auto-

bisimulations on those models that are also equivalence relations. We prove

here that the quotient structures W1 and W2 (with respect to Z1 and Z2)

are isomorphic if and only if the models W1 and W2 are globally bisimilar.

The largest bisimulation between Kripke models are considered in [2]

and [5]. At the end of this article we give some remarks on the existence

of the largest bisimulation of Veltman model.

.2 Bismulation quotient of Veltman models

The notion of Veltman model is defined in [4].

Definition 1. An ordered triple 〈W,R, {Sw : w ∈ W}〉 is called a

Veltman frame if it satisfies the following conditions:

a) 〈W,R〉 is a GL-frame, i.e. W is a non-empty set, and R is transitive

and reverse well-founded relation on W;

b) For every w ∈ W is Sw ⊆ W [w]×W [w], where W [w] = {u : wRu};
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c) The relation Sw is reflexive and transitive for every w ∈ W ;

d) If wRuRv then uSwv.

An ordered quadruple 〈W,R, {Sw : w ∈ W},
〉 is called a Veltman

model if it satisfies the following conditions:

1) 〈W,R, {Sw : w ∈ W}〉 is a Veltman frame;

2) 
 is a forcing relation. We emphasize only the definition

w 
 A ⊲ B if and only if ∀u((wRu & u 
 A) ⇒ ∃v(uSwv & v 
 B)).

We denote a Veltman model 〈W,R, {Sw : w ∈ W}, ⊢〉 shortly by W.

D. de Jongh and F. Veltman in [4] proved completeness of the system

IL w.r.t Veltman semantics. A. Visser defined the notion of bisimulation

between Veltman models in [7].

Definition 2. A bisimulation between two Veltman models W and

W’ is a nonempty binary relation Z ⊆ W × W ′ such that the following

conditions hold:

(at) If wZw′ then W,w 
 p if and only if W ′, w′ 
 p, for all

propositional variables p;

(forth) If wZw′ and wRu, then there exists u′ ∈ W ′ with w′R′u′, uZu′

and for all v′ ∈ W ′ if u′Sw′v′ there is v ∈ W such that uSwv;

(back) If wZw′ and w′Ru′, then there exists u ∈ W with wRu, uZu′

and for all v ∈ W if uSwv there is v′ ∈ W ′ such that u′Sw′v′.

If W = W ′ we will call Z an autobisimulation. If w ∈ W and Z is an

autobisimulation on W , with w we denote the set {u ∈ W : wZu}.

In [3] de Jonge defined the quotient structure of Veltman model W with

respect to reflexive, symmetric and transitive autobisimulation Z on W as

W = 〈W,R, {Sw : w ∈ W},
〉, where

W = {w : w ∈ W};

wRu ⇐⇒ (∃x ∈ w)(∃y ∈ u)xRy;
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uSwv ⇐⇒ (∃x ∈ w)(∃y ∈ u)(∃z ∈ v)ySxz;

w 
 p ⇐⇒ w 
 p.

It is easy to see that all the relations are well defined. It is also easy

to show that 〈W,R〉 is a GL-frame, provided that 〈W,R〉 is. However, we

construct an example showing that the quotient structure as defined by de

Jonge does not give a Veltman model. The only property that fails with

this definition is the transitivity of Sw.

To see this consider the following Veltman model:

w

a b c d
q p pSw Sw

W = {w, a, b, c, d}

R = {(w, a), (w, b), (w, c), (w, d)}

Sw = {(a, b), (c, d)}

V (p) = {b, c} , V (q) = {a}.

It is easy to check that Z = {(x, x) : x ∈ W}∪{(b, c), (c, b)} is indeed an

autobisimulation on W and that it is reflexive, transitive and symmetric.

If we use the definition of quotient proposed by de Jonge, we get the

following structure:

W = {w, a, b, d}

R = {(w, a), (w, b), (w, d)}

Sw = {(a, b), (b, d)}
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V (p) = {b} , V (q) = {a}.

w

a
b

d
Sw Sw

Now note that we have aSwb and bSwd, but we don’t have aSwd because

aSwd is not satisfied. We conclude that Sw is not transitive and in turn,

the quotient structure W is not a Veltman model.

An easy way to correct this is to take the transitive closure of the

relation defined by de Jonge. Formally, we will replace the definition of Sw

with the following:

uS
′

wv ⇐⇒ (∃x ∈ w)(∃y ∈ u)(∃z ∈ v)ySxz;

Sw = (S
′

w)
+.

Here (S
′

w)
+ denotes the transitive closure of S

′

w.

It is easy to check that 〈W,R, {Sw : w ∈ W},
〉 is indeed a Veltman

model.

In [3] de Jonge constructed a model W such that the quotient mapping

π : W → W defined by π(w) = w is not a bisimulation between W and

W . In fact, he showed that the two models aren’t even modally equivalent.

Even if we consider the corrected definition of the quotient model (with Sw

now transitive) this still remains true.

For this reason, in [3], de Jonge introduced the notion of strong bisim-

ulation.

Definition 3. A strong bisimulation between two Veltman models W

and W’ is a nonempty binary relation Z ⊆ W ×W ′ such that the following

conditions hold:



66 DOMAGOJ VRGOČ, MLADEN VUKOVIĆ

(at) If wZw′ then W,w 
 p if and only if W ′, w′ 
 p, for all

propositional variables p;

(forth1) If wZw′ and wRu, then there exists u′ ∈ W ′ with w′R′u′

and uZu′;

(forth2) If wZw′, uZu′, w′R′u′ and uSwv then there is v′ ∈ W ′

with vZv′ and u′Sw′v′;

(back1) If wZw′ and w′Ru′, then there exists u ∈ W with wRu

and uZu′;

(back2) If wZw′, uZu′, wRu and u′Sw′v′ then there is v ∈ W

with vZv′ and uSwv.

First we note that if one considers quotients with respect to strong

autobisimulations the problem with transitivity is solved and we may take

definition as originally proposed by de Jonge, i.e. uSwv if and only if (∃x ∈

w)(∃y ∈ u)(∃z ∈ v)ySxz.

To see this, assume that uSwvSwa. So there exist x1 ∈ w, y ∈ u, z1 ∈ v

with ySx1
z1 and x2 ∈ w, z2 ∈ v, b ∈ a with z2Sx2

b. Now we have x1Zx2,

z1Zz2, x1Rz1 and z2Sx2
b. The (back2) property implies that there exists

c such that z1Sx1
c and cZb. Now we have ySx1

z1Sx1
c, so by transitivity

ySx1
c. We conclude that uSwa.

It was proved in [3] that every strong bisimulation is a bisimulation

and that the quotient mapping from W to W if a bisimulation, provided

that the starting autobisimulation Z is a strong, reflexive, transitive and

symmetric bisimulation.

Now we give a slightly stronger version of the latter result.

Proposition 4. If W is a Veltman model and Z a strong autobisimu-

lation on W that is also an equivalence relation then the quotient mapping

π(w) = w is a strong bisimulation between W and W .

Proof. Conditions (at), (forth1) and (back1) are easy to check and

the condition (forth2) is trivial. For (back2) assume that we have wπw,

uπu, wRu and uSwv. So there exist x ∈ w, y ∈ u and z ∈ v with ySxz.

Now we have wZx, uZy, wRu and ySxz. By the (back2) property of
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Z there exists a with uSwa and aZz. Thus uSwa and aπv, so π satisfies

(back2).

Now we prove that when we consider two Veltman models, their quo-

tient structures determine global bisimulations between them.

First we need the notion of isomorphism between two Veltman models.

Definition 5. IfW = 〈W,R, {Sw : w ∈ W},
〉 andW ′ = 〈W ′, R′, {S′

w′ :

w′ ∈ W ′},
〉 are two Veltman models an isomorphism between W and W ′

is a bijective map f : W → W ′ that satisfies the following conditions:

- ∀w ∈ W (w 
 p ⇔ f(w) 
 p), for all propositional letters p,

- ∀w, u ∈ W (wRu ⇔ f(w)R′f(u)),

- ∀w, u, v ∈ W (uSwv ⇔ f(u)S′

f(w)f(v)).

Proposition 6. Let W1,W2 be two Veltman models and Z1, Z2 strong

autobisimulations on those models that are also equivalence relations. If the

quotient structures W1 and W2 (with respect to Z1 and Z2) are isomorphic,

then W1 and W2 are globally bisimilar.

Proof. Let f : W1 → W2 be an isomorphism of quotient models. We

define relation X with w1Xw2 if and only if w2 ∈ f(w1). We now prove

that X is a global bisimulation between W1 and W2.

To see that X is a global relation, take w1 ∈ W1. As Z2 is reflexive, we

know that f(w1) is nonempty, thus there exists some w2 ∈ W2 with w1Xw2.

Conversely, if w2 ∈ W2, then there is some w ∈ W1 with f(w) = w2. Take

any w1 ∈ w. As w1 = w, we have f(w1) = w2, thus w1Xw2.

Now we show that X is a strong bisimulation.

(at) Assume w1Xw2. Now we have w1 
 p iff w1 
 p iff f(w1) 
 p iff

w2 
 p iff w2 
 p. The first and the last equivalence hold by definition.

The second equivalence is true because f is an isomorphism and the third

because w2 = f(w1).

(forth1) Let w1Xw2 and w1R1u1. Now we have w1R1w2 and , as f is

an isomorphism, we get f(w1)R2f(u1) and thus w2R2f(u1). This implies

that there exist x ∈ w2 and y ∈ f(v1) with xR2y. Now we have w2Z2x and

xR2y. The property (back1) of Z2 implies that there is some u2 ∈ W2 with

w2R2u2 and u2Z2y. Thus u2 = f(u1), so u1Xu2.
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(forth2) Let w1Xw2, u1Xu2, w2R2u2 and u1S
1
w1
v1. Then u1S1

w1
v1

and as f is an isomorphism f(u1)S2
f(w1)f(v1), and as f(w1) = w2 and

f(u1) = u2 we get u2S2
w2
f(v1).

So there exist x ∈ w2, y ∈ u2 and z ∈ f(v1) with yS2
xz. Now we have

w2Z2x, u2Z2y, w2R2u2 and yS2
xz. By the (back2) property of Z2 there

exists some v2 with u2S
2
w2
v2 and v2Z2z. Thus u2S

2
w2
v2 and v1Xv2, so the

condition (forth2) is satisfied.

Conditions (back1) and (back2) can be proven similarly.

Reverse of the previous proposition is true with some assumptions on

bisimulations Z1 and Z2.

Proposition 7. Let W1 and W2 be two Veltman models and Z a strong

global bisimulation between them. If Z1 and Z2 are strong autobisimulations

(on W1 and W2 respectively) that are also the largest (ordinary) bisimula-

tions on W1 and W2 respectively, then the quotients W1 and W2(with respect

to Z1 and Z2) are isomorphic.

Proof. It is easy to check that the largest bisimulation on W1 (and

W2) is an equivalence relation. We define f : W1 → W2 with

f(w1) = w2 iff (∃x1 ∈ w1)(∃x2 ∈ w2)x1Zx2.

To see that f is well-defined assume that we have u1, v1 ∈ W1 and

u2, v2 ∈ W2 with u1Zu2, v1Zv2 and u1Z1v1. Then we have u2(Z
−1 ◦ Z1 ◦

Z)v2. As a composition of bisimulations is a bisimulation and Z2 is the

largest bisimulation on W2, we have Z−1 ◦ Z1 ◦ Z ⊆ Z2 and thus u2Z2v2,

so f is well-defined.

Now we prove that f if an isomorphism.

To show that f is onto, assume w2 ∈ W2. As Z is a global bisimulation,

there exists w1 ∈ W1 with w1Zw2. So by definition f(w1) = w2.

For injectivity, assume that we have u1, v1 ∈ W1 with f(u1) = f(v1).

From the definition of f , there exist x1 ∈ u1 and x2 ∈ f(v1) with x1Zx2.

It follows that u1Z1x1 and x2 = f(v1). Again, there exist y1 ∈ v1 and

y2 ∈ x2 with y1Zy2. Now, as we have y1Z1v1, y2Z2x2, it follows that

u1(Z1 ◦Z ◦Z2 ◦Z
−1 ◦Z1)v1. As Z1 ◦Z ◦Z2 ◦Z

−1 ◦Z1 is a bisimulation on

W1, and Z1 is the largest one, we have u1Zv1. It follows that f is injective.

The first condition in definition 5 is trivial to prove.
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To show the second condition, we need to prove that

u1R1v1 iff f(u1)R2f(v1).

Assume first that u1R1v1. From the definition of R1 it follows that there

exist x1 ∈ u1 and y1 ∈ v1 with x1R1y1. As Z is a global relation, there

exists x2 ∈ W2 with x1Zx2. Now, by the condition (forth1) of Z, there

exists y2 ∈ W2 with x2R2y2 and y1Zy2. From x1 ∈ u1 and x1Zx2 we get

x2 = f(u1) and similarly y2 = f(v1). Thus f(u1)R2f(v1), as desired.

Conversely, assume that f(u1)R2f(v1). By definition, there exist x2 ∈

f(u1) and y2 ∈ f(v1) with x2R2y2. As Z is a global relation, we have

x1Zx2 for some x1 ∈ W1. Using the (back1) condition of Z, there is some

y1 ∈ W1 with x1R1y1 and y1Zy2. As x2 = f(u1), there exist z1 ∈ u1 and

z2 ∈ x2 with z1Zz2. Summing up, we have x1Zx2, x2Z2z2, z1Zz2 and

z1Z1u1. Thus x1(Z ◦Z2 ◦Z
−1 ◦Z1)u1, and as Z1 is the largest bisimulation

on W1 we get x1Z1u1. Similarly we prove that y1Z1v1. We conclude that

u1R1v1, as desired.

We still have to prove that u1S1
w1
v1 if and only if f(u1)S2

f(w1)f(v1).

Let us first suppose that we have u1S1
w1
v1. Then there exist x1 ∈ w1,

y1 ∈ u1 and z1 ∈ v1 with y1S
1
x1
z1. As Z is global, there exists x2 ∈ W2

with x1Zx2. Now using the (forth1) condition for Z there exists y2 ∈ W2

with y1Zy2 and x2R2y2.

We have x1Zx2, y1Zy1 , x2R2y2 and y1S
1
x1
z1, so by the (forth2) condi-

tion for Z there exists z2 ∈ W2 with y2S
2
x2
z2 and z1Zz2. From the definition

of the quotient structure W2 we get y2S2
x2
z2 and as x2 = f(x1) = f(w1),

y2 = f(y1) = f(u1) and z2 = f(z1) = f(v1) we get f(u1)S2
f(w1)f(v1).

For the other direction we first assume that we have f(u1)S2
f(w1)f(v1).

Then there exist x2 ∈ f(w1), y2 ∈ f(u1) and z2 ∈ f(v1) with y2S
2
x2
z2. As

Z is global, there exists x1 ∈ W1 with x1Zx2. By the (back1) condition

for Z we get y1 ∈ W1 with x1R1y1 and y1Zy2. Now we have x1Zx2,

y1Zy2, x1R1y1 and y2S
2
x2
z2, so by the (back2) condition for Z there exists

z1 ∈ W1 with y1S
1
x1
z1 and z1Zz2. As x2 = f(w1), there exist k1 ∈ w1

and k2 ∈ x2 with k1Zk2. We have x1Zx2, x2Z2k2, k1Zk2 and k1Z1w1, thus

x1(Z ◦ Z2 ◦ Z
−1 ◦ Z1)w1. As Z1 is the largest bisimulation on W1, we get

x1Z1w1, thus x1 = w1. Similarly we get y1 = u1 and z1 = v1, so we have

u1S1
w1
v1 as desired.

From the previous results one might conclude that strong bisimulation
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is the correct notion of bisimulation, at least when quotient structures are

considered. However, strong bisimulations have certain undesired proper-

ties. For example, it is hard to determine the largest strong autobisimula-

tion of a model, as the union of two strong bisimulations is not necessarily a

strong bisimulation. In fact, starting with a strong bisimulation, one might

not even be able to construct another strong bisimulation containing it that

would be reflexive, as we now show.

Consider the following Veltman model:

W = {w, a, b, c, d}

R = {(w, a), (w, b), (w, c)}

Sw = {(a, c)}

Here we assume that the conditions implied by the definition of Veltman

model are satisfied. By picturing we get:

w

a b

c d

Sw

It is easy to check that Z = {(a, b), (c, d)} and Z0 = {(x, x) : x ∈ W}

are two strong bisimulations on W . However, their union is not a strong

bisimulation, as we have wZ0w, aZb, wRb and aSwc, but there is no x with

c(Z ∪ Z0)x and bSwx.

¿From the previous example we know that the diagonal Z0 is always

a strong autobisimulation. One can also easily see that if Z ⊆ W × W ′

is a strong bisimulation, then so is it’s inverse Z−1. As we have seen,
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the union of strong autobisimulations does not necessarily yield a strong

autobisimulation. It is the same with composition, as we now show.

Consider Veltman models W,W ′ and W ′′ as bellow:

w

a cb

W :

Sw

w′

c′b′ d′a′

W ′ :

S′

w′

w′′

a′′ c′′b′′

W ′′ :

S′′

w′′

It is easy to see that Z = {(w,w′), (a, d′), (a, a′), (b, b′), (c, c′)} and Z ′ =

{(w′, w′′), (d′, a′′), (a′, b′′), (c′, a′′), (b′, c′′)} are strong bisimulations.

However, we have w(Z ◦ Z ′)w′′, a(Z ◦ Z ′)a′′, w′′R′′a′′ and aSwb, but

there is no x′′ such that a′′S′′

w′′x′′ and b(Z ◦ Z ′)x′′.

By taking disjoint unions of the models in previous example(se e.g [3])

we get that even the composition of strong autobisimulations isn’t neces-

sarily a strong autobisimulation, so the standard way to find the largest

autobisimulation can’t be applied to search for the largest strong auto-

bisimulation.

Note that in proposition 7 we use the assumption that strong auto-

bisimulations Z1 and Z2 are also largest (ordinary)autobisimulations on

respective models. Thus it would be nice if the largest autobisimulation

was also a strong bisimulation. Unfortunately, this is not the case. We

have already mentioned an example constructed by de Jonge in [3] where
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the quotient mapping is not a bisimulation. On a closer inspection one

can notice that in this example the autobisimulation used to form the quo-

tient is in fact the largest autobisimulation, and, as strong bisimulations

give quotients that are bisimilar to the starting model, this bisimulation,

although the largest one, is not a strong bisimulation.

M. Vuković proved in [9] Hennessy–Milner theorem for generalized Velt-

man semantics, and he considered the existence of bisimulation between

Veltman model and generalized Veltman model in [10]. We would like

to define bisimulation quotients of generelized Veltman models and try to

prove similar results.
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