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MINIMAL SUBVARIETIESOF INVOLUTIVE
RESIDUATED LATTICES

Abstract. Itis known that classical logCL is the single maximal
consistent logic over intuitionistic logimt, which is moreover the sin-
gle one even over the substructural lo§iE.,,. On the other hand, if
we consider maximal consistent logics over a weaker loberg may
be uncountably many of them. Since the subvariety lattieegiwen va-
riety V of residuated lattices is dually isomorphic to the latti€éogics
over the corresponding substructural lo@i€¢)), the number of max-
imal consistent logics is equal to the number of minimal sulsties

of the subvariety lattice of. Tsinakis and Wille have shown that there
exist uncountably many atoms in the subvariety lattice efriety of
involutive residuated lattices. In the present paper, weshibw that
while there exist uncountably many atoms in the subvarityce of
the variety of bounded representable involutive residiiktices with
mingle axiomz? < z, only two atoms exist in the subvariety lattice of
the variety of bounded representable involutive residiiktices with
the idempotency = z2.

'For more information on minimal subvarieties, see Chaptf[2]
Received 26 October 2008
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1. Introduction

An algebraA = (A, A,V, -, \,/,1) is aresiduated latticRL) if A satisfies the
following conditions.

(R1) (A, A,V, 1) is a lattice,
(R2) (A, -, 1) is a monoid with the unit,
(R3) forz,y,ze A,z y<zey<zr\zez<z/y.

(R3) is called the residuation law.

An RL A is bounded(RL)) if it has the greatest elemerit and least ele-
ment L.

An RL A isinvolutive(InRL) if it has a constarn, called involution constant,
which satisfies the follwoing conditions:

1. 2\0 = 0/z,

2. 0/(z\0) = (0/2)\0 = z.

In InRL let us define a unary operatioiy 2’ = 2\0. We call’ the involution.
An RL A isrepresentabl§RRL) if it can be represented as a subdirect prod-
uct of totally orderedR Ls.

A non-trivial algebraA is strictly simple if it has neither non-trivial proper
subalgebras nor non-trivial congruences. Note that themaif proper subalge-
bras of an infinite algebra is given as follows: A subalgeb® of A is proper
if B is not isomorphic teA. The fact that an algebra has no non-trivial proper
subalgebras is enough to establish strict simplicity f&la For, congruences on
residuated lattices correspond to convex normal subagebr

The bottom element. € A, when exists, isiearly term-definableif there is
ann-ary term-operation(z) such that for any.-tuplea # (1,...,1) of elements

N——

n-times
of A, ¢t(a) = L holds.
A varietyis a class of algebras which is closed under homomorphicestdy
subalgebrasY) and direct productsh). For any algebra\, V(A) = HSP(A) is
a variety generated bjx. Alternatively, it is an equational class, i.e. a class of
the formMod({&;|i € I}), where eaclg; is an equation. A non-trivial variety
is calledminimalif V has only trivial proper subvariety. We denote the variety of
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InRL, InRRL ;| with mingle axiomz? < z, andInRRL | with idempotent axiom
=22, byInRL, InRRL, N Mod(x? < x) andInRRL, N Mod(x = z?)
respectively. In the present paper, we discuss the numbraimiial subvarieties
of these varieties (see [5]). The following result, provedtl], plays an important
role when we show the minimality of a given variety.

Lemmal. Let A be a strictly simplekL with a nearly term definable bottom
elementL. Then,V(A) is a minimal variety.

The next propositions show the numbers of minimal subvaesedf the va-
riety of representable residuated lattices, and the yaokinvolutive residuated
lattices, respectively.

Proposition 2. 1. There are uncountably many minimal subvarieties of
bounded representable residuated lattices with 3-potemamaz? = z*

([4D).

2. There are uncountably many minimal subvarieties of isgméable residu-
ated lattices with idempotent axiom= z? ([1]).

Proposition 3. There are uncountably many minimal subvarieties of involu-
tive residuated lattices ([5]).

In the present paper, we demonstrate what will happen iéthves conditions,
i.e. representability and involutiveness, are combinaddction 3, we show that
the number of minimal subvarieties of bounded involutivpresentable residu-
ated lattices even with mingle axiom is uncountable.

The situation changes radically when we replace the mingtaaby idem-
potent axiom. In Section 4, we show that the number of minisuddvarieties
of bounded involutive representable residuated latticés empotent axiom is
only two.

2. Addinginvolution

Here we give a construction of a bounded involufitie from given upper-bounded
RL, which is given by N. Galatos and J. G. Raftery (in [3]).

LetA = (A, AV, /,\,1) be anRL with the greatest elemerit. Let A~ =
{a"|la € A} be a disjoint copy ofA andA* = A U A~. We extend the lattice
order< on A to A* by stipulating that for any, b € A,
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1. a <,
2.a <b < b<a.

Thus,(A*, <) is order-isomorphic to the ordinal sum of the dual posetAaf<)
and (A, <) itself. Let L = T~ and0 = 1. Then_L is the least element of*.
We define also a unary operatioby (a~)" = a anda’ = a~ for anya € A. Then
the operatiori satisfies the equatiar’’ ~ x. Therefore, we can identify with’
by regarding each elemeatc A as(a™)~.

Next we extend the monoid operatioon A to A* as follows: For any:, b € A,
1a-b=(b/a),VV a=(a\b),

2.4 -0 =1.

Finally, we extend the division operatioRgnd/ on A to A* as follows: For any
a,beA

1. a\b/ =d /b= (b-a),

2. M\a=a/t/ =T,

3. d\V =a/b,

4.0 /d =b\a.
Then we can show that the operatioon A* is a monoid operation for which

residuation law holds with respectt@and/. Also, equationg” = x andz\y' =
2’y hold forz,y € A*.

Lemma4. Let A be a member of the varie®RL, N Mod(z? < z). Then
A* is also a member of the varieBhRRL | N Mod(x? < z).

Proof. From the Galatos-Raftery construction we can show thatis an
InRRL . Moreover, for any: € A,

ThusA* satisfies the mingle axiom. O
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3. Minimal subvarietiesof ZnRRL, N Mod(z* < x)

In the remaining two sections, we discuss how many minimbavateties of
InRRL, exist for the case with the mingle axion? < z and for the case
with a stronger axiom:? = z.

In the following, we will define a boundeBL. Dg = (D, A, V, s, \s, /s, 1) with
mingle axiom, for each subsstof natural number&l. Let us define a sdd by

D = {a;|i e NT} U {b;]i € N} U {1}
whereNT is the set of positive integers. We define an ordesn D as follows:

bp<b;<bj<1<a,<q
s foralli,j, k,l € NT,i < jandk > I.

Obviously, the ordex is total (see Figure 1). For a given subSaif N, we define
a multiplication-s on D depending of by

r-sl=1-gx =z foreveryz € D
Qi *S A5 = Qmin{i,j}
bi -5 bj = bmin{i j)
b“sa‘:{bj if j<iori=j€8
S a; fi<jori=j¢&S8S

RN B fi<jori=j€8
ST by fj<iori=j¢8

It is easy to see that our multiplication is associative. tNese define two
division operations by

z\sy = V{zlz sz <y}
y/sz=\V{zlz sz <y}

Note that the right-hand sides of both of the above equatimays exist, since
the lattice-reduct oD g is complete. Moreover, the residuation law holds between
g and\g (/s). Thus,Dg is a boundedL in which a; is the top element ant,

is the bottom element. Moreover it satisfies mingle axiom asz = .
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a; =T
a2
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b
by
bo

Figure 1. The residuated lattid@g

We construct ainRL from this algebra g by the Galatos-Raftery construc-
tion, mentioned in the previous section. Then we get a balihdBL Dg with
mingle axiom for each subsét of natural numbers by Lemma 4. Now, we will
show the following.

Theorem 5. There are uncountably many minimal subvarieties of bounded
involutive residuated lattices with mingle axiom.

Proof. It is enough to prove the following:
1. For anyS C N, Dj is a strictly simple algebra.
2. The element. € Dg is nearly term definable lower bound.

3. If 51 and S, are distinct subset dff thenDg andDg, generate distinct
varieties.

To prove thafDyg is strictly simple, it suffices to show th&yg is generated by.
Obviously,0 = 1" and0\1 = T. For eachw = 1, 2, we have

if i e Sw thenl/ai = andl/bi = {1,

if 4 ¢ Sw thenai\l = andbi\l = {1,
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a1 =T

az
as

Figure 2. ThenRL D%

and(1/a1) A (a1\1) = by. Thus we can generate all elementdxf inductively.
Finally, we can get;’ andb;” by

a;\0 = a;" andb;\0 = b;’.
HenceDg™ is strictly simple.
Next, let us define a term, (=) as follows:
q(z) = (z A a')2.

Suppose that # 1. If € Dg thenz > 2’ € Dg'. If x € Dg’ thenz < 2’ € Ds.
Hencex A2’ € D) for anyz # 1, and thugz A 2’)? = L. Thereforel is nearly
term-definable lower bound.

Now we show that for any pair of distinct set§, S, € N, V(Dg,) and
V(Dg,) generate distinct varieties. We define terms;, andt as follows:
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ta(z) = (1/2) A (2\1),
ty(z) = (1/2) v a(\1),
t(z) = ty(tp(x)).

Suppose thaf; and S, are distinct sets. Without loss of generality, we may
assume that there exists N such that € S; andi & Sy. Thenb; s, a; = b;
butb; -s, a; = a;. Now we define constant termgs, andg,, by

@, ~ tlg(tifl(ll\l))
qa, ~ tH1\1).

The equationy, - qa, = gy, holds inDg_but notinDg, . SoV(Dg,) satisfies
the equationy, - ¢., =~ q,, butV(Dg, ) does not satisfies it. HendgDyg ) #
V(Dg,)- O

4. Minimal subvarietiesof ZnRRL, N Mod(x = ?)

In the previous section we show tHatRRL | N Mod(z? < x) has uncountably
many atoms. In contrast with this, the number of minimal suigties of bounded
representabl@nRRL, N Mod(z = x?) is only two, as we show below.

First we define threenRRL | s 2, 3 and4 with idempotent axiom: = 22 as
follows:

2= <2a/\2a\/2,'27/2,\2,170’ 1>!
3= <3, /\33\/3,'37/3,\3, 17J—,—|—>!
4= <4, /\43\/4,'47/4,\4, 17J—,—|—>!

where set®, 3 and4 are underlying sets defined By= {0,1},3 = {L,1,T},
4 ={1,0,1, T}, respectively. We define orders &n3 and4 by

0<1,

1<1<T,

1 <0<1<T.

We define also monoid operations 2n3 and4 by the following tables.
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Involution is defined byl’ = 0,0’ =1, T" = 1L and L’ = T in all of these
algebras. The residuation law holds in allZ)f3 and4. Thus they are bounded
involutive representable residuated lattices with idetapbaxiom.

By using these algebras, we can show the following theorem.

Theorem 6. There exist only two minimal subvarieties of bounded irtixadu
representable residuated lattices with idempotent axiom.

Proof. First we show that any subdirectly irreducitdece ZnRRL, + (z =
2?) has a subalgebra which is isomorphic to on@o$ and4. SinceA satisfies
idempotent axiom we can shaw< 1. Also, itis easy to see thdt = 0iff T = 1.
Suppose thatA satisfies) = 1. Clearly{L,1, T} C A and it is closed under
monoid operation and involution. Moreovéin1 = (T\1")" = (T1)) =T'= 1
hold. By using this we can show that , 1, T} is closed under residuation. Hence
{L,1, T} is asubalgebra oA which is isomorphic t&3.

Suppose next thaA satisfies) < 1 andT = 1. Thenl is the greatest and
0 is the least element cA. Clearly {0,1} C A and it is closed under monoid
operation, residuation and involution. Henige 1} is a subalgebra oA which is
isomorphic to2.

Finally suppose thaA satisfies) < 1 andT # 1. We havel # 0. Clearly
{L1,0,1, T} C A and itis closed under involution. L&t L = . If z > 0 then
0=0%<0-2 = L. Thisis a contradiction. Thug < 0. Thenz = 22 <
x-0 = L. ThereforedD\ L = L. SinceA is involutive, we haver -0 = T. Hence
{L1,0,1, T} is closed under monoid operation. We can also show that ib&ed
under residuation. Hencgl, 0,1, T} is a subalgebra oA which is isomorphic
to4.

On the other hand, we show that the algebia a homomorphic image af.
In fact, the mapf defined byf(T) = T, f(1) = f(0) = 1andf(L) = L gives
such a homomaoarphism. Sbis an element of the subvariety generateddbyit
is easy to see th& and3 have no proper subalgebras. Therefore, an(2) and
V(3) are minimal subvarieties @i RRL | N Mod(x = x?). Note that thédnRL
2 is essentially equivalent to the two-element Boolean akgeb O
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5. Logical consequences

In this section we show what is the meaning of our theorenta frdogical point

of view. We introduce the logiEnFL’ which corresponds to variety of involutive
residuated lattices. Our language consists,of, -, \, /, = as logical connectives,
and ofl, T and_L as logical constants. The logiaFL’ is introduced as a sequent
calculus obtained fron¥'L by deleting both an initial sequent and an inference
rule for the logical constarit. Moreover we add the following initial sequent and
inference rules:

Q= A
I'= -« (=) —a, I’ = (==) rYy= (cydmg).

We can show the following lemma.
Lemma7. (1) L(ZnRL) = InFL'. (2) V(InFL') = ZnRL.

Note that the logidnFL’ + exchange corresponds to the logimFL, since
-1 is defined byl — 0(= 0) in FLe.

Next we give an axiomatization of the logic determined®R L andRL |
respectively. The varietRR L is axiomatized by

A:((@Vy)/z) Vpuw((z Vy)/y) = 1.

Thus to get the sequent calculus of the logic determined dyahietyR R L, we
need to add

R) = XalleVY)/o) Vps(pV)/¢)

as initial sequents. Herg, andp,, are left conjugate and right conjugate, respec-
tively, and ), andps are formulas corresponding to conjugates.

To get the sequent calculus of the logic determined by thietyaR L | , we
need moreover the following initial sequents:

M T'=T,
B) T,L1,A=n.

From a logical point of view, our theorems in Section 3 andvetthe follow-
ing meaning.
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Corollary 8. 1. There are uncountably many maximal consistent logics
over the logicInFL'+ (R) 4 (T) + (B) +(a - a = «).

2. On the other hand, there exists a single maximal congistgics over
InFL'+ (R)+ (T) + (B) +(a-a = a) + (o = «a- «a), except the classical
logic.
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