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MINIMAL SUBVARIETIES OF INVOLUTIVE
RESIDUATED LATTICES

A b s t r a c t. It is known that classical logicCL is the single maximal

consistent logic over intuitionistic logicInt, which is moreover the sin-

gle one even over the substructural logicFLew. On the other hand, if

we consider maximal consistent logics over a weaker logic, there may

be uncountably many of them. Since the subvariety lattice ofa given va-

rietyV of residuated lattices is dually isomorphic to the lattice of logics

over the corresponding substructural logicL(V), the number of max-

imal consistent logics is equal to the number of minimal subvarieties1

of the subvariety lattice ofV . Tsinakis and Wille have shown that there

exist uncountably many atoms in the subvariety lattice of the variety of

involutive residuated lattices. In the present paper, we will show that

while there exist uncountably many atoms in the subvariety lattice of

the variety of bounded representable involutive residuated lattices with

mingle axiomx2 ≤ x, only two atoms exist in the subvariety lattice of

the variety of bounded representable involutive residuated lattices with

the idempotencyx = x2.

1For more information on minimal subvarieties, see Chapter 9of [2]
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.1 Introduction

An algebraA = 〈A,∧,∨, ·, \, /, 1〉 is a residuated lattice(RL) if A satisfies the
following conditions.

(R1) 〈A,∧,∨, 1〉 is a lattice,

(R2) 〈A, ·, 1〉 is a monoid with the unit1,

(R3) forx, y, z ∈ A, x · y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y.

(R3) is called the residuation law.
An RL A is bounded(RL⊥) if it has the greatest element⊤ and least ele-

ment⊥.
AnRLA is involutive(InRL) if it has a constant0, called involution constant,

which satisfies the follwoing conditions:

1. x\0 = 0/x,

2. 0/(x\0) = (0/x)\0 = x.

In InRL let us define a unary operation′ by x′ = x\0. We call ′ the involution.
An RLA is representable(RRL) if it can be represented as a subdirect prod-

uct of totally orderedRLs.

A non-trivial algebraA is strictly simple, if it has neither non-trivial proper
subalgebras nor non-trivial congruences. Note that the notion of proper subalge-
bras of an infinite algebraA is given as follows: A subalgebraB of A is proper
if B is not isomorphic toA. The fact that an algebra has no non-trivial proper
subalgebras is enough to establish strict simplicity for aRL. For, congruences on
residuated lattices correspond to convex normal subalgebras.

The bottom element⊥ ∈ A, when exists, isnearly term-definable, if there is
ann-ary term-operationt(x̄) such that for anyn-tuple ā 6= (1, . . . , 1

︸ ︷︷ ︸

n-times

) of elements

of A, t(ā) = ⊥ holds.

A varietyis a class of algebras which is closed under homomorphic images(H),
subalgebras (S) and direct products (P). For any algebraA, V(A) = HSP(A) is
a variety generated byA. Alternatively, it is an equational class, i.e. a class of
the formMod({Ei|i ∈ I}), where eachEi is an equation. A non-trivial varietyV
is calledminimal if V has only trivial proper subvariety. We denote the variety of
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InRL, InRRL⊥ with mingle axiomx2 ≤ x, andInRRL⊥ with idempotent axiom
x = x2, by InRL, InRRL⊥ ∩Mod(x2 ≤ x) andInRRL⊥ ∩Mod(x = x2)

respectively. In the present paper, we discuss the number ofminimal subvarieties
of these varieties (see [5]). The following result, proved in [1], plays an important
role when we show the minimality of a given variety.

Lemma 1. LetA be a strictly simpleRL with a nearly term definable bottom
element⊥. Then,V(A) is a minimal variety.

The next propositions show the numbers of minimal subvarieties of the va-
riety of representable residuated lattices, and the variety of involutive residuated
lattices, respectively.

Proposition 2. 1. There are uncountably many minimal subvarieties of
bounded representable residuated lattices with 3-potent axiom x3 = x4

([4]).

2. There are uncountably many minimal subvarieties of representable residu-
ated lattices with idempotent axiomx = x2 ([1]).

Proposition 3. There are uncountably many minimal subvarieties of involu-
tive residuated lattices ([5]).

In the present paper, we demonstrate what will happen if these two conditions,
i.e. representability and involutiveness, are combined. In Section 3, we show that
the number of minimal subvarieties of bounded involutive representable residu-
ated lattices even with mingle axiom is uncountable.

The situation changes radically when we replace the mingle axiom by idem-
potent axiom. In Section 4, we show that the number of minimalsubvarieties
of bounded involutive representable residuated lattices with idempotent axiom is
only two.

.2 Adding involution

Here we give a construction of a bounded involutiveRL from given upper-bounded
RL, which is given by N. Galatos and J. G. Raftery (in [3]).

LetA = 〈A,∧,∨, ·, /, \, 1〉 be anRL with the greatest element⊤. LetA− =

{a−|a ∈ A} be a disjoint copy ofA andA∗ = A ∪ A−. We extend the lattice
order≤ onA to A∗ by stipulating that for anya, b ∈ A,
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1. a− < b,

2. a− ≤ b− ↔ b ≤ a.

Thus,〈A∗,≤〉 is order-isomorphic to the ordinal sum of the dual poset of〈A,≤〉

and〈A,≤〉 itself. Let⊥ = ⊤− and0 = 1−. Then⊥ is the least element ofA∗.
We define also a unary operation′ by (a−)′ = a anda′ = a− for anya ∈ A. Then
the operation′ satisfies the equationx′′ ≈ x. Therefore, we can identify− with ′

by regarding each elementa ∈ A as(a−)−.

Next we extend the monoid operation· onA toA∗ as follows: For anya, b ∈ A,

1. a · b′ = (b/a)′, b′ · a = (a\b)′,

2. a′ · b′ = ⊥.

Finally, we extend the division operations\ and/ onA to A∗ as follows: For any
a, b ∈ A

1. a\b′ = a′/b = (b · a)′,

2. b′\a = a/b′ = ⊤,

3. a′\b′ = a/b,

4. b′/a′ = b\a.

Then we can show that the operation· on A∗ is a monoid operation for which
residuation law holds with respect to\ and/. Also, equationsx′′ = x andx\y′ =
x′/y hold forx, y ∈ A∗.

Lemma 4. LetA be a member of the varietyRRL⊥ ∩Mod(x2 ≤ x). Then
A

∗ is also a member of the varietyInRRL⊥ ∩Mod(x2 ≤ x).

Proof. From the Galatos-Raftery construction we can show thatA
∗ is an

InRRL⊥. Moreover, for anya ∈ A,

a2 ≤ a,
a′2 = ⊥ ≤ a′.

ThusA∗ satisfies the mingle axiom. 2
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.3 Minimal subvarieties of InRRL⊥ ∩Mod(x2 ≤ x)

In the remaining two sections, we discuss how many minimal subvarieties of
InRRL⊥ exist for the case with the mingle axiomx2 ≤ x and for the case
with a stronger axiomx2 = x.

In the following, we will define a boundedRL DS = 〈D,∧,∨, ·S, \S, /S, 1〉 with
mingle axiom, for each subsetS of natural numbersN. Let us define a setD by

D = {ai|i ∈ N
+} ∪ {bi|i ∈ N} ∪ {1}

whereN+ is the set of positive integers. We define an order≤ onD as follows:

b0 < bi ≤ bj ≤ 1 ≤ ak ≤ al
⇔ for all i, j, k, l ∈ N

+, i ≤ j andk ≥ l.

Obviously, the order≤ is total (see Figure 1). For a given subsetS of N, we define
a multiplication·S onD depending ofS by

x ·S 1 = 1 ·S x = x for everyx ∈ D

ai ·S aj = amin{i,j}

bi ·S bj = bmin{i,j}

bj ·S ai =

{

bj if j < i or i = j ∈ S

ai if i < j or i = j 6∈ S

ai ·S bj =

{

ai if i < j or i = j ∈ S

bj if j < i or i = j 6∈ S

It is easy to see that our multiplication is associative. Next, we define two
division operations by

x\S y =
∨
{z|x ·S z ≤ y},

y/S x =
∨
{z|z ·S x ≤ y}.

Note that the right-hand sides of both of the above equationsalways exist, since
the lattice-reduct ofDS is complete. Moreover, the residuation law holds between
·S and\S (/S). Thus,DS is a boundedRL in whicha1 is the top element andb0
is the bottom element. Moreover it satisfies mingle axiom asx ·S x = x.
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Figure 1. The residuated latticeDS

We construct anInRL from this algebraDS by the Galatos-Raftery construc-
tion, mentioned in the previous section. Then we get a bounded InRL D

∗
S

with
mingle axiom for each subsetS of natural numbers by Lemma 4. Now, we will
show the following.

Theorem 5. There are uncountably many minimal subvarieties of bounded
involutive residuated lattices with mingle axiom.

Proof. It is enough to prove the following:

1. For anyS ⊆ N, D∗
S

is a strictly simple algebra.

2. The element⊥ ∈ D
∗
S

is nearly term definable lower bound.

3. If S1 andS2 are distinct subset ofN thenD∗
S1

andD∗
S2

generate distinct
varieties.

To prove thatD∗
S

is strictly simple, it suffices to show thatD∗
S

is generated by1.
Obviously,0 = 1′ and0\1 = ⊤. For eachw = 1, 2, we have

if i ∈ Sw then1/ai = bi and1/bi = ai+1,

if i 6∈ Sw thenai\1 = bi andbi\1 = ai+1,
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Figure 2. TheInRLD
∗
S

and(1/a1) ∧ (a1\1) = b0. Thus we can generate all elements ofDS inductively.
Finally, we can getai′ andbi′ by

ai\0 = ai
′ andbi\0 = bi

′.

HenceDS
∗ is strictly simple.

Next, let us define a termq⊥(x) as follows:

q⊥(x) = (x ∧ x′)2.

Suppose thatx 6= 1. If x ∈ DS thenx > x′ ∈ DS
′. If x ∈ DS

′ thenx < x′ ∈ DS.
Hencex∧ x′ ∈ D′

S for anyx 6= 1, and thus(x∧ x′)2 = ⊥. Therefore⊥ is nearly
term-definable lower bound.

Now we show that for any pair of distinct setsS1, S2 ∈ N, V(DS1
) and

V(DS2
) generate distinct varieties. We define termsta, tb andt as follows:
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ta(x) ≈ (1/x) ∧ (x\1),
tb(x) ≈ (1/x) ∨ x(\1),
t(x) ≈ ta(tb(x)).

Suppose thatS1 andS2 are distinct sets. Without loss of generality, we may
assume that there existsi ∈ N

+ such thati ∈ S1 andi 6∈ S2. Thenbi ·S1
ai = bi

but bi ·S2
ai = ai. Now we define constant termsqbi andqai by

qbi ≈ tb(t
i−1(1′\1))

qai ≈ ti−1(1′\1).

The equationqbi · qai ≈ qbi holds inD∗
S1

but not inD∗
S2

. SoV(D∗
S1
) satisfies

the equationqbi · qai ≈ qbi , butV(D∗
S2
) does not satisfies it. HenceV(D∗

S1
) 6=

V(D∗
S2
). 2

.4 Minimal subvarieties of InRRL⊥ ∩Mod(x = x
2)

In the previous section we show thatInRRL⊥∩Mod(x2 ≤ x) has uncountably
many atoms. In contrast with this, the number of minimal subvarieties of bounded
representableInRRL⊥ ∩Mod(x = x2) is only two, as we show below.

First we define threeInRRL⊥s2, 3 and4 with idempotent axiomx = x2 as
follows:

2 = 〈2,∧2,∨2, ·2, /2, \2, 1, 0, 1〉,
3 = 〈3,∧3,∨3, ·3, /3, \3, 1,⊥,⊤〉,
4 = 〈4,∧4,∨4, ·4, /4, \4, 1,⊥,⊤〉,

where sets2, 3 and4 are underlying sets defined by2 = {0, 1}, 3 = {⊥, 1,⊤},
4 = {⊥, 0, 1,⊤}, respectively. We define orders on2, 3 and4 by

0 ≤ 1,
⊥ ≤ 1 ≤ ⊤,
⊥ ≤ 0 ≤ 1 ≤ ⊤.

We define also monoid operations on2, 3 and4 by the following tables.
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·2 1 0
1 1 0
0 0 0

·3 ⊤ 1 ⊥

⊤ ⊤ ⊤ ⊥

1 ⊤ 1 ⊥

⊥ ⊥ ⊥ ⊥

·4 ⊤ 1 0 ⊥

⊤ ⊤ ⊤ ⊤ ⊥

1 ⊤ 1 0 ⊥

0 ⊤ 0 0 ⊥

⊥ ⊥ ⊥ ⊥ ⊥

Involution is defined by1′ = 0, 0′ = 1, ⊤′ = ⊥ and⊥′ = ⊤ in all of these
algebras. The residuation law holds in all of2, 3 and4. Thus they are bounded
involutive representable residuated lattices with idempotent axiom.

By using these algebras, we can show the following theorem.

Theorem 6. There exist only two minimal subvarieties of bounded involutive
representable residuated lattices with idempotent axiom.

Proof. First we show that any subdirectly irreducibleA ∈ InRRL⊥+(x =

x2) has a subalgebra which is isomorphic to one of2, 3 and4. SinceA satisfies
idempotent axiom we can show0 ≤ 1. Also, it is easy to see that⊥ = 0 iff ⊤ = 1.
Suppose thatA satisfies0 = 1. Clearly {⊥, 1,⊤} ⊆ A and it is closed under
monoid operation and involution. Moreover⊤\1 = (⊤\1′)′′ = (⊤1)′ = ⊤′ = ⊥

hold. By using this we can show that{⊥, 1,⊤} is closed under residuation. Hence
{⊥, 1,⊤} is a subalgebra ofA which is isomorphic to3.

Suppose next thatA satisfies0 < 1 and⊤ = 1. Then1 is the greatest and
0 is the least element ofA. Clearly{0, 1} ⊆ A and it is closed under monoid
operation, residuation and involution. Hence{0, 1} is a subalgebra ofA which is
isomorphic to2.

Finally suppose thatA satisfies0 < 1 and⊤ 6= 1. We have⊥ 6= 0. Clearly
{⊥, 0, 1,⊤} ⊆ A and it is closed under involution. Let0\⊥ = x. If x ≥ 0 then
0 = 02 ≤ 0 · x = ⊥. This is a contradiction. Thusx < 0. Thenx = x2 ≤

x · 0 = ⊥. Therefore0\⊥ = ⊥. SinceA is involutive, we have⊤ · 0 = ⊤. Hence
{⊥, 0, 1,⊤} is closed under monoid operation. We can also show that it is closed
under residuation. Hence{⊥, 0, 1,⊤} is a subalgebra ofA which is isomorphic
to 4.

On the other hand, we show that the algebra3 is a homomorphic image of4.
In fact, the mapf defined byf(⊤) = ⊤, f(1) = f(0) = 1 andf(⊥) = ⊥ gives
such a homomorphism. So3 is an element of the subvariety generated by4. It
is easy to see that2 and3 have no proper subalgebras. Therefore, onlyV(2) and
V(3) are minimal subvarieties ofInRRL⊥∩Mod(x = x2). Note that theInRL
2 is essentially equivalent to the two-element Boolean algebra. 2
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.5 Logical consequences

In this section we show what is the meaning of our theorems from a logical point
of view. We introduce the logicInFL′ which corresponds to variety of involutive
residuated lattices. Our language consists of∧, ∨, ·, \, /, ¬ as logical connectives,
and of1, ⊤ and⊥ as logical constants. The logicInFL′ is introduced as a sequent
calculus obtained fromFL by deleting both an initial sequent and an inference
rule for the logical constant0. Moreover we add the following initial sequent and
inference rules:

¬¬α⇒ α,

α,Γ ⇒

Γ ⇒ ¬α
(⇒ ¬) Γ ⇒ α

¬α,Γ ⇒
(¬ ⇒)

Σ,Γ ⇒

Γ,Σ ⇒
(cycling)

.

We can show the following lemma.

Lemma 7. (1)L(InRL) = InFL
′. (2) V (InFL′) = InRL.

Note that the logicInFL′ + exchange corresponds to the logicInFLe since
¬1 is defined by1 → 0(= 0) in FLe.

Next we give an axiomatization of the logic determined byRRL andRL⊥

respectively. The varietyRRL is axiomatized by

λz((x ∨ y)/x) ∨ ρw((x ∨ y)/y) ≡ 1.

Thus to get the sequent calculus of the logic determined by the varietyRRL, we
need to add

(R) ⇒ λα((ϕ ∨ ψ)/ϕ) ∨ ρβ((ϕ ∨ ψ)/ψ)

as initial sequents. Hereλz andρw are left conjugate and right conjugate, respec-
tively, andλα andρβ are formulas corresponding to conjugates.

To get the sequent calculus of the logic determined by the variety RL⊥, we
need moreover the following initial sequents:

(T) Γ ⇒ ⊤,
(B) Γ,⊥,∆ ⇒ γ.

From a logical point of view, our theorems in Section 3 and 4 have the follow-
ing meaning.
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Corollary 8. 1. There are uncountably many maximal consistent logics
over the logicInFL′+ (R)+ (T) + (B)+(α · α⇒ α).

2. On the other hand, there exists a single maximal consistent logics over
InFL

′+ (R)+ (T)+ (B)+(α ·α⇒ α)+ (α⇒ α ·α), except the classical
logic.
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