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Roland HINNION

ULTRAFILTERS (WITH DENSE ELEMENTS)

OVER CLOSURE SPACES

A b s t r a c t. Several notions and results that are useful

for directed sets (and their applications) can be extended to the

more general context of closure spaces; inter alia the so-called "fi-

nite intersection property" and the existence of special ultrafilters

(namely ultrafilters which elements are dense) on such structures.

.1 Introduction

Our source of inspiration is the case of the directed sets, that have been

studied for their topological applications ([5], [6], [7]), but showed also in-

teresting links with infinite combinatorics, large cardinals and ultrafilters

([2], [3], [4], [5], [6], [7]).

A careful analysis shows that some of the involved notions and results con-

cern essentially the implicit "closure space" aspect, and that this allows
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generalizations.

The notion of "breakpoint" for example is present in several fields, but has

not (as far as we know) been studied in a unified way; the same can be said

for the notion of "measurability" (using ultrafilters). We study this here in

a rather large context, namely the one of "closure spaces", and show the

links relating those matters with the "finite intersection property".

At the end we discuss the case of the partial orders.

.2 Basic definitions and facts

Definition 2.1. A "closure space" is a non-empty set E provided with

a "closure operator" Cℓ : PE → PE (where PE is the powerset of E)

satisfying the following conditions :

1. X ⊂ Cℓ X

2. Cℓ Cℓ X = Cℓ X

3. X ⊂ Y → Cℓ X ⊂ CℓY

Definition 2.2. A closure space E is "acyclic" iff ∀x ∈ E, Cℓ{x} 6= E.

This terminology is inspired by the one used for groups; any group can be

seen as a "closure space" for the operator "subgroup generated by".

Definition 2.3. A subset X of a closure space E is

• "dense" iff Cℓ X = E

• "strictly dense" iff Cℓ X = E and Cℓ(E \X) 6= E

• "closed" iff Cℓ X = X

Notice that the empty set ∅ is never dense in an acyclic closure space E.

Definition 2.4. A partition F of an acyclic closure space E is "fatal"

iff no element X of F is dense in E.

Remark. We will de facto only be interested in acyclic closure spaces;

and for these the existence of a "fatal" partition is obviously guaranteed.
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Definition 2.5. The "breakpoint" of an acyclic closure space E is the

least possible cardinal for a fatal partition of E (notation : δE).

Fact 2.6. δE is exactly the least possible cardinal of a covering of E by

proper closed subsets.

Proof. Let C = (Xα)α<θ be a covering of space E by proper closed

subsets. We define inductively a sequence (Yα)α<θ by the formula Yα =

Xα \ U{Xβ : β < α}. Then {Yα : α < θ} is a partition of E into non-dense

sets. 2

Fact 2.7. For an acyclic closure space E :

2 ≤ δE ≤ |E|.

Fact 2.8. For each cardinal δ ≥ 2, there exists an acyclic closure space

M such that δM = δ.

Proof. Take (f.ex.) M = δ, with
{

Cℓ X = M iff |X| ≥ 2

Cℓ X = X iff |X| < 2

Notice that this shows that the breakpoint is not necessarily a regular car-

dinal. 2

.3 Some examples

3.1. Any topological space is obviously a closure space, satisfying the

extra condition that finite unions of closed subsets are still closed. Notice

that the breakpoint δE is not necessarily exactly the additivity κE := the

largest cardinal κ such that any κ-finite intersection of open sets is an open

set.

Counter-example: R with the usual topology; here δ = 2, while

κ = ℵ0.

All that can be said in general is that δE ≤ κE (easy proof).

3.2. A partial order (E,≤) is a closure space for the “downards closure"

operator :

(X] := {y ∈ E|∃x ∈ X y ≤ x} .
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E is then at the same time a topological space and an “algebraic" closure

space (i.e. one where CℓX = ∪{Cℓ Y |Y ⊂ X and Y is finite}).

Notice that the condition of “being acyclic" corresponds here to the fact

that there is no maximum element in E.

3.3. For a non-empty directed set D without maximum element, with

Cℓ X := (X], the breakpoint δD is exactly the “characteristic" ([2], [3], [5],

[6]), and is necessarily a regular cardinal.

3.4. A group (G, ·) is a closure space for Cℓ X := the subgroup

generated by X; and G is then “acyclic" iff G is not a “cyclic group".

One can easily show that δG > 2 for any group G. In the case of (Z×Z,+)

for example, the breakpoint is 3 : just consider the 3 subgroups respectively

defined by :

• the elements which first component is even

• the elements which second component is even

• the elements having both components of same parity.

Other example : the breakpoint of (Q,+) is ℵ0.

3.5. A vector space is a closure space for Cℓ X := the subspace gen-

erated by X (“linear span"). In the case of R3 for example, the breakpoint

is 2ℵ0 .

Indeed : the set of all 1-dimensional subspaces is a covering of cardinality

2ℵ0 . So the breakpoint is at most 2ℵ0 .

Further can any covering by proper subspaces be reduced to a minimal

list of distinct elements, all of dimension 1 or 2, and such that no element

of dimension 1 is ever included in an element of dimension 2; and such a

non-redundant list is obviously at least of cardinality 2ℵ0 .

3.6. In the order structure (N,≤) with CℓX := (X], the dense subsets

are the “cofinal" ones, and the “strictly dense subsets" are the “cofinite"

ones.
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.4 Families of dense subsets

Notation 4.1. For an acyclic closure space E, we will be particularly

interested in several properties for the following families :

D(E) = {X|X ⊂ E and X is dense in E}

SD(E) = {X|X ⊂ E and X is strictly dense in E}

Definition 4.2. A family F of subsets of E has the "FIP" ("finite

intersection property"; see [1]) iff any finite intersection of elements of F is

non-empty ("finite intersection" : "intersection of finitely many").

Properties 4.3. Let E be an acyclic space. Then :

4.3.1. If A ⊂ B ⊂ E and A ∈ SD(E), then B ∈ SD(E)

4.3.2. If A ∈ SD(E) and B ∈ SD(E), then A ∩B 6= ∅

4.3.3. If δE ≥ 4 and A,B ∈ SD(E), then A ∩B ∈ D(E)

4.3.4. If δE ≥ ℵ0, then any finite intersection of elements of SD(E)

belongs to D(E); a fortiori : SD(E) has the FIP

4.3.5. If 2 < δE < ℵ0, then SD(E) does not have the FIP.

Hint : consider a fatal partition {A0, A1, A2, . . . , Aδ−1}; then
⋂

i<δ(E\Ai) =

∅, with each E \ Ai strictly dense.

Remark 4.4. Property 4.3.3 is "optimal" in the sense that for δE = 2

and δE = 3, the implication does not necessarily hold.

Counter-examples :

1. E = {1, 2, 3, 4}, with

ClX :=

{

X if |X| ≤ 2

E if |X| ≥ 3

Here δE = 2, both {1, 2, 3} and {2, 3, 4} are strictly dense, but {1, 2, 3}∩

{2, 3, 4} is not dense.
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2. E = {1, 2, 3}, with

ClX :=

{

X if |X| ≤ 1

E if |X| ≥ 2

Here δE = 3, both {1, 2} and {2, 3} are strictly dense, but {1, 2} ∩

{2, 3} is not dense.

Conclusion 4.5. For any acyclic closure space E :

1. δE ≥ ℵ0 → SD(E) has the FIP

2. (δE < ℵ0 and SD(E) has the FIP) → δE = 2

Remark 4.6. D(E) seldom has the FIP, even when δE is infinite (cf.

the examples in section 3).

.5 Particular ultrafilters on acyclic closure spaces

Let us recall that any family having the FIP can be extended to an ultrafilter

(see e.g. [1]). Therefore, SD(E) has FIP if and only if it is contained in

some ultrafilter.

We discuss this here for the family SD(E), with E an acyclic closure space.

Fact 5.1. If δE > 2 and SD(E) ⊂ U (an ultrafilter), then U ⊂ D(E).

Proof. By the hypotheses, SD(E) should have the FIP; by Property

4.3.5 : δE ≥ ℵ0.

So take u ∈ U and suppose u /∈ D(E).

Now {u,E \ u} is a partition of E, and cannot be fatal (because δE > 2).

So E \ u should be dense, and even strictly dense (because we supposed

u /∈ D(E)). But then E \ u ∈ U : a contradiction. 2

Fact 5.2. If (an ultrafilter) U ⊂ D(E), then SD(E) ⊂ U and δE ≥ ℵ0.

Proof. Consider a strictly dense subset X of E. If X /∈ U , then

E \ X ∈ U , and so (by our hypothesis) E \ X is dense, contradicting the

definition of "strictly dense" (for X).

So SD(E) ⊂ U , and SD(E) has the FIP, excluding 3 ≤ δE < ℵ0 (by

property 4.3.5). The situation δE = 2 is also excluded, because for any
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Y ⊂ E, necessarily Y or E \ Y is in U , so that no partition into two pieces

can ever be fatal.

Conclusion : δE ≥ ℵ0. 2

Fact 5.3. If δE ≥ ℵ0, then any ultrafilter U realizing SD(E) ⊂ U or

U ⊂ D(E) realizes these both conditions, and is necessarily non-principal.

Proof. Combine facts 5.1 and 5.2, and remember that no singleton

can be dense in E (acyclic). 2

Fact 5.4. If δE < ℵ0, then no ultrafilter U can realize U ⊂ D(E).

Proof. If δE < ℵ0 and U ⊂ D(E), there exists a finite fatal partition;

one piece should be in U , so should be dense, contradicting the definition

of "fatal" partition. 2

Synthesis 5.5 (for E acyclic closure space).

1. when δE is infinite, there do exist ultrafilters U such that SD(E) ⊂

U ⊂ D(E); these U are necessarily non-principal;

2. when δE is finite but > 2, no ultrafilter U can ever realize U ⊂ D(E),

nor SD(E) ⊂ U ;

3. when δE = 2, no ultrafilter U can ever realize U ⊂ D(E).

Remark. In case 3., the existence of an ultrafilter U such that

SD(E) ⊂ U is not necessarily excluded; section 7 provides related examples.

5.6. Remarks about δE-complete ultrafilters.

As usually, "δE-complete" means "closed under δE-finite intersections". It

is easy to see that, when δE is infinite, SD(E) has the δE-FIP (i.e. any

δE-finite intersection of elements of SD(E) is non-empty), but has not the

δ+E -FIP (δE being the successor cardinal of δ). So that, if some ultrafilter U

extends SD(E) (or, equivalently, is included in D(E)) and is δE-complete,

necessarily this U cannot be δ+E -complete. Then by the classical result [1],

proposition 4.2.7, δE has to be a measurable cardinal. On the other hand, if

δE is strongly compact (i.e. any δE-complete filter can be extended to a δE-

complete ultrafilter), obviously SD(E) can be extended to a δE-complete

ultrafilter.
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.6 Application : the case of the ordered sets

We explore here the class of the ordered sets without maximum element

seen as (acyclic) closure spaces, via the closure operator Cl(X) := (X] (see

3.2).

6.1. Case where E is directed

Then the breakpoint δE is a regular (infinite) cardinal (see 3.3), so that

SD(E) does have the FIP (see 4.5) and there exist ultrafilters U such that

SD(E) ⊂ U ⊂ D(E). Remember that the dense subsets are the cofinal

ones, in this context.

The concerned ultrafilters are necessarily non-principal.

6.2. Case were E is not directed

Then δE is necessarily 2 : take a, b such that {a, b} has no upper bound in

E; then {[a), E \ [a)} is a fatal partition. Notice also that no ultrafilter U

on E can realize U ⊂ D(E) (fact 5.4).

What can be said about ultrafilters U realizing SD(E) ⊂ U ?

That question is closely related to the presence of maximal elements in E.

Theorem 6.2.1. If E has no maximal elements, then SD(E) has not

the FIP (and so SD(E) ⊂ U (ultrafilter) is excluded).

Proof.1

Step 1. There exist A,B, disjoint dense subsets of E.

Step 2. As E is not directed, some pair {x, y} ⊂ E has no (upper)

bound. Then nor [x), nor E \ [x) can be dense in E.

Step 3. Consider A,B as in step 1, and x, y as in step 2. Now the sets

A ∪ [x), B ∪ [x), A ∪ (E \ [x)), B ∪ (E \ [x)) are all strictly dense because

they extend dense subsets, and their complements are respectively parts of

E \ [x), E \ [x), [x), [x), which are not dense.

But the intersection of the 4 so constructed strictly dense subsets of E is

obviously empty. 2

6.2.2 Case where E is not directed, but admits maximal ele-

ments.

Let M be the (non-empty) set of the maximal elements of E. Then

necessarily SD(E) does have the FIP, as any dense subset X will contain

1This proof is due to Armin Rigo and Olivier Esser
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M . So in any case SD(E) can be extended into an ultrafilter U . Can one

hope to have non-principal ones ? The answer is given by

Theorem 6.2.3. There exists a non-principal ultrafilter SD(E) ⊂ U

iff M is infinite.

Proof.

• Suppose M (6= ∅) is finite and SD(E) ⊂ U , a non-principal ultrafilter.

Consider E′ := E \ (M ].

If E′ = ∅, then M is strictly dense, so M ∈ U : a contradiction.

If E′ 6= ∅, construct (as in step 1 of the proof of theorem 6.2.1) disjoint

sets A and B, both dense in E′. Now A∪M and B∪M are obviously

strictly dense in E, so should belong to U . But their intersection is

exactly M (finite) : a contradiction.

• Suppose M is infinite. Just put some non-principal ultrafilter U ′ on

M , and define U := {X|X ⊂ E and X ∩M ∈ U ′}.

Then U is obviously a non-principal ultrafilter on E. Further, if X is

dense in E, necessarily M ⊂ X, so that SD(E) ⊂ U . 2

6.2.4. In the proof of theorems 6.2.1 and 6.2.3 we used disjoint dense

subset A and B : their existence is guaranteed in any partial order without

maximal elements, but not necessarily for general acyclic closure spaces !

Counter-example : E = the group Z2 × Z2, with addition modulo 2,

and Cℓ(X) := the subgroup generated by X. Here the dense subsets are

exactly : Z2 × Z2, Z2 × {1}, {1} × Z2, which are not pairwise disjoint.
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