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Roland HINNION

ULTRAFILTERS (WITH DENSE ELEMENTS)
OVER CLOSURE SPACES

A bstract. Several notions and results that are useful
for directed sets (and their applications) can be extended to the
more general context of closure spaces; inter alia the so-called "fi-
nite intersection property" and the existence of special ultrafilters

(namely ultrafilters which elements are dense) on such structures.

1. Introduction

Our source of inspiration is the case of the directed sets, that have been
studied for their topological applications ([5], [6], [7]), but showed also in-
teresting links with infinite combinatorics, large cardinals and ultrafilters
(21, 13, 41, 5], [6], [7]).

A careful analysis shows that some of the involved notions and results con-
cern essentially the implicit "closure space" aspect, and that this allows
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generalizations.

The notion of "breakpoint" for example is present in several fields, but has
not (as far as we know) been studied in a unified way; the same can be said
for the notion of "measurability" (using ultrafilters). We study this here in
a rather large context, namely the one of "closure spaces", and show the
links relating those matters with the "finite intersection property".

At the end we discuss the case of the partial orders.

2. Basic definitions and facts

Definition 2.1. A "closure space" is a non-empty set E provided with
a "closure operator" C¢ : PE — PE (where PE is the powerset of E)
satisfying the following conditions :

1. Xcdl X
2201t X =0t X

3. XCY—->CltXcCCly

Definition 2.2. A closure space E is "acyclic" iff Vo € E, Cl{z} # E.

This terminology is inspired by the one used for groups; any group can be
seen as a "closure space" for the operator "subgroup generated by".

Definition 2.3. A subset X of a closure space F is
e "dense" iff C4 X = F
o "strictly dense" iff C4/ X = F and CU(E\ X) # E

e "closed" if C/ X = X

Notice that the empty set () is never dense in an acyclic closure space E.

Definition 2.4. A partition F of an acyclic closure space F is "fatal"
iff no element X of F is dense in E.

Remark. We will de facto only be interested in acyclic closure spaces;
and for these the existence of a "fatal" partition is obviously guaranteed.
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Definition 2.5. The "breakpoint" of an acyclic closure space F is the
least possible cardinal for a fatal partition of F (notation : dg).

Fact 2.6. 0 is exactly the least possible cardinal of a covering of E by
proper closed subsets.

Proof. Let C = (X4)a<s be a covering of space E by proper closed
subsets. We define inductively a sequence (Y )a<g by the formula Y, =
Xo \U{X3: 8 < a}. Then {Y, : o < 6} is a partition of F into non-dense
sets. O

Fact 2.7. For an acyclic closure space E :

2 < 0 < |B|.

Fact 2.8. For each cardinal § > 2, there exists an acyclic closure space
M such that 6 = 6.

Proof. Take (f.ex.) M =4, with

ClX =DM iff |[X|>2
CeX=X iff |X|<2

Notice that this shows that the breakpoint is not necessarily a regular car-
dinal. O

3. Some examples

3.1. Any topological space is obviously a closure space, satisfying the
extra condition that finite unions of closed subsets are still closed. Notice
that the breakpoint dg is not necessarily exactly the additivity kg := the
largest cardinal x such that any k-finite intersection of open sets is an open
set.

Counter-example: R with the usual topology; here 6 = 2, while
KR = No.
All that can be said in general is that dp < kg (easy proof).

3.2. A partial order (E, <) is a closure space for the “downards closure"

operator :
(X]:={yeEFreX y<uz}.
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FE is then at the same time a topological space and an “algebraic" closure
space (i.e. one where C/X = U{C?Y|Y C X and Y is finite}).

Notice that the condition of “being acyclic" corresponds here to the fact
that there is no maximum element in FE.

3.3. For a non-empty directed set D without maximum element, with
Cl X := (X], the breakpoint dp is exactly the “characteristic" ([2], [3], [5],
[6]), and is necessarily a regular cardinal.

3.4. A group (G,-) is a closure space for C¢ X := the subgroup
generated by X; and G is then “acyclic" iff G is not a “cyclic group".
One can easily show that dg > 2 for any group G. In the case of (Z X Z,+)
for example, the breakpoint is 3 : just consider the 3 subgroups respectively
defined by :

e the elements which first component is even
e the elements which second component is even
e the elements having both components of same parity.

Other example : the breakpoint of (Q,+) is V.

3.5. A vector space is a closure space for C'¢ X := the subspace gen-
erated by X (“linear span"). In the case of R? for example, the breakpoint
is 2%,

Indeed : the set of all 1-dimensional subspaces is a covering of cardinality
280 So the breakpoint is at most 280,

Further can any covering by proper subspaces be reduced to a minimal
list of distinct elements, all of dimension 1 or 2, and such that no element
of dimension 1 is ever included in an element of dimension 2; and such a
non-redundant list is obviously at least of cardinality 2%0.

3.6. In the order structure (N, <) with C¢X := (X], the dense subsets
are the “cofinal" ones, and the “strictly dense subsets" are the “cofinite"
ones.
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4. Families of dense subsets

Notation 4.1. For an acyclic closure space E, we will be particularly
interested in several properties for the following families :

D(E) = {X|X CE and X is dense in E}
SD(E) = {X|X C E and X is strictly dense in E}

Definition 4.2. A family F of subsets of E has the "FIP" ("finite
intersection property"; see [1]) iff any finite intersection of elements of F is
non-empty ("finite intersection" : "intersection of finitely many").

Properties 4.3. Let F be an acyclic space. Then :
43.1. f ACBC E and A € SD(E), then B € SD(E)
4.3.2. If A€ SD(F) and B € SD(E), then ANB # ()
4.3.3. If g >4 and A, B € SD(E), then AN B € D(E)

4.3.4. If 0 > Ny, then any finite intersection of elements of SD(FE)
belongs to D(E); a fortiori : SD(E) has the FIP

4.3.5. If 2 < 0 < Ng, then SD(E) does not have the FIP.
Hint : consider a fatal partition {Ag, A1, Aa, ..., As_1}; then [, s(E\4;) =
(), with each E'\ A; strictly dense.

Remark 4.4. Property 4.3.3 is "optimal" in the sense that for g = 2
and 6 = 3, the implication does not necessarily hold.

Counter-examples :

1. E={1,2,3,4}, with

X i |X]<2
ClX = -
{ E if |X|>3

Here 6 = 2, both {1, 2,3} and {2, 3,4} are strictly dense, but {1,2,3}N
{2,3,4} is not dense.
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2. E = {1,2,3}, with

X if |X|<1
X = =
cl { E if |X|>2
Here 6 = 3, both {1,2} and {2,3} are strictly dense, but {1,2} N
{2,3} is not dense.

Conclusion 4.5. For any acyclic closure space E :
1. 0 > Xg — SD(F) has the FIP

2. (0g <N and SD(FE) has the FIP) — 0 = 2

Remark 4.6. D(E) seldom has the FIP, even when dg is infinite (cf.
the examples in section 3).

5. Particular ultrafilters on acyclic closure spaces

Let us recall that any family having the FIP can be extended to an ultrafilter
(see e.g. [1]). Therefore, SD(FE) has FIP if and only if it is contained in
some ultrafilter.

We discuss this here for the family SD(F), with E an acyclic closure space.

Fact 5.1. Ifdr > 2 and SD(E) C U (an ultrafilter), then Y C D(E).
Proof. By the hypotheses, SD(E) should have the FIP; by Property
So take u € U and suppose u ¢ D(E).
Now {u, E \ u} is a partition of F, and cannot be fatal (because dg > 2).
So E \ u should be dense, and even strictly dense (because we supposed
u ¢ D(E)). But then E'\ v € U : a contradiction. O

Fact 5.2. If (an ultrafilter) U C D(E), then SD(E) C U and 6 > V.
Proof.  Consider a strictly dense subset X of E. If X ¢ U, then
E\ X € U, and so (by our hypothesis) E'\ X is dense, contradicting the
definition of "strictly dense" (for X).
So SD(E) C U, and SD(FE) has the FIP, excluding 3 < g < ¥g (by
property 4.3.5). The situation 0 = 2 is also excluded, because for any
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Y C E, necessarily Y or E'\ Y is in U, so that no partition into two pieces
can ever be fatal.
Conclusion : g > Ng. O

Fact 5.3. If g > N, then any ultrafilter U realizing SD(E) C U or
U C D(E) realizes these both conditions, and is necessarily non-principal.

Proof. Combine facts 5.1 and 5.2, and remember that no singleton
can be dense in E (acyclic). O

Fact 5.4. If 65 < W, then no ultrafilter U can realize U C D(E).

Proof. If 0 < Ng and U C D(E), there exists a finite fatal partition;
one piece should be in U, so should be dense, contradicting the definition
of "fatal" partition. O

Synthesis 5.5 (for E acyclic closure space).

1. when 0 is infinite, there do exist ultrafilters ¢ such that SD(E) C
U C D(E); these U are necessarily non-principal;

2. when Jg is finite but > 2, no ultrafilter ¢ can ever realize U C D(E),
nor SD(FE) C U;

3. when 0g = 2, no ultrafilter & can ever realize Y C D(E).

Remark. In case 3., the existence of an ultrafilter U/ such that
SD(FE) C U is not necessarily excluded; section 7 provides related examples.

5.6. Remarks about dg-complete ultrafilters.

As usually, "dg-complete" means "closed under dg-finite intersections". It
is easy to see that, when Jg is infinite, SD(FE) has the dg-FIP (i.e. any
dp-finite intersection of elements of SD(E) is non-empty), but has not the
§1-FIP (6g being the successor cardinal of §). So that, if some ultrafilter ¢/
extends SD(FE) (or, equivalently, is included in D(E)) and is dg-complete,
necessarily this ¢ cannot be §-complete. Then by the classical result [1],
proposition 4.2.7, §g has to be a measurable cardinal. On the other hand, if
0 is strongly compact (i.e. any dg-complete filter can be extended to a dp-
complete ultrafilter), obviously SD(F) can be extended to a dg-complete
ultrafilter.
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6. Application : the case of the ordered sets

We explore here the class of the ordered sets without maximum element

seen as (acyclic) closure spaces, via the closure operator Cl(X) := (X] (see
3.2).

6.1. Case where F is directed

Then the breakpoint 0z is a regular (infinite) cardinal (see 3.3), so that
SD(E) does have the FIP (see 4.5) and there exist ultrafilters ¢ such that
SD(E) C U C D(E). Remember that the dense subsets are the cofinal
ones, in this context.

The concerned ultrafilters are necessarily non-principal.

6.2. Case were F is not directed

Then dg is necessarily 2 : take a,b such that {a,b} has no upper bound in
E; then {[a), E \ [a)} is a fatal partition. Notice also that no ultrafilter &/
on E can realize U C D(FE) (fact 5.4).

What can be said about ultrafilters U realizing SD(E) C U ?

That question is closely related to the presence of maximal elements in F.

Theorem 6.2.1. If E has no maximal elements, then SD(FE) has not
the FIP (and so SD(E) C U (ultrafilter) is excluded).

Proof.!

Step 1. There exist A, B, disjoint dense subsets of E.

Step 2. As F is not directed, some pair {z,y} C E has no (upper)
bound. Then nor [z), nor E \ [x) can be dense in E.

Step 3. Consider A, B as in step 1, and x,y as in step 2. Now the sets
AUlz), BU|z), AU(E\ [z)), BU(E\ [z)) are all strictly dense because
they extend dense subsets, and their complements are respectively parts of
E\ [z), E\ [z), [x), [z), which are not dense.

But the intersection of the 4 so constructed strictly dense subsets of F is
obviously empty. a

6.2.2 Case where E is not directed, but admits maximal ele-
ments.

Let M be the (non-empty) set of the maximal elements of E. Then
necessarily SD(F) does have the FIP, as any dense subset X will contain

!This proof is due to Armin Rigo and Olivier Esser
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M. So in any case SD(F) can be extended into an ultrafilter /. Can one
hope to have non-principal ones ? The answer is given by

Theorem 6.2.3. There exists a non-principal ultrafilter SD(E) C U
iff M is infinite.

Proof.

e Suppose M (# 0) is finite and SD(E) C U, a non-principal ultrafilter.
Consider E' := E'\ (M].
If E' = (), then M is strictly dense, so M € U : a contradiction.
If E' # (), construct (as in step 1 of the proof of theorem 6.2.1) disjoint
sets A and B, both dense in E’. Now AUM and BU M are obviously
strictly dense in E, so should belong to /. But their intersection is
exactly M (finite) : a contradiction.

e Suppose M is infinite. Just put some non-principal ultrafilter ¢’ on
M, and define Y :={X|X C Eand XN M e€U'}.
Then U is obviously a non-principal ultrafilter on E. Further, if X is
dense in E, necessarily M C X, so that SD(E) C U. O

6.2.4. In the proof of theorems 6.2.1 and 6.2.3 we used disjoint dense
subset A and B : their existence is guaranteed in any partial order without
maximal elements, but not necessarily for general acyclic closure spaces !

Counter-example : E = the group Zsy X Zso, with addition modulo 2,
and CY(X) := the subgroup generated by X. Here the dense subsets are
exactly : Zo X Zo, Zo x {1}, {1} X Zg, which are not pairwise disjoint.
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