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Abstract. Automatic differentiation is an often superior alternative to nu-

merical differentiation that is yet unregarded for calculating derivatives in the

optimization of imaging optical systems. We show that it is between 8% and

34% faster than numerical differentiation with central difference when optimiz-

ing various optical systems.
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1. Introduction

The goal in lens design is to create an optical system for a specific application with
optimum image quality while meeting constraints such as costs or dimensions. In
the first step, the designer selects a starting system that approximately performs the
imaging task. The number, type and position of optical surfaces are determined in
this step.

The next step is to choose the remaining free parameters, such as radii and
distances between surfaces, to maximize the image quality, which is measured by
a function f : X → R

+ mapping parameters x ∈ X to a nonnegative real value
combining aberrations and deviations from desired system properties [1]. The min-
imization of the merit function f is a problem of mathematical optimization [2]. In
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lens design, mainly the Levenberg-Marquardt [4] algorithm is used. This and simi-
lar algorithms require at least first order derivatives of the merit function [2]. How
to efficiently calculate these derivatives is the main topic of this manuscript. With
freeform surfaces becoming more popular, speed again becomes an issue due to the
heavily increased number of variables.

In general there are several ways to calculate derivatives. Consider the function

f(x, y) = (3x+ xy)2. (1)

Symbolic differentiation directly manipulates this formula to produce formulas for
the partial derivatives, e.g.

∂

∂x
f(x, y) = 2(3x+ xy)(3 + y). (2)

Unfortunately merit functions cannot usually be expressed in an algebraic form like
Eq. (1). They often contain components based on ray tracing, e.g. the root mean
square (rms) spot size. For various surfaces like aspheres, the intersection point of a
ray with a surface cannot be calculated directly. Instead, Newton’s method is used.
Therefore an algebraic representation of the merit function is not readily available
and symbolic differentiation is not a viable option. The commonly used alternative
is numerical differentiation [2, 3], e.g. by central differences

∂

∂x
f(x, y) ≈

f(x+ h, y)− f(x− h, y)

2h
. (3)

Numerical differentiation is easy to implement but of course only yields approxima-
tions of the derivatives.

There is yet another method for calculating derivatives that is especially suitable
for functions evaluated by a computer program: automatic differentiation [5, 6, 7]. It
usually yields exact values for derivatives (to machine accuracy) [7]. The application
of automatic differentiation in lens design has not been published previously.

2. Automatic differentiation

Consider again Eq. (1). The so called forward mode of automatic differentiation does
not produce symbolic representations of the derivatives like Eq. (2) but calculates
the values of the derivatives at only one specific point (x, y) during execution of the
computer program evaluating f at point (x, y). To do so, for each program variable,
the values of its derivatives with respect to x and y are calculated along with its
value. The usual rules of differentiation like product rule and chain rule are applied
to each atomic step of the computer program. Table 1 shows a program to evaluate
formula (1) and the extension to also calculate the derivatives. t6 = f(x, y) is the
desired function value and ∇t = ( ∂

∂x
t, ∂

∂y
t) is the gradient vector. Columns in gray

show the values during program execution when started with x = 5 and y = 7.
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Table 1.: Program to evaluate formula (1) and its derivatives. Notation borrowed from Rall and
Corliss [8]

t1 = x = 5 ∇t1 = (1, 0) = (1, 0)
t2 = y = 7 ∇t2 = (0, 1) = (0, 1)
t3 = 3t1 = 15 ∇t3 = 3∇t1 = (3, 0)
t4 = t1t2 = 35 ∇t4 = t1∇t2 + t2∇t1 = (7, 5)
t5 = t3 + t4 = 50 ∇t5 = ∇t3 +∇t4 = (10, 5)
t6 = (t5)

2 = 2500 ∇t6 = 2t5∇t5 = (1000, 500)

There are different tools available that create the extensions necessary for calcu-
lating derivatives. A detailed and excellent introduction to automatic differentiation
is given by Rall and Corliss [8].

3. Evaluation

We compare the performance of automatic differentiation to numerical differentiation
when optimizing various optical systems. We implemented our own framework for
optimizing optical systems [9], which includes ray tracing and a merit function based
on the rms spot size. Optimization algorithms used are the Levenberg-Marquardt
(LM) implementation from C/C++ Minpack [10] and SLSQP from NLopt [11].
Derivatives are calculated by automatic differentiation (AD) with the tapeless for-
ward mode of ADOL-C [12] and by numerical differentiation with forward difference

(ND1) ∂
∂x

f(x, y) ≈ f(x+h,y)−f(x,y)
h

and with central difference (ND2) as in Eq. (3).
We choose h = max{

√
ǫm · |x|,

√
ǫm} · sgnx with ǫm being the machine accuracy,

which is 2−52 ≈ 2.2 · 10−16 for the data type double. This choice of h conforms to
the recommendation by Press et al. [13]. Correctness of computations is verified on
various levels [9]. Four optical systems are used for evaluation: An apochromat-like
system with three cemented glasses and small field; a Double Gauss lens; a compact
photographic lens from a U.S. patent; and a lens for a compact point-and-shoot
camera [14] containing two aspherical surfaces. The systems have 5, 8, 11 and 14
parameters set as variables for optimization, respectively. The complete system
parameters and definitions of the merit functions are listed in the appendix.

Table 2 shows the solutions found by the optimization algorithms in combination
with the different modes of differentiation. In addition, it shows the solutions found
by the commercial optical design program Zemax.

When forward difference is used, the algorithms often fail to converge to the
proper local minimum. Therefore forward difference is not suitable for optimization
of optical systems.

The Point & Shoot lens is a rare example where central difference with the
Levenberg-Marquardt algorithm fails. In general we found that, using LM, numerical
differentiation with central difference works as well as automatic differentiation. We
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do not know which method of differentiation Zemax uses. It may be possible that
a different LM implementation also finds the proper local minimum using central
difference.

To ensure that the data indeed only reflects the effects of differentiation and is
not influenced by starting points lying in the fractal region of the solution space
[15], the starting points have been randomly perturbed at relative scales of 10−9 to
10−4. All optimizations with LM starting from the new points led to the same local
minima.

Table 2.: Merit function values after optimization

Apochromat Double Gauss U.S. 4223982 Point & Shoot

LM ND1 7.60394 ·10−4 1.04366 ·10−2 9.77262 · 10−3 1.00915 ·10−2

ND2 6.70740 ·10−4 1.04316 ·10−2 9.76228 ·10−3 1.25302 ·10−2

AD 6.70740 ·10−4 1.04316 ·10−2 9.76229 ·10−3 6.31551 ·10−3

SLSQP ND1 5.07001 ·10−3 1.21951 ·10−2 9.81915 ·10−3 1.32293 ·10−2

ND2 9.94167 ·10−4 1.04316 ·10−2 9.76227 ·10−3 1.16099 ·10−2

AD 6.70740 ·10−4 1.04316 ·10−2 9.76227 ·10−3 6.31551 ·10−3

Zemax 6.70741 ·10−4 1.04316 ·10−2 9.76234 ·10−3 6.31553 ·10−3

To explain the previous results, the accuracy of numerical differentiation is shown
in Tab. 3. Derivatives of the merit function are calculated with respect to each
variable at three different configurations of each system. Accuracy is defined as
the minimum of the absolute and the relative difference between the value obtained
by numerical differentiation and the value obtained by automatic differentiation.

Relative difference of a and b is calculated as |a−b|

max{|a|,|b|} . The worst cases are the

derivatives with respect to the first radius for the Apochromat and the 6th order
aspheric term for the Point & Shoot lens. The combinations that have the worst
worst cases (Apochromat with ND1, Point & Shoot with ND1 and ND2) are also
the combinations where optimization with LM fails.

Table 3.: Accuracy of the derivatives of the merit function

Forward Diff. Central Diff.
Worst Median Worst Median

Apochromat 2 · 10−1 7 · 10−5 2 · 10−4 1 · 10−9

Double Gauss 9 · 10−4 6 · 10−7 5 · 10−8 6 · 10−10

U.S. 4223982 1 · 10−3 1 · 10−6 4 · 10−8 2 · 10−9

Point & Shoot 5 · 10−1 1 · 10−5 8 · 10−2 3 · 10−9

Table 4 shows the relative speed of the different modes of differentiation, i.e. the
number of gradients of the merit function calculated per second by the respective
method, divided by the number of gradients calculated by central difference. Auto-
matic differentiation is consistently faster than numerical differentiation with central
difference.
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Table 4.: Relative speed of differentiation

ND1 ND2 AD

Apochromat 1.82 1.00 1.14
Double Gauss 1.90 1.00 1.30
U.S. 4223982 1.92 1.00 1.34
Point & Shoot 1.93 1.00 1.08

4. Conclusions

When optimizing optical systems, numerical differentiation with forward difference
is often not a viable option due to lack of accuracy. Automatic differentiation is more
accurate and between 8% and 34% faster than numerical differentiation with central
difference for the four optical systems analyzed. Therefore automatic differentiation
can replace numerical differentiation in the optimization of optical systems with the
respective gain in speed.
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A. Systems

Table 5 shows the details of the systems used for evaluation. Variables set for
optimization are printed in bold. Lens data for U.S. 4223982 is taken from example
1 of the patent. The stop has been placed at a distance of 2 mm from the fourth
surface. Glasses have been replaced by SF53, LAF13, N-SK5, SF53, LAK10 and
LAK13, respectively. The radius of the last surface is automatically chosen to achieve
a focal length of 100 mm. All other radii and the distance to the image plane are
set as variables for optimization. The fourth system is the lens for compact point-

and-shoot camera from Kidger [14]. All radii and (pre-existing) conic constants and
aspheric coefficients are set as variables for optimization.

For all systems the merit function is generated by the default merit function
functionality of Zemax using the following parameters: rms spot radius centroid;
Gaussian quadrature with 3 rings (7 rings for Point & Shoot) and 6 arms; and an
overall weight of 1. For the Apochromat and the Double Gauss lens the Zemax
operand EFFL with parameters wave 2, target 100 and weight 1 is added to the
merit function to achieve a focal length of 100 mm. For the Point & Shoot lens the
Zemax operand EFFL with parameters wave 2, target 35 and weight 1 is added.
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Table 5.: System specifications. Angles are given in degree, wavelengths in µm and all other
lengths in mm.

(a) Apochromat: lens data.

Radius Thickness Glass

OBJ Infinity 0.0000
STO 60.6053 2.0000 F2

2 -38.2839 2.0000 KZFSN5
3 28.5790 2.0000 N-FK51A
4 -74.2175 98.3228

IMA Infinity 0.0000

(b) Double Gauss: lens data.

Radius Thickness Glass

OBJ Infinity 0.0000
1 54.1532 8.7467 SK2
2 152.5219 0.5000
3 35.9506 14.0000 SK16
4 Infinity 3.7770 F5
5 22.2699 14.2531

STO Infinity 12.4281
7 -25.6850 3.7770 F5
8 Infinity 10.8339 SK16
9 -36.9802 0.5000

10 Infinity 6.8582 SK16
11 -67.1476 57.3145

IMA Infinity 0.0000

(c) Apochromat: other properties.

Aperture 10; Entrance Pupil Diameter
Field Angle; Radial

(0, 0), (0, 0.7), (0, 1)
Wavelengths 0.4861327, 0.5875618,

0.6562725

(d) Double Gauss: other properties.

Aperture 30; Entrance Pupil Diameter
Field Angle; Radial

(0, 0), (0, 10), (0, 14)
Wavelengths 0.4861, 0.5876, 0.6563

(e) U.S. 4223982: other properties.

Aperture Float By Stop Size
Semi-Diameter 8.198

Field Angle; Radial
(0, 0), (0, 16.8), (0, 24)

Wavelengths 0.4861, 0.5876, 0.6563

(f) Point & Shoot: other properties.

Aperture Float By Stop Size
Semi-Diameter 3.355

Field Angle; Radial
(0, 0), (0, 18), (0, 25), (0, 31)

Wavelengths 0.4861, 0.5876, 0.6563


