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Abstract. We consider a Dirichlet boundary value problem driven by the
p-Laplacian with the right hand side being a Carathéodory function. The
existence of solutions is obtained by the use of a special form of the three
critical points theorem.
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1. Introduction

In this paper we show that the problem

—Apu = Af(z,u) in Q, (1)
u =0 on 0f)

has at least three weak solutions in W, ?(Q), where p € (1,00) is given and A,
stands for the p-Laplacian defined by Aju := div(\Vu\fV_QVu). Here 2 C RY is

a nonempty open and bounded set with the boundary of class C', X is a positive
parameter and f: 2 x R — R is a Carathéodory function satisfying appropriate
growth condition together with its antiderivative given by the definite integral with
a variable upper bound.

For the past several years there have been published many papers dealing with
the existence of at least three solutions for elliptic problems. As a main tool in



160

proofs the authors were using the three critical points theorem due to Ricceri ([13,
Theorem 3.1], [14, Theorem 1]) and its other versions and generalizations (see for
example [1, 8, 12, 11, 10]).

Ricceri first applied his theorems to prove the existence of at least three distinct
weak solutions in H}(Q2) of the problem

—Au = A f(u)+ pg(u)) in Q,
{ u = 0( )+l )) on 0f) (2)

for all A € A, where A C [0,00) is an open nonempty interval and the functions f,
g satisfy appropriate growth conditions together with their antiderivatives. Then
he investigated more general both Dirichlet and Neumann problems involving the p-
Laplace operator (see [12, 11, 10]). Problem (2) has also been generalized by Goncerz
[7] to the p-Laplacian case and the multiplicity result in W, (Q) was obtained.
There were also many other publications in which problems driven by the p(z)-
Laplacian were discussed. For instance Mihiilescu proved in [9] the existence of
at least three weak solutions for a Neumann problem under the assumptions that
inf, g p(r) > N > 3 and with the right hand side nonlinearity of the form f(xz,t) =

|t|9(*) =2t —t, where q € {h €C(Q):h(x)>1 Vze ﬁ} and 2 < ¢(z) < inf__qp(z)

for any x € Q. An analogous result as above but for more general f was established
by Wang, Fan and Ge [16].

It is worth to mention that there are papers in which the authors obtained
multiplicity results using another methods than three critical points theorem. For
example exploiting critical point theory Gasiniski and Papageorgiou proved in [6]
the existence of five nontrivial solutions (two positive, two nonnegative and the fifth
nodal) for a nonlinear Dirichlet elliptic differential equation driven by the p-Laplace
operator and with a nonsmooth potential.

Besides the research on the existence and multiplicity of solutions, the problem of
the localization of an interval for the parameter A was considered. For instance in [2]
the authors established a theorem which yields the formula for the mentioned interval
for an elliptic Dirichlet problem driven by the Laplacian whereas in [3] another
formula has been obtained for a non-homogeneous Neumann problem involving the
elliptic operator of the form div(a(|V - |§)V -).

The aim of this paper is to generalize the result of Bonanno and Molica Bisci [2]
to the general p-Laplace operator. Here any relation between N and p will not be
required. The technical approach which has been used in this paper is analogous as
in [4, 5].

2. Preliminaries

In this section we recall a three critical points theorem in a convenient form.

Theorem 1. ([2, Theorem 2.1], [3, Theorem 1.2]|) Let X be a reflexive real Banach
space, ®: X — R a coercive, continuously Gateauz differentiable and sequentially
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weakly lower semicontinuous functional whose Gdteauz derivative admits a contin-
wous inverse on X*, U: X — R a continuously Gateauz differentiable functional
whose Gdteaux derivative is compact such that ®(0) = U(0) = 0. Assume that there
exist r > 0 and T € X, with r < ®(&), such that

l su X \P(i)
A 7 s, ¥ < gy

(%) r
\P(‘%) ’ SUP®(z)<r \IJ(I)

(A2) for each X € A, := ( ) the functional Jy := & — AU is

coercive.

Then, for each A € A,., Jx has at least three distinct critical points in X.

3. The main result

In this section we formulate and prove the main result concerning the existence of
solutions of problem (1) and location of parameter A. At the beginning we introduce
the notations which will be used in the sequel.

Let N > N, p € (1,00) and 2 C RY be a nonempty open and bounded set
with the boundary of class C!. Denote by |- |n, || - ||« the norms in RY and L%(Q)
respectively, and by c, the constant of the embedding W1?(Q) c LY(Q).

Let X be a Sobolev space W, *(2) with the norm || - || = (/ |V - |’;de> " The
Q

Sobolev critical exponent is defined by

o e NN—_’; if p<N,
oo ifp>N.

By I' we denote the Gamma function I'(z) = / t*~le~tdt for all z > 0.
0
Put D := sup dist(x,9). Then there exists o € € such that B(zg,D) C Q.

€
T(1+ X)) (1 —6)»
Forall&e(0,1)WeputK0;:pN( +2)( ) ‘
n?DN—p(l — QN)

The main result of the paper is following
Theorem 2. Let f: Q@ x R — R be a Carathéodory function and denote F(x,§) :=
13
/ flx,t)dt. Assume that [ satisfies the following conditions:
0

(H1) Jaj,a2 >0 3g € [l,p*) V(x,t) € QxR |f(z,t)] < a1+ aslt|?t,
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(H2) 3b>03s€ (0,p) V€ €R  F(,£) < b(1+[£]*) for almost all x € Q,

1

(H3) Let f(r) := alclp%r%p + C;—chp%r% for all r > 0. There exist 5,y > 0 and

(L-6")B(")

1.
6 € (0,1) such that 6? > K¢v? and 6—p;I€lgF(l’»5) > pDPON(1— g)p

(1 _ HN)(SP
pDPON (1 — )P infoeq F(z,6)" B(7?)

(1) admits at least three distinct weak solutions in W, *(Q).

Then, for each A € A5 ) = ( ), problem

Proof. For u € X we define two Gateaux differentiable functionals
1
D(u) = —|lu|?, T(u):= / F(z,u)dz.
p Q
Denote Jy := & — AU. We will show that the assumptions of Theorem 1 are fulfilled.
® is sequentially weakly lower semicontinuous because it is convex and continuous

(see [17, Proposition 41.8]) whereas ¥’ is compact (see [7, Proposition 2.5]).
>From assumption (H1) we have

F.€) < mlel+ 2l V@0 oxR
and by the use of Sobolev embedding theorem we obtain

U(u) < arerul + %chqu Vu € X,

1
For r > 0 we define x(r) := — sup U(u). For every u € X such that
T ued=1((—o0,r])
O (u) < r the following inequality holds:

a
U(u) < alclp%T%Jr;chp%r .

So, in particular,

sup U(u) < alclp%T% + %cgp%r%
u€P—1((—o0,r]) q
and hence
x(r) < alclp%rPTp + %cgp%r% = B(r) Vr > 0. (3)
Put
0 if x € Q\ B(zo, D),
us(z) = 525 (D — |z —x0|) if 2 € B(zo, D)\ B(xo,0D),

5 if # € B(wo,0D),
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where § and 6 are as in (H3). It is easy to check that us € X. Then

rEDNP(1-0N)  op
1+ Y)1-0p K

(I)(U5) = > AP,

>From the definition of us and (H3), we get

U(us) > / F(z,8)dx >
B(z0,0D)

and from (3) and (H3) again, we obtain

U(us) _ PP+ 5)(A=0F 720D
O(us) ~ erprDN-p(1-9N) T(1+ %) =€
pDPON (1 - 0P :

= om0 > 80 2 )

We have shown that assumption (A1) of Theorem 1 is satisfied with » = 4 and
T = Uus-

If u € X, then |ul* € L% (Q) and by the Holder inequality, we have

b

/\u|sd1’ < (/ (u|8)5dx)p(/ 1%5619;) T< (meas(Q) 7 flult Vue X.
Q Q Q

>From this and (H2), it follows that for every A > 0

Ja(u) = ®u) - AB(w) > %||u||p—b)\/ﬂ(1+|u\s)d:c

llull =00

1 p—s
> —|lull” — bAmeas(Q) — bA(meas(Q)) * c;llul]® ——— oo,
p

so, in particular, Jy is coercive for every A € A5,y =

D (us) P
U(us) supg(yy<yr Y(u) )

We have shown that assumption (A2) of Theorem 1 is also satisfied. As a result
the functional Jy has at least three distinct critical points in X which are weak
solutions of problem (1). O

4. Examples

Here we present examples of problems to which one can use Theorem 2.
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Example 3. Let N € N, p € (1,00) and 2 C RY be a nonempty open and bounded
set with the boundary of class C'. Fix g € (p,p*), s € (0,p) and put

1
q—-p

> » g(1-06") 4 dph
Ky :=max{ 1, Kj, (m (C1qpp —i—cqpp) ) (4)

for some 6 € (0,1).

Let 6 > Ky and g: © — R be a measurable function such that g(z) € [0,1] for
all z € Q, and define Carathéodory function f: Q& x R — R by

_J g(@) + ¢! if t <,
f(“){ (@) + 0TS |1 it > o

Obviously, | f(z,t)| < 1+ [t|27! for all (z,t) € Q x R so we can take a; = az = 1. It
is easy to show that for almost every z € 2, we have

()€ — # for all £ <0,
¢a
F(z,6) = ¢ g(z)€+ 7 for all £ € [0, 6],
g(x)¢ + o + 5q;s§s - %q for all £ > ¢,

and hence

F(.T,f) < ((5 4+ i—q> (1 I |§‘rnax{17s})

54
for all £ € R and almost all x € 2. We can choose b =0 + —.
S

If we fix v = 1, then we have §P > I?g > Kyvy? and moreover

q a-p
1 inf F(x,0) = l(6— + 0 inf g(:z:)) > 4
q

0P zeQ 6P\ ¢ zeQ
1 g0V 1 g
> - P P
~ q pDPON(1—0)p <C1qp +egp )
(1-0)Vp(1)

pDPON (1 — )P’

(1—06N)or 1
pDPON (1 — 0)Pinf,cq F(z,0)" B(1)

has at least three distinct weak solutions in W, (Q).

We get that for each A € ( > problem (1)

For the convenience of the reader we recall some facts before moving to the next
example.



165

Theorem 4. (Sobolev—Gagliardo—Nirenberg) If p € [1, N), then there exists a con-
stant ¢ = ¢(N,p) > 0 such that

[ull Lo* mvy < C||U||W01=P(RN) (5)

for all uw € Ll’p(RN) = {u el

loc

(RN) : VueLP (RN; RN)} decaying at infinity.
In particular, the embedding WP (RN) c L1 (RN) is continuous for each q € [p,p*].

If pe (1,N), then

is the best constant in inequality (5) (see [15]).

Proposition 5. If u € LP(R) for some p € [1,00), then limjitnf |v(x)] =0 for all v
T—>0o0

from the equivalence class of u, and "liminf" cannot be replaced by "lim".

Proposition 6. Let 1 < aq < as < 00 and U C RY be a bounded set. Then
lullpor @y < (meas(U))*r 22 ||ul| poz(rr) Vu € L*?(U).
Now we can formulate the next example.

Example 7. Taking into account Example 3, let N = 6 and p = 3. Then p* = 6.
)
We take ¢ =4 € (p,p*) and s = 5 € (0, p).

3
Let Q = B(0,1) C R®. Then D = 1, meas(Q) = % and since 6 € (0,1), we
obtain
18(1—0)3 18

< = < L

Ko = Saze) @

After easy calculations we have

/5
= —\/ = =~ 04177
¢ w\ 3°

and using Proposition 6 and Theorem 4, we obtain

3\ 1-§ 26
a < (& ,/gf/i - 7“/5 ~ 1.6415
6 w\ 35 9. 35

and
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_a-)

The function y(0) = oa—0)7 attains its minimal value at 6y ~ 0.692 and

y(0o) = 277.456, so we will obtain the biggest interval for parameter A by taking
0 = 60y. Hence

1

(pr%V(l — bp)P (Clqp TP ) T 305(1— 6p)® (4 3ier+3 C4>

4(1-65) 562 4 2% 5)

W (4.33. 4+35.2° <7
308(1 — 6o)? 25 -35 357

o 1-65 (2% 5ex% 2% .58
-~ 05(1—60)3 3 ™

~ 3587.5616 < 3600.

) ~ 277.456-12.9302

- 1
Fix v =1 and ¢ = 3600 > Ky, > K ~. Define g: 2 — R by

g(x) =

1 forz e {z€B(0,1): z >0},
0 forze{z€B(0,1): 2 <0}

and a Carathéodory function f: Q x R — R by

g(x) + |t if ¢+ < 3600,
f(.%‘,t) > 3 .
g(x) + 216000t if ¢ > 3600.

We take a1 = a3 = 1 as we have shown in Example 3. Then

4 1 4 5 2
1 as q 1 33 4 1 5eg? 33 23.5H3
Q) = mepr + ;Cgpp = 3atra S 3ot T Sy
1l 9 2
LS LI EYT
23 .33 23 -331
and hence )
— > (0.4124.
B(1) ~ 2.4245
We have also shown in Example 3 that
inf F(z,0 o 0 inf
2692 (z,9) q + érelszg(x)
and therefore
3600 3600*
inf F = inf = .
inf (x,3600) 1 + 3600 ;Iéﬂg(l‘) 1
Eventually we obtain
(1—65)o? o 1-6§  4-3600°

1
- : ~ 277.456-—— < 0.1028.
pDPON (1 — Oo)P infpeq F(2,6)  65(1— 60) 3 - 3600 2700



167

In particular, for each A € (0.1028, 0.4124) C A(3600,1) the problem

Af(z,u) in B(0,1),
1

{ —div(|Vu|Vu) |

u =20 on S(0,

admits at least three distinct weak solutions in W, (B(0,1)).
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