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Three Solutions Theorem for a Quasilinear DirihletBoundary Value ProblemPaweª GonerzFaulty of Mathematis and Computer Siene, Jagiellonian University,�ojasiewiza 6, 30-348 Kraków, Polande-mail: pawel.gonerz�im.uj.edu.plAbstrat. We onsider a Dirihlet boundary value problem driven by the
p-Laplaian with the right hand side being a Carathéodory funtion. Theexistene of solutions is obtained by the use of a speial form of the threeritial points theorem.Keywords: Carathéodory funtion, Dirihlet problem, p-Laplaian, three rit-ial points theorem, weak solution.1. IntrodutionIn this paper we show that the problem

{

−∆pu = λf(x, u) in Ω,
u = 0 on ∂Ω

(1)has at least three weak solutions in W 1,p
0 (Ω), where p ∈ (1,∞) is given and ∆pstands for the p-Laplaian de�ned by ∆pu := div

(

|∇u|p−2
N ∇u

). Here Ω ⊂ R
N isa nonempty open and bounded set with the boundary of lass C1, λ is a positiveparameter and f : Ω × R → R is a Carathéodory funtion satisfying appropriategrowth ondition together with its antiderivative given by the de�nite integral witha variable upper bound.For the past several years there have been published many papers dealing withthe existene of at least three solutions for ellipti problems. As a main tool in



160proofs the authors were using the three ritial points theorem due to Rieri ([13,Theorem 3.1℄, [14, Theorem 1℄) and its other versions and generalizations (see forexample [1, 8, 12, 11, 10℄).Rieri �rst applied his theorems to prove the existene of at least three distintweak solutions in H1
0 (Ω) of the problem
{

−∆u = λ
(

f(u) + µg(u)
) in Ω,

u = 0 on ∂Ω
(2)for all λ ∈ Λ, where Λ ⊂ [0,∞) is an open nonempty interval and the funtions f ,

g satisfy appropriate growth onditions together with their antiderivatives. Thenhe investigated more general both Dirihlet and Neumann problems involving the p-Laplae operator (see [12, 11, 10℄). Problem (2) has also been generalized by Gonerz[7℄ to the p-Laplaian ase and the multipliity result in W 1,p
0 (Ω) was obtained.There were also many other publiations in whih problems driven by the p(x)-Laplaian were disussed. For instane Mih ilesu proved in [9℄ the existene ofat least three weak solutions for a Neumann problem under the assumptions that

infx∈Ω p(x) > N > 3 and with the right hand side nonlinearity of the form f(x, t) =

|t|q(x)−2t−t, where q ∈
{

h ∈ C
(

Ω
)

: h(x) > 1 ∀x ∈ Ω
} and 2 < q(x) < infx∈Ω p(x)for any x ∈ Ω. An analogous result as above but for more general f was establishedby Wang, Fan and Ge [16℄.It is worth to mention that there are papers in whih the authors obtainedmultipliity results using another methods than three ritial points theorem. Forexample exploiting ritial point theory Gasi«ski and Papageorgiou proved in [6℄the existene of �ve nontrivial solutions (two positive, two nonnegative and the �fthnodal) for a nonlinear Dirihlet ellipti di�erential equation driven by the p-Laplaeoperator and with a nonsmooth potential.Besides the researh on the existene and multipliity of solutions, the problem ofthe loalization of an interval for the parameter λ was onsidered. For instane in [2℄the authors established a theorem whih yields the formula for the mentioned intervalfor an ellipti Dirihlet problem driven by the Laplaian whereas in [3℄ anotherformula has been obtained for a non-homogeneous Neumann problem involving theellipti operator of the form div

(

α(|∇ · |N )∇ ·
).The aim of this paper is to generalize the result of Bonanno and Molia Bisi [2℄to the general p-Laplae operator. Here any relation between N and p will not berequired. The tehnial approah whih has been used in this paper is analogous asin [4, 5℄.2. PreliminariesIn this setion we reall a three ritial points theorem in a onvenient form.Theorem 1. ([2, Theorem 2.1℄, [3, Theorem 1.2℄) Let X be a re�exive real Banahspae, Φ: X → R a oerive, ontinuously Gâteaux di�erentiable and sequentially



161weakly lower semiontinuous funtional whose Gâteaux derivative admits a ontin-uous inverse on X∗, Ψ: X → R a ontinuously Gâteaux di�erentiable funtionalwhose Gâteaux derivative is ompat suh that Φ(0) = Ψ(0) = 0. Assume that thereexist r > 0 and x̃ ∈ X, with r < Φ(x̃), suh that(A1) 1

r
sup

Φ(x)6r

Ψ(x) <
Ψ(x̃)

Φ(x̃)
,(A2) for eah λ ∈ Λr :=

(

Φ(x̃)

Ψ(x̃)
,

r

supΦ(x)6r Ψ(x)

) the funtional Jλ := Φ − λΨ isoerive.Then, for eah λ ∈ Λr, Jλ has at least three distint ritial points in X.3. The main resultIn this setion we formulate and prove the main result onerning the existene ofsolutions of problem (1) and loation of parameter λ. At the beginning we introduethe notations whih will be used in the sequel.Let N > N , p ∈ (1,∞) and Ω ⊂ R
N be a nonempty open and bounded setwith the boundary of lass C1. Denote by | · |N , ‖ · ‖α the norms in R

N and Lα(Ω)respetively, and by cα the onstant of the embedding W 1,p(Ω) ⊂ Lα(Ω).Let X be a Sobolev spae W 1,p
0 (Ω) with the norm ‖ · ‖ =

(
∫

Ω

|∇ · |pNdx

)
1

p . TheSobolev ritial exponent is de�ned by
p∗ :=

{

Np
N−p

if p < N,

∞ if p > N.By Γ we denote the Gamma funtion Γ(z) =

∫ ∞

0

tz−1e−tdt for all z > 0.Put D := sup
x∈Ω

dist(x, ∂Ω). Then there exists x0 ∈ Ω suh that B(x0, D) ⊂ Ω.For all θ ∈ (0, 1) we put Kθ :=
pΓ
(

1 + N
2

)

(1− θ)p

π
N
2 DN−p

(

1− θN
) .The main result of the paper is followingTheorem 2. Let f : Ω× R → R be a Carathéodory funtion and denote F (x, ξ) :=

∫ ξ

0

f(x, t)dt. Assume that f satis�es the following onditions:(H1) ∃a1, a2 > 0 ∃q ∈
[

1, p∗
)

∀(x, t) ∈ Ω× R |f(x, t)| 6 a1 + a2|t|
q−1,



162(H2) ∃b > 0 ∃s ∈ (0, p) ∀ξ ∈ R F (x, ξ) 6 b
(

1 + |ξ|s
) for almost all x ∈ Ω,(H3) Let β(r) := a1c1p

1

p r
1−p
p +

a2
q
cqqp

q
p r

q−p
p for all r > 0. There exist δ, γ > 0 and

θ ∈ (0, 1) suh that δp > Kθγ
p and 1

δp
inf
x∈Ω

F (x, δ) >

(

1− θN
)

β
(

γp
)

pDpθN (1− θ)p
.Then, for eah λ ∈ Λ(δ,γ) :=

(

(

1− θN
)

δp

pDpθN (1− θ)p infx∈Ω F (x, δ)
,

1

β
(

γp
)

), problem(1) admits at least three distint weak solutions in W 1,p
0 (Ω).Proof. For u ∈ X we de�ne two Gâteaux di�erentiable funtionals

Φ(u) :=
1

p
‖u‖p, Ψ(u) :=

∫

Ω

F (x, u)dx.Denote Jλ := Φ−λΨ. We will show that the assumptions of Theorem 1 are ful�lled.
Φ is sequentially weakly lower semiontinuous beause it is onvex and ontinuous(see [17, Proposition 41.8℄) whereas Ψ′ is ompat (see [7, Proposition 2.5℄).>From assumption (H1) we have

F (x, ξ) 6 a1|ξ|+
a2
q
|ξ|q ∀(x, ξ) ∈ Ω× Rand by the use of Sobolev embedding theorem we obtain

Ψ(u) 6 a1c1‖u‖+
a2
q
cqq‖u‖

q ∀u ∈ X.For r > 0 we de�ne χ(r) :=
1

r
sup

u∈Φ−1((−∞,r])

Ψ(u). For every u ∈ X suh that
Φ(u) 6 r the following inequality holds:

Ψ(u) 6 a1c1p
1

p r
1

p +
a2
q
cqqp

q
p r

q
p .So, in partiular,

sup
u∈Φ−1((−∞,r])

Ψ(u) 6 a1c1p
1

p r
1

p +
a2
q
cqqp

q
p r

q
pand hene

χ(r) 6 a1c1p
1

p r
1−p
p +

a2
q
cqqp

q
p r

q−p
p = β(r) ∀r > 0. (3)Put

uδ(x) =







0 if x ∈ Ω \B(x0, D),
δ

D−θD

(

D − |x− x0|
) if x ∈ B(x0, D) \B(x0, θD),

δ if x ∈ B(x0, θD),



163where δ and θ are as in (H3). It is easy to hek that uδ ∈ X . Then
Φ(uδ) =

δpπ
N
2 DN−p

(

1− θN
)

pΓ
(

1 + N
2

)

(1− θ)p
=

δp

Kθ

> γp.>From the de�nition of uδ and (H3), we get
Ψ(uδ) >

∫

B(x0,θD)

F (x, δ)dx >
π

N
2 (θD)N

Γ
(

1 + N
2

) inf
x∈Ω

F (x, δ) > 0and from (3) and (H3) again, we obtain
Ψ(uδ)

Φ(uδ)
>

pΓ
(

1 + N
2

)

(1− θ)p

δpπ
N
2 DN−p

(

1− θN
)
·
π

N
2 (θD)N

Γ
(

1 + N
2

) inf
x∈Ω

F (x, δ)

=
pDpθN (1− θ)p

δp
(

1− θN
) inf

x∈Ω
F (x, δ) > β

(

γp
)

> χ
(

γp
)

.We have shown that assumption (A1) of Theorem 1 is satis�ed with r = γp and
x̃ = uδ.If u ∈ X , then |u|s ∈ L

p
s (Ω) and by the Hölder inequality, we have

∫

Ω

|u|sdx 6

(
∫

Ω

(

|u|s
)

p
s dx

)
s
p
(
∫

Ω

1
p

p−s dx

)

p−s
p

6
(meas(Ω)) p−s

p csp‖u‖
s ∀u ∈ X.>From this and (H2), it follows that for every λ > 0

Jλ(u) = Φ(u)− λΨ(u) >
1

p
‖u‖p − bλ

∫

Ω

(

1 + |u|s
)

dx

>
1

p
‖u‖p − bλmeas(Ω)− bλ

(meas(Ω)) p−s
p csp‖u‖

s ‖u‖→∞
−−−−−→ ∞,so, in partiular, Jλ is oerive for every λ ∈ Λ(δ,γ) =

(

Φ(uδ)

Ψ(uδ)
,

γp

supΦ(u)6γp Ψ(u)

).We have shown that assumption (A2) of Theorem 1 is also satis�ed. As a resultthe funtional Jλ has at least three distint ritial points in X whih are weaksolutions of problem (1).4. ExamplesHere we present examples of problems to whih one an use Theorem 2.



164Example 3. Let N ∈ N, p ∈ (1,∞) and Ω ⊂ R
N be a nonempty open and boundedset with the boundary of lass C1. Fix q ∈

(

p, p∗
), s ∈ (0, p) and put

˜Kθ := max







1, K
1

p

θ ,

(

q
(

1− θN
)

pDpθN (1 − θ)p

(

c1qp
1

p + cqqp
q
p

)

)
1

q−p







, (4)for some θ ∈ (0, 1).Let δ > ˜Kθ and g : Ω → R be a measurable funtion suh that g(x) ∈ [0, 1] forall x ∈ Ω, and de�ne Carathéodory funtion f : Ω× R → R by
f(x, t) =

{

g(x) + |t|q−1 if t 6 δ,
g(x) + δq−s|t|s−1 if t > δ.Obviously, |f(x, t)| 6 1 + |t|q−1 for all (x, t) ∈ Ω×R so we an take a1 = a2 = 1. Itis easy to show that for almost every x ∈ Ω, we have

F (x, ξ) =











































g(x)ξ −
(−ξ)q

q
for all ξ < 0,

g(x)ξ +
ξq

q
for all ξ ∈ [0, δ],

g(x)ξ +
δq

q
+

δq−sξs

s
−

δq

s
for all ξ > δ,and hene

F (x, ξ) 6

(

δ +
δq

s

)

(

1 + |ξ|max{1,s}
)for all ξ ∈ R and almost all x ∈ Ω. We an hoose b = δ +
δq

s
.If we �x γ = 1, then we have δp > ˜Kp

θ > Kθγ
p and moreover

1

δp
inf
x∈Ω

F (x, δ) =
1

δp

(

δq

q
+ δ inf

x∈Ω
g(x)

)

>
δq−p

q

>
1

q
·

q(1− θ)N

pDpθN (1− θ)p

(

c1qp
1

p + cqqp
q
p

)

=
(1− θ)Nβ(1)

pDpθN (1 − θ)p
.We get that for eah λ ∈

(

(

1− θN
)

δp

pDpθN (1− θ)p infx∈Ω F (x, δ)
,

1

β(1)

) problem (1)has at least three distint weak solutions in W 1,p
0 (Ω).For the onveniene of the reader we reall some fats before moving to the nextexample.



165Theorem 4. (Sobolev�Gagliardo�Nirenberg) If p ∈ [1, N), then there exists a on-stant c = c(N, p) > 0 suh that
‖u‖Lp∗(RN ) 6 c‖u‖

W
1,p
0

(RN ) (5)for all u ∈ L1,p
(

R
N
)

=

{

u ∈ Lp
loc

(

R
N
)

: ∇u ∈ Lp
(

R
N ;RN

)

} deaying at in�nity.In partiular, the embedding W 1,p
(

R
N
)

⊂ Lq
(

R
N
) is ontinuous for eah q ∈

[

p, p∗
].If p ∈ (1, N), then

c = π− 1

2N− 1

p

(

p− 1

N − p

)1− 1

p





Γ
(

1 + N
2

)

Γ(N)

Γ
(

N
p

)

Γ
(

1 +N − N
p

)





1

Nis the best onstant in inequality (5) (see [15℄).Proposition 5. If u ∈ Lp(R) for some p ∈ [1,∞), then lim inf
x→±∞

|v(x)| = 0 for all vfrom the equivalene lass of u, and "lim inf" annot be replaed by "lim".Proposition 6. Let 1 6 α1 < α2 6 ∞ and U ⊂ R
N be a bounded set. Then

‖u‖Lα1(U) 6
(

meas(U)
)

1

α1
− 1

α2 ‖u‖Lα2(U) ∀u ∈ Lα2(U).Now we an formulate the next example.Example 7. Taking into aount Example 3, let N = 6 and p = 3. Then p∗ = 6.We take q = 4 ∈
(

p, p∗
) and s =

5

2
∈ (0, p).Let Ω = B(0, 1) ⊂ R

6. Then D = 1, meas(Ω) =
π3

6
and sine θ ∈ (0, 1), weobtain

Kθ =
18(1− θ)3

π3
(

1− θ6
) <

18

π3
< 1.After easy alulations we have

c =

√

2

π
6

√

5

35
≈ 0.4177and using Proposition 6 and Theorem 4, we obtain

c1 6

(

π3

6

)1− 1

6

√

2

π
6

√

5

35
=

π2 6
√
5

3
√
2 · 35

≈ 1.6415and
c4 6

(

π3

6

)
1

4
−

1

6

√

2

π
6

√

5

35
=

6
√
5

4
√
π

12

√

25

311
≈ 0.4789.



166The funtion y(θ) =

(

1− θ6
)

θ6(1− θ)3
attains its minimal value at θ0 ≈ 0.692 and

y(θ0) ≈ 277.456, so we will obtain the biggest interval for parameter λ by taking
θ = θ0. Hene
(

q
(

1− θN0
)

pDpθN0 (1− θ0)p

(

c1qp
1

p + cqqp
q
p

)

)
1

q−p

=
4
(

1− θ60
)

3θ60(1− θ0)3

(

4 · 3
1

3 c1 + 3
4

3 c44

)

6
4
(

1− θ60
)

3θ60(1− θ0)3

(

4 · 3
1

3 ·
5

1

6 π2

2
1

3 · 3
5

3

+ 3
4

3 ·
2

5

3 · 5
2

3

3
11

3 π

)

=
1− θ60

θ60(1− θ0)3

(

2
11

3 · 5
1

6 π2

3
7

3

+
2

11

3 · 5
2

3

3
10

3 π

)

≈ 277.456 · 12.9302

≈ 3587.5616 < 3600.Fix γ = 1 and δ = 3600 > ˜Kθ0 > K
1

p

θ0
γ. De�ne g : Ω → R by

g(x) =

{

1 for x ∈
{

z ∈ B(0, 1) : z6 > 0
}

,
0 for x ∈

{

z ∈ B(0, 1) : z6 < 0
}and a Carathéodory funtion f : Ω× R → R by

f(x, t) =

{

g(x) + |t|3 if t 6 3600,

g(x) + 216000t
3

2 if t > 3600.We take a1 = a2 = 1 as we have shown in Example 3. Then
β(1) = a1c1p

1

p +
a2
q
cqqp

q
p = 3

1

3 c1 +
3

4

3

4
c44 6 3

1

3 ·
5

1

6π2

2
1

3 · 3
5

3

+
3

4

3

4
·
2

5

3 · 5
2

3

3
11

3 π

=
5

1

6π2

2
1

3 · 3
4

3

+
5

2

3

2
1

3 · 3
7

3π
< 2.4245and hene

1

β(1)
>

1

2.4245
> 0.4124.We have also shown in Example 3 that

inf
x∈Ω

F (x, δ) =
δq

q
+ δ inf

x∈Ω
g(x)and therefore

inf
x∈Ω

F (x, 3600) =
36004

4
+ 3600 inf

x∈Ω
g(x) =

36004

4
.Eventually we obtain

(

1− θN0
)

δp

pDpθN0 (1 − θ0)p infx∈Ω F (x, δ)
=

1− θ60
θ60(1− θ0)3

·
4 · 36003

3 · 36004
≈ 277.456·

1

2700
< 0.1028.



167In partiular, for eah λ ∈
(

0.1028, 0.4124
)

⊂ Λ(3600,1) the problem
{

−div
(

|∇u|∇u
)

= λf(x, u) in B(0, 1),
u = 0 on S(0, 1)admits at least three distint weak solutions in W 1,3

0

(

B(0, 1)
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