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Three Solutions Theorem for a Quasilinear Diri
hletBoundary Value ProblemPaweª Gon
erzFa
ulty of Mathemati
s and Computer S
ien
e, Jagiellonian University,�ojasiewi
za 6, 30-348 Kraków, Polande-mail: pawel.gon
erz�im.uj.edu.plAbstra
t. We 
onsider a Diri
hlet boundary value problem driven by the
p-Lapla
ian with the right hand side being a Carathéodory fun
tion. Theexisten
e of solutions is obtained by the use of a spe
ial form of the three
riti
al points theorem.Keywords: Carathéodory fun
tion, Diri
hlet problem, p-Lapla
ian, three 
rit-i
al points theorem, weak solution.1. Introdu
tionIn this paper we show that the problem

{

−∆pu = λf(x, u) in Ω,
u = 0 on ∂Ω

(1)has at least three weak solutions in W 1,p
0 (Ω), where p ∈ (1,∞) is given and ∆pstands for the p-Lapla
ian de�ned by ∆pu := div

(

|∇u|p−2
N ∇u

). Here Ω ⊂ R
N isa nonempty open and bounded set with the boundary of 
lass C1, λ is a positiveparameter and f : Ω × R → R is a Carathéodory fun
tion satisfying appropriategrowth 
ondition together with its antiderivative given by the de�nite integral witha variable upper bound.For the past several years there have been published many papers dealing withthe existen
e of at least three solutions for ellipti
 problems. As a main tool in



160proofs the authors were using the three 
riti
al points theorem due to Ri

eri ([13,Theorem 3.1℄, [14, Theorem 1℄) and its other versions and generalizations (see forexample [1, 8, 12, 11, 10℄).Ri

eri �rst applied his theorems to prove the existen
e of at least three distin
tweak solutions in H1
0 (Ω) of the problem
{

−∆u = λ
(

f(u) + µg(u)
) in Ω,

u = 0 on ∂Ω
(2)for all λ ∈ Λ, where Λ ⊂ [0,∞) is an open nonempty interval and the fun
tions f ,

g satisfy appropriate growth 
onditions together with their antiderivatives. Thenhe investigated more general both Diri
hlet and Neumann problems involving the p-Lapla
e operator (see [12, 11, 10℄). Problem (2) has also been generalized by Gon
erz[7℄ to the p-Lapla
ian 
ase and the multipli
ity result in W 1,p
0 (Ω) was obtained.There were also many other publi
ations in whi
h problems driven by the p(x)-Lapla
ian were dis
ussed. For instan
e Mih iles
u proved in [9℄ the existen
e ofat least three weak solutions for a Neumann problem under the assumptions that

infx∈Ω p(x) > N > 3 and with the right hand side nonlinearity of the form f(x, t) =

|t|q(x)−2t−t, where q ∈
{

h ∈ C
(

Ω
)

: h(x) > 1 ∀x ∈ Ω
} and 2 < q(x) < infx∈Ω p(x)for any x ∈ Ω. An analogous result as above but for more general f was establishedby Wang, Fan and Ge [16℄.It is worth to mention that there are papers in whi
h the authors obtainedmultipli
ity results using another methods than three 
riti
al points theorem. Forexample exploiting 
riti
al point theory Gasi«ski and Papageorgiou proved in [6℄the existen
e of �ve nontrivial solutions (two positive, two nonnegative and the �fthnodal) for a nonlinear Diri
hlet ellipti
 di�erential equation driven by the p-Lapla
eoperator and with a nonsmooth potential.Besides the resear
h on the existen
e and multipli
ity of solutions, the problem ofthe lo
alization of an interval for the parameter λ was 
onsidered. For instan
e in [2℄the authors established a theorem whi
h yields the formula for the mentioned intervalfor an ellipti
 Diri
hlet problem driven by the Lapla
ian whereas in [3℄ anotherformula has been obtained for a non-homogeneous Neumann problem involving theellipti
 operator of the form div

(

α(|∇ · |N )∇ ·
).The aim of this paper is to generalize the result of Bonanno and Moli
a Bis
i [2℄to the general p-Lapla
e operator. Here any relation between N and p will not berequired. The te
hni
al approa
h whi
h has been used in this paper is analogous asin [4, 5℄.2. PreliminariesIn this se
tion we re
all a three 
riti
al points theorem in a 
onvenient form.Theorem 1. ([2, Theorem 2.1℄, [3, Theorem 1.2℄) Let X be a re�exive real Bana
hspa
e, Φ: X → R a 
oer
ive, 
ontinuously Gâteaux di�erentiable and sequentially



161weakly lower semi
ontinuous fun
tional whose Gâteaux derivative admits a 
ontin-uous inverse on X∗, Ψ: X → R a 
ontinuously Gâteaux di�erentiable fun
tionalwhose Gâteaux derivative is 
ompa
t su
h that Φ(0) = Ψ(0) = 0. Assume that thereexist r > 0 and x̃ ∈ X, with r < Φ(x̃), su
h that(A1) 1

r
sup

Φ(x)6r

Ψ(x) <
Ψ(x̃)

Φ(x̃)
,(A2) for ea
h λ ∈ Λr :=

(

Φ(x̃)

Ψ(x̃)
,

r

supΦ(x)6r Ψ(x)

) the fun
tional Jλ := Φ − λΨ is
oer
ive.Then, for ea
h λ ∈ Λr, Jλ has at least three distin
t 
riti
al points in X.3. The main resultIn this se
tion we formulate and prove the main result 
on
erning the existen
e ofsolutions of problem (1) and lo
ation of parameter λ. At the beginning we introdu
ethe notations whi
h will be used in the sequel.Let N > N , p ∈ (1,∞) and Ω ⊂ R
N be a nonempty open and bounded setwith the boundary of 
lass C1. Denote by | · |N , ‖ · ‖α the norms in R

N and Lα(Ω)respe
tively, and by cα the 
onstant of the embedding W 1,p(Ω) ⊂ Lα(Ω).Let X be a Sobolev spa
e W 1,p
0 (Ω) with the norm ‖ · ‖ =

(
∫

Ω

|∇ · |pNdx

)
1

p . TheSobolev 
riti
al exponent is de�ned by
p∗ :=

{

Np
N−p

if p < N,

∞ if p > N.By Γ we denote the Gamma fun
tion Γ(z) =

∫ ∞

0

tz−1e−tdt for all z > 0.Put D := sup
x∈Ω

dist(x, ∂Ω). Then there exists x0 ∈ Ω su
h that B(x0, D) ⊂ Ω.For all θ ∈ (0, 1) we put Kθ :=
pΓ
(

1 + N
2

)

(1− θ)p

π
N
2 DN−p

(

1− θN
) .The main result of the paper is followingTheorem 2. Let f : Ω× R → R be a Carathéodory fun
tion and denote F (x, ξ) :=

∫ ξ

0

f(x, t)dt. Assume that f satis�es the following 
onditions:(H1) ∃a1, a2 > 0 ∃q ∈
[

1, p∗
)

∀(x, t) ∈ Ω× R |f(x, t)| 6 a1 + a2|t|
q−1,



162(H2) ∃b > 0 ∃s ∈ (0, p) ∀ξ ∈ R F (x, ξ) 6 b
(

1 + |ξ|s
) for almost all x ∈ Ω,(H3) Let β(r) := a1c1p

1

p r
1−p
p +

a2
q
cqqp

q
p r

q−p
p for all r > 0. There exist δ, γ > 0 and

θ ∈ (0, 1) su
h that δp > Kθγ
p and 1

δp
inf
x∈Ω

F (x, δ) >

(

1− θN
)

β
(

γp
)

pDpθN (1− θ)p
.Then, for ea
h λ ∈ Λ(δ,γ) :=

(

(

1− θN
)

δp

pDpθN (1− θ)p infx∈Ω F (x, δ)
,

1

β
(

γp
)

), problem(1) admits at least three distin
t weak solutions in W 1,p
0 (Ω).Proof. For u ∈ X we de�ne two Gâteaux di�erentiable fun
tionals

Φ(u) :=
1

p
‖u‖p, Ψ(u) :=

∫

Ω

F (x, u)dx.Denote Jλ := Φ−λΨ. We will show that the assumptions of Theorem 1 are ful�lled.
Φ is sequentially weakly lower semi
ontinuous be
ause it is 
onvex and 
ontinuous(see [17, Proposition 41.8℄) whereas Ψ′ is 
ompa
t (see [7, Proposition 2.5℄).>From assumption (H1) we have

F (x, ξ) 6 a1|ξ|+
a2
q
|ξ|q ∀(x, ξ) ∈ Ω× Rand by the use of Sobolev embedding theorem we obtain

Ψ(u) 6 a1c1‖u‖+
a2
q
cqq‖u‖

q ∀u ∈ X.For r > 0 we de�ne χ(r) :=
1

r
sup

u∈Φ−1((−∞,r])

Ψ(u). For every u ∈ X su
h that
Φ(u) 6 r the following inequality holds:

Ψ(u) 6 a1c1p
1

p r
1

p +
a2
q
cqqp

q
p r

q
p .So, in parti
ular,

sup
u∈Φ−1((−∞,r])

Ψ(u) 6 a1c1p
1

p r
1

p +
a2
q
cqqp

q
p r

q
pand hen
e

χ(r) 6 a1c1p
1

p r
1−p
p +

a2
q
cqqp

q
p r

q−p
p = β(r) ∀r > 0. (3)Put

uδ(x) =







0 if x ∈ Ω \B(x0, D),
δ

D−θD

(

D − |x− x0|
) if x ∈ B(x0, D) \B(x0, θD),

δ if x ∈ B(x0, θD),



163where δ and θ are as in (H3). It is easy to 
he
k that uδ ∈ X . Then
Φ(uδ) =

δpπ
N
2 DN−p

(

1− θN
)

pΓ
(

1 + N
2

)

(1− θ)p
=

δp

Kθ

> γp.>From the de�nition of uδ and (H3), we get
Ψ(uδ) >

∫

B(x0,θD)

F (x, δ)dx >
π

N
2 (θD)N

Γ
(

1 + N
2

) inf
x∈Ω

F (x, δ) > 0and from (3) and (H3) again, we obtain
Ψ(uδ)

Φ(uδ)
>

pΓ
(

1 + N
2

)

(1− θ)p

δpπ
N
2 DN−p

(

1− θN
)
·
π

N
2 (θD)N

Γ
(

1 + N
2

) inf
x∈Ω

F (x, δ)

=
pDpθN (1− θ)p

δp
(

1− θN
) inf

x∈Ω
F (x, δ) > β

(

γp
)

> χ
(

γp
)

.We have shown that assumption (A1) of Theorem 1 is satis�ed with r = γp and
x̃ = uδ.If u ∈ X , then |u|s ∈ L

p
s (Ω) and by the Hölder inequality, we have

∫

Ω

|u|sdx 6

(
∫

Ω

(

|u|s
)

p
s dx

)
s
p
(
∫

Ω

1
p

p−s dx

)

p−s
p

6
(meas(Ω)) p−s

p csp‖u‖
s ∀u ∈ X.>From this and (H2), it follows that for every λ > 0

Jλ(u) = Φ(u)− λΨ(u) >
1

p
‖u‖p − bλ

∫

Ω

(

1 + |u|s
)

dx

>
1

p
‖u‖p − bλmeas(Ω)− bλ

(meas(Ω)) p−s
p csp‖u‖

s ‖u‖→∞
−−−−−→ ∞,so, in parti
ular, Jλ is 
oer
ive for every λ ∈ Λ(δ,γ) =

(

Φ(uδ)

Ψ(uδ)
,

γp

supΦ(u)6γp Ψ(u)

).We have shown that assumption (A2) of Theorem 1 is also satis�ed. As a resultthe fun
tional Jλ has at least three distin
t 
riti
al points in X whi
h are weaksolutions of problem (1).4. ExamplesHere we present examples of problems to whi
h one 
an use Theorem 2.



164Example 3. Let N ∈ N, p ∈ (1,∞) and Ω ⊂ R
N be a nonempty open and boundedset with the boundary of 
lass C1. Fix q ∈

(

p, p∗
), s ∈ (0, p) and put

˜Kθ := max







1, K
1

p

θ ,

(

q
(

1− θN
)

pDpθN (1 − θ)p

(

c1qp
1

p + cqqp
q
p

)

)
1

q−p







, (4)for some θ ∈ (0, 1).Let δ > ˜Kθ and g : Ω → R be a measurable fun
tion su
h that g(x) ∈ [0, 1] forall x ∈ Ω, and de�ne Carathéodory fun
tion f : Ω× R → R by
f(x, t) =

{

g(x) + |t|q−1 if t 6 δ,
g(x) + δq−s|t|s−1 if t > δ.Obviously, |f(x, t)| 6 1 + |t|q−1 for all (x, t) ∈ Ω×R so we 
an take a1 = a2 = 1. Itis easy to show that for almost every x ∈ Ω, we have

F (x, ξ) =











































g(x)ξ −
(−ξ)q

q
for all ξ < 0,

g(x)ξ +
ξq

q
for all ξ ∈ [0, δ],

g(x)ξ +
δq

q
+

δq−sξs

s
−

δq

s
for all ξ > δ,and hen
e

F (x, ξ) 6

(

δ +
δq

s

)

(

1 + |ξ|max{1,s}
)for all ξ ∈ R and almost all x ∈ Ω. We 
an 
hoose b = δ +
δq

s
.If we �x γ = 1, then we have δp > ˜Kp

θ > Kθγ
p and moreover

1

δp
inf
x∈Ω

F (x, δ) =
1

δp

(

δq

q
+ δ inf

x∈Ω
g(x)

)

>
δq−p

q

>
1

q
·

q(1− θ)N

pDpθN (1− θ)p

(

c1qp
1

p + cqqp
q
p

)

=
(1− θ)Nβ(1)

pDpθN (1 − θ)p
.We get that for ea
h λ ∈

(

(

1− θN
)

δp

pDpθN (1− θ)p infx∈Ω F (x, δ)
,

1

β(1)

) problem (1)has at least three distin
t weak solutions in W 1,p
0 (Ω).For the 
onvenien
e of the reader we re
all some fa
ts before moving to the nextexample.



165Theorem 4. (Sobolev�Gagliardo�Nirenberg) If p ∈ [1, N), then there exists a 
on-stant c = c(N, p) > 0 su
h that
‖u‖Lp∗(RN ) 6 c‖u‖

W
1,p
0

(RN ) (5)for all u ∈ L1,p
(

R
N
)

=

{

u ∈ Lp
loc

(

R
N
)

: ∇u ∈ Lp
(

R
N ;RN

)

} de
aying at in�nity.In parti
ular, the embedding W 1,p
(

R
N
)

⊂ Lq
(

R
N
) is 
ontinuous for ea
h q ∈

[

p, p∗
].If p ∈ (1, N), then

c = π− 1

2N− 1

p

(

p− 1

N − p

)1− 1

p





Γ
(

1 + N
2

)

Γ(N)

Γ
(

N
p

)

Γ
(

1 +N − N
p

)





1

Nis the best 
onstant in inequality (5) (see [15℄).Proposition 5. If u ∈ Lp(R) for some p ∈ [1,∞), then lim inf
x→±∞

|v(x)| = 0 for all vfrom the equivalen
e 
lass of u, and "lim inf" 
annot be repla
ed by "lim".Proposition 6. Let 1 6 α1 < α2 6 ∞ and U ⊂ R
N be a bounded set. Then

‖u‖Lα1(U) 6
(

meas(U)
)

1

α1
− 1

α2 ‖u‖Lα2(U) ∀u ∈ Lα2(U).Now we 
an formulate the next example.Example 7. Taking into a

ount Example 3, let N = 6 and p = 3. Then p∗ = 6.We take q = 4 ∈
(

p, p∗
) and s =

5

2
∈ (0, p).Let Ω = B(0, 1) ⊂ R

6. Then D = 1, meas(Ω) =
π3

6
and sin
e θ ∈ (0, 1), weobtain

Kθ =
18(1− θ)3

π3
(

1− θ6
) <

18

π3
< 1.After easy 
al
ulations we have

c =

√

2

π
6

√

5

35
≈ 0.4177and using Proposition 6 and Theorem 4, we obtain

c1 6

(

π3

6

)1− 1

6

√

2

π
6

√

5

35
=

π2 6
√
5

3
√
2 · 35

≈ 1.6415and
c4 6

(

π3

6

)
1

4
−

1

6

√

2

π
6

√

5

35
=

6
√
5

4
√
π

12

√

25

311
≈ 0.4789.



166The fun
tion y(θ) =

(

1− θ6
)

θ6(1− θ)3
attains its minimal value at θ0 ≈ 0.692 and

y(θ0) ≈ 277.456, so we will obtain the biggest interval for parameter λ by taking
θ = θ0. Hen
e
(

q
(

1− θN0
)

pDpθN0 (1− θ0)p

(

c1qp
1

p + cqqp
q
p

)

)
1

q−p

=
4
(

1− θ60
)

3θ60(1− θ0)3

(

4 · 3
1

3 c1 + 3
4

3 c44

)

6
4
(

1− θ60
)

3θ60(1− θ0)3

(

4 · 3
1

3 ·
5

1

6 π2

2
1

3 · 3
5

3

+ 3
4

3 ·
2

5

3 · 5
2

3

3
11

3 π

)

=
1− θ60

θ60(1− θ0)3

(

2
11

3 · 5
1

6 π2

3
7

3

+
2

11

3 · 5
2

3

3
10

3 π

)

≈ 277.456 · 12.9302

≈ 3587.5616 < 3600.Fix γ = 1 and δ = 3600 > ˜Kθ0 > K
1

p

θ0
γ. De�ne g : Ω → R by

g(x) =

{

1 for x ∈
{

z ∈ B(0, 1) : z6 > 0
}

,
0 for x ∈

{

z ∈ B(0, 1) : z6 < 0
}and a Carathéodory fun
tion f : Ω× R → R by

f(x, t) =

{

g(x) + |t|3 if t 6 3600,

g(x) + 216000t
3

2 if t > 3600.We take a1 = a2 = 1 as we have shown in Example 3. Then
β(1) = a1c1p

1

p +
a2
q
cqqp

q
p = 3

1

3 c1 +
3

4

3

4
c44 6 3

1

3 ·
5

1

6π2

2
1

3 · 3
5

3

+
3

4

3

4
·
2

5

3 · 5
2

3

3
11

3 π

=
5

1

6π2

2
1

3 · 3
4

3

+
5

2

3

2
1

3 · 3
7

3π
< 2.4245and hen
e

1

β(1)
>

1

2.4245
> 0.4124.We have also shown in Example 3 that

inf
x∈Ω

F (x, δ) =
δq

q
+ δ inf

x∈Ω
g(x)and therefore

inf
x∈Ω

F (x, 3600) =
36004

4
+ 3600 inf

x∈Ω
g(x) =

36004

4
.Eventually we obtain

(

1− θN0
)

δp

pDpθN0 (1 − θ0)p infx∈Ω F (x, δ)
=

1− θ60
θ60(1− θ0)3

·
4 · 36003

3 · 36004
≈ 277.456·

1

2700
< 0.1028.



167In parti
ular, for ea
h λ ∈
(

0.1028, 0.4124
)

⊂ Λ(3600,1) the problem
{

−div
(

|∇u|∇u
)

= λf(x, u) in B(0, 1),
u = 0 on S(0, 1)admits at least three distin
t weak solutions in W 1,3

0

(

B(0, 1)
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