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Abstract. The quasidifferential calculus developed by V.F. Demyanov and

A.M. Rubinov provides a complete analogon to the classical calculus of differ-

entiation for a wide class of nonsmooth functions. Although this looks at the

first glance as a generalized subgradient calculus for pairs of subdifferentials

it turns out that, after a more detailed analysis, the quasidifferential calculus

is a kind of Fréchet-differentiation whose gradients are elements of a suitable

Minkowski–R̊adström–Hörmander space. One aim of the paper is to point

out this fact. The main results in this direction are Theorem 1 and Theorem

5. Since the elements of the Minkowski–R̊adström–Hörmander space are not

uniquely determined, we focus our attention in the second part of the paper

to smallest possible representations of quasidifferentials, i.e. to minimal repre-

sentations. Here the main results are two necessary minimality criteria, which

are stated in Theorem 9 and Theorem 11.

Keywords: nonsmooth optimization, generalized convexity.

1. Introduction and notations

This is a survey paper on common work with Jerzy Grzybowski from Poznań.
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Pairs of compact convex sets arise in the quasidifferential calculus of V.F. De-
myanov and A.M. Rubinov as sub- and superdifferentials of quasidifferentiable func-
tions (see [3]). The general framework for the investigation of pairs of nonempty
compact convex sets is the Minkowski–R̊adström–Hörmander space (see [9] and [14]).
Since this space is inherently infinite dimensional, we will state our results in the
terminology of topological vector spaces.

The notation topological vector space is a collective term for a large class of
not necessarily finite dimensional vector spaces endowed with a Hausdorff topology,
such that the vector addition and the multiplication by scalars is continuous. It
includes Banach- and Hilbert-spaces, as well as all different types of locally convex
spaces and also nonlocally convex spaces, such as the space of measurable functions,
endowed with the topology of convergence in measure. In the finite dimensional case
everything reduces to the Euclidean space with the standard topology (see [11]).

Therefore we will use throughout this paper the following notation: Let X =
(X, τ) be a real topological vector space and B(X) (resp. K(X)) the set of all
nonempty bounded closed (resp. compact) convex subsets of X. For nonempty
A,B ⊆ X : A + B = {x = a + b | a ∈ A and b ∈ B} denotes the algebraic sum
and we denote by A +̇ B = cl({x = a+ b | a ∈ A and b ∈ B}) the Minkowski sum
which is the closure of A + B. We write cl(A) = Ā for the closure of A ⊂ X with
respect to the topology τ. For compact convex sets this coincides with the usual
definition of the Minkowski sum since for A,B ∈ K(X) : A+̇B = A + B holds.
Since B(X) satisfies the order cancellation law, i.e. for A,B,C ∈ B(X) the inclusion
A +̇ B ⊆ B +̇ C implies A ⊆ C, (see [19] and [14], Theorem 3.2.1) the sets B(X)
and K(X) endowed with the Minkowski sum are commutative semigroups with the
cancellation property. A set A ∈ B(X) is called a summand of C ∈ B(X) if there
exists a set B ∈ B(X) with A+̇B = C.

Let us fix some further notations: Let f ∈ X
′

be a continuous linear functional.
Then we denote for A ∈ K(X) by Hf (A) = {z ∈ A | f(z) = maxy∈A f(y)} the

(maximal) face of A with respect to f . For A,B ∈ K(X) and f ∈ X
′

holds the
following identity: Hf (A+B) = Hf (A) +Hf (B).

For A ∈ B(X) we denote by E(A) the set of extremal points of A and by E0(A)
the set of its exposed points. Recall that x0 ∈ A is an exposed point if and only if
there exists an f ∈ X

′

\ {0} such that Hf (A) = {x0}.
For two sets A,B ∈ B(X) we will use the notation A∨B = cl conv(A∪B). A.G.

Pinsker [16] proved the following identity for A,B,C ∈ B(X) :

(A+̇ C) ∨ (B+̇ C) = C+̇ (A ∨B).

We will use the abbreviation A+̇ B ∨C for A+̇ (B ∨ C) and C+̇ d for C+̇ {d}.
An equivalence relation on B2(X) = B(X)× B(X) is given by (A,B) ∼ (C,D)

if and only if A+̇D = B+̇C and an ordering by the relation: (A,B) ≤ (C,D) if and
only if A ⊆ C and B ⊆ D. The equivalence class of (A,B) is denoted by [A,B].

We call a pair (A,B) ∈ B2(X)minimal if it is minimal in the class [A,B], i.e. if for
any pair (C,D) ∈ [A,B] the relation (C,D) ≤ (A,B) implies that (C,D) = (A,B).

Minimal pairs of nonempty bounded closed convex sets have many interesting
properties which where studied in a series of papers (see for instance [14] and the
references cited therein). In particular, it follows from the Lemma of Kuratowski–
Zorn that every equivalence class in K2(X) has a minimal element. This is not
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longer true for B2(X) (see [8]).
In the 2-dimensional case, equivalent minimal pairs of compact convex sets are

uniquely determined up to translations, which is not longer true for the 3-dimensional
case. J. Grzybowski and R. Urbański [8] showed under the assumption of the con-
tinuum hypothesis, that if there exist any two equivalent minimal pairs of compact
convex sets which are not related by a translation, then there exists already a con-
tinuous family of equivalent minimal pairs which are also not related by translations.

A pair (A,B) ∈ B2(X) is called convex if A ∪ B is convex. It follows from the
order cancellation law that in this case every pair (C,D) ∈ [A,B] is also convex, so
that the whole class can be considered as convex (see [14]).

2. Minkowski–R̊adström–Hörmander space

In 1954 L. Hörmander [9] investigated the equivalence classes of pairs of nonempty
compact convex sets for a locally convex space in terms of their support functions. In
particular he proved, that for a topological vector space (X, τ) an arbitrary sublinear
function p : X → IR is continuous in the topology τ if and only if its subdifferential
at the origin ∂p|0 = {v ∈ X

′

| 〈v, x〉 ≤ p(x), x ∈ X} is an element of K(X
′

) of all
nonempty compact convex subsets in the weak-∗-topology σ(X,X

′

) of X ′ and that
p : X → IR has the representation p(x) = pA(x) = max

a∈A
〈a, x〉 with A = ∂p|0 ∈

K(X
′

). Hence the sublinear functions are exactly the support functions.
Now we denote for a topological vector space (X, τ) by P(X) the set of all contin-

uous sublinear functions defined on X and by DCH(X) = {ϕ = p− q | p, q ∈ P(X)}
the real vector space of all differences of continuous sublinear functions (see [14]).
The notation DCH stand for difference of convex homogeneous because sublinear
is equivalent to convex homogeneous. In other words, the elements of the space
DCH(X) are the pointwise differences of support functions.

With respect to the pointwise ordering of functions given by ϕ ≤ ψ if and only
if ϕ(x) ≤ ψ(x) holds for every x ∈ X, the space (DCH(X),≤) is a vector lattice.

Let us now assign to ϕ ∈ DCH(X) the set [ϕ] = {(∂ p|0, ∂q|0) | with ϕ =
p− q, p, q ∈ P(X)}. To formalize this assignment more precisely, let us consider the
set K2(X ′)

/

∼
of all equivalence class of pairs (A,B) ∈ K2(X ′). In 1966 A.G. Pinsker

[16] introduced the following ordering on K2(X ′)
/

∼
, namely: [A,B] � [C,D] ⇐⇒

A + D ⊆ B + C, which is independent of the special choice of representatives,
because of the order cancellation law.

The space
(

K2(X ′)
/

∼
,�
)

is called the Minkowski–R̊adström–Hörmander space

of classes of pairs of nonempty compact convex sets (see [14]). It is a complete vector
lattice and a direct calculation shows that the assignment:

DCH(X) −→ K2(X ′)
/

∼

with ϕ 7→ [ϕ] = {(∂p|0, ∂q|0) | with ϕ = p− q, p, q ∈ P(X)}

is a lattice isomorphism, called Minkowski duality (see [14], Theorem 3.4.3).
The following result is taken from [13], Theorem 8.1.26.
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Theorem 1 Let (X, ‖ · ‖) be a Banach space. Then the space

DCH(X) = {ϕ = p− q | p, q are sublinear and continuous}

endowed with the norm ‖ · ‖∆ given by

‖ϕ‖∆ = inf
p,q

ϕ=p−q

{

max

{

sup
‖x‖≤1

p(x), sup
‖x‖≤1

q(x)

}}

,

where the infimum is taken over all continuous sublinear functions p, q such that
ϕ = p− q, is a Banach space.

Proof: First we show that ‖ϕ‖∆ is well defined for ϕ ∈ DCH(X) and that ‖ · ‖∆ is a
norm.

Let ϕ = p − q ∈ DCH(X) be given. From p(0) = q(0) = 0 it follows that
‖ϕ‖∆ ≥ 0. Since p, q are Lipschitz continuous, ‖ϕ‖∆ < +∞. From the definition of
‖ · ‖∆ it follows that for all ϕ ∈ DCH(X) and t ∈ IR the homogeneity condition
‖tϕ‖∆ = |t|‖ϕ‖∆ holds. Next we prove the triangle inequality:

Let ε > 0 be given and let p1, p2, q1, q2 be continuous sublinear functions with
ϕ1 = p1 − q1, ϕ2 = p2 − q2 ∈ DCH(X) and

‖ϕ1‖∆ ≤ max

{

sup
‖x‖≤1

p1(x), sup
‖x‖≤1

q1(x)

}

≤ ‖ϕ1‖∆ + ε,

‖ϕ2‖∆ ≤ max

{

sup
‖x‖≤1

p2(x), sup
‖x‖≤1

q2(x)

}

≤ ‖ϕ2‖∆ + ε.

Now we have

‖ϕ1 + ϕ2‖∆ ≤ max

{

sup
‖x‖≤1

[p1(x) + p2(x)], sup
‖x‖≤1

[q1(x) + q2(x)]

}

≤ max

{

sup
‖x‖≤1

p1(x) + sup
‖x‖≤1

p2(x), sup
‖x‖≤1

q1(x) + sup
‖x‖≤1

q2(x)

}

≤ max

{

sup
‖x‖≤1

p1(x), sup
‖x‖≤1

q1(x)

}

+max

{

sup
‖x‖≤1

p2(x), sup
‖x‖≤1

q2(x)

}

≤ ‖ϕ1‖∆ + ‖ϕ2‖∆ + 2ε.

The triangle inequality follows from the arbitrariness of ε > 0. In this way we have
proved that DCH(X) is a normed vector space.

Now we show that the space DCH(X) is complete. Let (ϕn)n∈IN be a sequence
of elements of DCH(X) such that

‖ϕn‖∆ <
1

2n
.

We show that the series
∑∞

n=1 ϕn is convergent in the space DCH(X). This conver-
gence implies obviously the completeness of the space DCH(X).



111

Let ε be an arbitrary positive number and let pεn, q
ε
n be continuous sublinear

functions with ϕn = pεn − qεn and

‖ϕn‖∆ ≤ max

{

sup
‖x‖≤1

pεn(x), sup
‖x‖≤1

qεn(x)

}

≤ ‖ϕn‖∆ +
ε

2n
.

It follows from the definition of the norm ‖·‖∆ that the series
∑∞

n=1 p
ε
n and

∑∞

n=1 q
ε
n

are uniformly convergent on the unit ball of X, thus they have limits pε, qε which
are continuous sublinear functions.

Moreover, the sequences
(

p
1

n

)

n∈IN
and

(

q
1

n

)

n∈IN
have limits p and q which

are also continuous sublinear functions. We write ψ(x) = p(x) − q(x). Clearly,
ψ ∈ DCH(X). It remains to show that ψ is a limit of the series

∑∞

n=1 ϕn.
From the above assumptions and a simple calculation it follows that there exists

an index mε such that for all m ≥ mε

∥

∥

∥

∥

∥

m
∑

n=1

ϕn − (pε − qε)

∥

∥

∥

∥

∥

∆

≤ 2ε.

Since p
1

n , q
1

n have the limits p, q, there exists an m̃ε such that for m ≥ m̃ε

∥

∥

∥

∥

∥

m
∑

n=1

ϕn − (p− q)

∥

∥

∥

∥

∥

∆

≤ 2ε.

The arbitrariness of ε > 0 implies that the series
∑∞

n=1 ϕn is norm-convergent in
the space DCH(X).

3. Quasidifferentiable functions

We give a short survey about the quasidifferential calculus which was introduced by
V.F. Demyanov and A.M. Rubinov [3]. We begin with max–min combinations of
smooth functions:

3.1. Max–min combinations of smooth functions

Let U ⊆ IRn be an open subset and let f, f1, ..., fm : U −→ IR be continuous
functions. If I(x) = {i ∈ {1, ...,m}|fi(x) = f(x)} is nonempty at every point x ∈ U ,
then f is called a continuous selection of the functions f1, ..., fm. By CS(f1, . . . , fm)
the set of all continuous selections of f1, . . . , fm is denoted. A continuous selection
of differentiable functions is called a piecewise differentiable function. A typical
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example of a continuous selection is f(x) = max
i∈I

min
j∈Mi

fj(x), where I is a finite index

set and Mi ⊆ {1, . . . ,m}.
Note that every continuous selection f of C1-functions f1, . . . , fm : IRn −→ IR is

locally Lipschitz continuous and that for the Clarke subdifferential holds:

∂f(x) = conv{∇fi(x) | i ∈ Î(x)}

with
Î(x) = {i ∈ I(x) | x ∈ cl int{z ∈ IRn | f(z) = fi(z)}}

(see [1]).
I(x) is called the active index set and Î(x) is called the essential active index set.

Proposition 2 Let U ⊆ IRn be an open set and f1, ..., fm : U −→ IR be C1-
functions. Then the max-min combination

f(x) = max
i∈{1,...,r}

min
j∈Mi

fj

is directionally differentiable at every point x0 ∈ U and for the directional derivative
of f in the direction v ∈ IRn holds:

v 7→ df(x0, v) =
df

dv

∣

∣

∣

∣

x0

= lim
α→0

α>0

f(x0 + αv) − f(x0)

α

= max
i∈{1,...,r}

min
j∈Ii(x0)

〈∇fj(x0), v〉

= max
i∈{1,...,r}

{
∑

k∈{1,...,r}

k 6=i

[ max
j∈Ik(x0)

〈−∇fj(x0), v〉]}

−
∑

k∈{1,...,r}

[ max
j∈Ik(x0)

〈−∇fj(x0, v〉]

with Ik(x0) =Mk ∩ Î(x0).

Proof: Let U ⊆ IRn be an open set and f1, ..., fm : U −→ IR be C1-functions.
First we note: Let ϕ1, ϕ2 : [t0, t1] −→ IR be C1-functions in one variable with
ϕ1(t0) = ϕ2(t0) and ϕ1(t) ≤ ϕ2(t) for t ∈ V, where V is some (righthand) neigh-

borhood of t0. Then for the righthand side directional derivatives holds: ϕ
′+
1 (t0) ≤

ϕ
′+
2 (t0).
Now we consider the function max{f, g}. When f(x0) 6= g(x0), the situation is

clear, since for α small enough max{f(x0+αh), g(x0+αh)} is equal either f(x0+αh)
or g(x0 +αh) and one has only to consider one of the functions f or g. Now assume
that f(x0) = g(x0). Then we have by the above observation:

d(max{f, g})

dh

∣

∣

∣

∣

x0

= lim
α↓0

max{f(x0 + αh), g(x0 + αh)} − f(x0)

α

= max

{

lim
α↓0

f(x0 + αh) − f(x0)

α
, lim

α↓0

g(x0 + αh)− g(x0)

α

}

= max

{

df

dh

∣

∣

∣

∣

x0

,
dg

dh

∣

∣

∣

∣

x0

}

.
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For the minimum we use the formula min{f(x), g(x)} = −max{−f(x),−g(x)} and
this gives that

d

dv

∣

∣

∣

∣

x0

(

max
i∈{1,...,r}

min
j∈Mi

fj

)

= max
i∈{1,...,r}

min
j∈Ii(x0)

〈∇fj(x0), v〉

with Ik(x0) =Mk ∩ Î(x0).
The second part of the assertion follows from the following identity for max–min

combinations of linear functions, which is proved in [3] (see also [14], Formula 10.1.1)

max
i∈{1,...,r}

min
j∈Mi

〈aj , x〉 = max
i∈{1,...,r}











r
∑

k=1

k 6=i

max
j∈Mk

−〈aj , x〉











−
r
∑

k=1

max
j∈Mk

−〈aj , x〉

and which completes the proof.
In other words: For f(x) = max

i∈I
min
j∈Mi

fj(x) we have

v 7→ df(x0, v) =
df

dv

∣

∣

∣

∣

x0

= lim
α→0

α>0

f(x0 + αv) − f(x0)

α
∈ DCH(IRn)

= {h = p− q | p, q : IRn → IR, sublinear}

which can be considered as a starting point for studying quasidifferentiable functions.

3.2. The quasidifferential calculus

Let (X, ‖ · ‖) be a normed vector space X
′

its dual space endowed with the weak-
*-topology σ(X,X

′

) and U ⊆ X be an open subset of X. The dual norm of X will
be denoted by ‖ · ‖

′

and 〈·, ·〉 : X
′

×X → IR stands for the dual pairing. It follows
from the Theorem of Alaoglu–Bourbaki that the elements of K(X

′

) are bounded in
the dual norm.

Definition 3 A function f : U → IR is said to be quasidifferentiable at x0 ∈ U if f
is continuous at x0 and if the following two conditions are satisfied:

a) For every g ∈ X \ {0} the directional derivative

df

dg

∣

∣

∣

∣

x0

= lim
t→0+

f(x0 + tg)− f(x0)

t

exists.

b) There exist two sets ∂f |x0
, ∂f |x0

∈ K(X
′

) called sub- and superdifferential
such that

g 7→
df

dg

∣

∣

∣

∣

x0

= max
v∈∂f |x0

〈v, g〉+ min
w∈∂f |x0

〈w, g〉

= max
v∈∂f |x0

〈v, g〉 − max
w∈−∂f |x0

〈w, g〉 ∈ DCH(X).
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The pair Df
∣

∣

x0

= (∂f
∣

∣

x0

, ∂f
∣

∣

x0

) consisting of a sub- and superdifferential is called
a quasidifferential of f at x0 ∈ U.

Remark: Differing from the above notation of a quasidifferential

Df
∣

∣

x0

= (∂f
∣

∣

x0

, ∂f
∣

∣

x0

),

which was introduced by V.F. Demyanov and A.M. Rubinov, we will use in this
paper the equivalent notation

[

∂f |x0
,−∂f |x0

)
]

∈ K2(X ′)
/

∼

because of its consistency with the Minkowski–R̊adström–Hörmander approach.
It follows immediately from the definition of quasidifferentiability that every DC-

function (difference of convex functions) is quasidifferentiable and by Proposition 2
every finite max–min combination of C1-functions in finitely many variables is also
quasidifferentiable. Relations between the quasidifferential and the Clarke subdif-
ferential have been investigated in [3]. Moreover, there exists a complete calculus
for quasidifferentiable functions (see [3]), which we summarize now:

Proposition 4 Let (X, ‖ · ‖) be a normed vector space and let U ⊆ X be an open
subset. Then the finite sums, products and quotients of quasidifferentiable functions
are quasidifferentiable and every finite max–min combination of quasidifferentiable
functions is again a quasidifferentiable function.

Proof: Let f, g : U −→ IR be two quasidifferentiable functions. By the rules for
directional derivatives we have for fixed x0 ∈ U and direction h ∈ X :

d(f ± g)

dh

∣

∣

∣

∣

x0

= lim
α↓0

[f(x0 + αh)± g(x0 + αh)]− [f(x0)± g(x0)]

α

= lim
α↓0

f(x0 + αh)− f(x0)

α
± lim

α↓0

g(x0 + αh)− g(x0)

α
=
df

dh

∣

∣

∣

∣

x0

±
dg

dh

∣

∣

∣

∣

x0

.

Since h 7→ df
dh

∣

∣

∣

∣

x0

, h 7→ dg
dh

∣

∣

∣

∣

x0

∈ DCH(X), it follows that f ± g is quasidifferen-

tiable.
Since for every t ∈ IR

d(tf)

dh

∣

∣

∣

∣

x0

= lim
α↓0

tf(x0 + αh)− tf(x0)

α
= t lim

α↓0

f(x0 + αh)− f(x0)

α
= t

df

dh

∣

∣

∣

∣

x0

holds, it follows that the function tf quasidifferentiable at x0. Analogously we have
for

d(fg)

dh

∣

∣

∣

∣

x0

= lim
α↓0

[f(x0 + αh)g(x0 + αh)]− [f(x0)g(x0)]

α

= lim
α↓0

g(x0 + αh)
f(x0 + αh)− f(x0)

α
+ lim

α↓0
f(x0)

g(x0 + αh)− g(x0)

α

= g(x0)
df

dh

∣

∣

∣

∣

x0

+ f(x0)
dg

dh

∣

∣

∣

∣

x0
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and hence by fg is quasidifferentiable at x0.
If g(x0) 6= 0, then

d( f
g
)

dh

∣

∣

∣

∣

x0

= lim
α↓0

1

α

(

f(x0 + αh)

g(x0 + αh)
−
f(x0)

g(x0)

)

= lim
α↓0

1

α

(

f(x0 + αh)g(x0)− g(x0 + αh)f(x0)

g(x0)g(x0 + αh)

)

= lim
α↓0

1

g(x0 + αh)g(x0)
lim
α↓0

f(x0 + αh)g(x0)− g(x0 + αh)f(x0)

α

=
1

g2(x0)
lim
α↓0

[f(x0 + αh)g(x0)− f(x0)g(x0)] + [f(x0)g(x0)− g(x0 + αh)f(x0)]

α

=
1

g2(x0)

[

g(x0) lim
α↓0

[f(x0 + αh)− f(x0)]

α
− f(x0) lim

α↓0

[g(x0 + αh)− g(x0)]

α

]

=
1

g2(x0)
[g(x0)

df

dh

∣

∣

∣

∣

x0

− f(x0)
dg

dh

∣

∣

∣

∣

x0

].

Hence f
g
is quasidifferentiable at x0.

Now we consider the function max{f, g}. When f(x0) 6= g(x0), the situation is
clear, since for α small enough max{f(x0+αh), g(x0+αh)} is equal either f(x0+αh)
or g(x0 +αh) and one has only to consider one of the functions f or g. Now assume
that f(x0) = g(x0). Then we have

d(max{f, g})

dh

∣

∣

∣

∣

x0

= lim
α↓0

max{f(x0 + αh), g(x0 + αh)} − f(x0)

α

= max

{

lim
α↓0

f(x0 + αh)− f(x0)

α
, lim

α↓0

g(x0 + αh) − g(x0)

α

}

= max

{

df

dh

∣

∣

∣

∣

x0

,
dg

dh

∣

∣

∣

∣

x0

}

.

For the minimum we use the formula min{f(x), g(x)} = −max{−f(x),−g(x)}.

3.3. The finite dimensional case

Now we restrict ourselves to the finite-dimensional case.

Theorem 5 Let (X, ‖ · ‖) be a finite-dimensional normed vector space, i.e. an Eu-
clidean space with the standard topology, U ⊆ X an open subset and f : U −→ IR
a locally Lipschitz function. Then f is quasidifferentiable at x0 ∈ U if and only if
there exists an element df

∣

∣

x0

∈ DCH(X) such that for every ε > 0 there exists a

δ > 0, such that for all h ∈ U with ‖h‖ ≤ δ and x0 + h ∈ U the following inequality
∣

∣f(x0 + h)− f(x0)− df
∣

∣

x0

(h)
∣

∣ ≤ ε‖h‖ (3..1)

holds.
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Proof: The sufficiency is obvious. Now let f be a locally Lipschitz function which
is quasidifferentiable. Then we have to show that the condition (3..1) is satisfied.
Assume that this is not true. Then there exists a locally Lipschitz quasidifferentiable
function, f : U → IR, which does not satisfy condition (3..1). Hence there exists an
ε > 0, such that for every k ∈ IN there exists an element hk ∈ X \{0} with ‖hk‖ ≤ 1

k

and
∣

∣

∣

∣

f(x0 + hk)− f(x0)− df
∣

∣

x0

(hk)

∣

∣

∣

∣

≥ ε‖hk‖.

Since f : U → IR is locally Lipschitz, there exists a ball IB(x0, r) ⊆ U and a real
number M > 0, such that for all x, y ∈ IB(x0, r)

∣

∣f(x)− f(y)
∣

∣ ≤M‖x− y‖.

Now define: gk = r hk

‖hk‖
and choose a convergent subsequence, also denoted by

(gk)k∈IN, with lim gk = g and limαk = 0, where αk = ‖hk‖

r
. Then for all k ∈ IN we

have

∣

∣

∣

∣

f(x0 + αkg)− f(x0)− df
∣

∣

x0

(αkg)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x0 + αkgk) + f(x0 + αkg)− f(x0 + αkgk)− f(x0)

−df
∣

∣

x0

(αkg) + df
∣

∣

x0

(αkgk)− df
∣

∣

x0

(αkgk)

∣

∣

∣

∣

=

∣

∣

∣

∣

(f(x0 + αkgk)− f(x0)− df
∣

∣

x0

(αkgk))

−((f(x0 + αkgk)− f(x0 + αkg))− (df
∣

∣

x0

(αkg)− df
∣

∣

x0

(αkgk))

∣

∣

∣

∣

≥

∣

∣

∣

∣

f(x0 + αkgk)− f(x0)− df
∣

∣

x0

(αkgk)

∣

∣

∣

∣

−

∣

∣

∣

∣

(f(x0 + αkgk)− f(x0 + αkgk))− (df
∣

∣

x0

(αkgk)− df
∣

∣

x0

(αkg))

∣

∣

∣

∣

≥

∣

∣

∣

∣

f(x0 + αkgk)− f(x0)− df
∣

∣

x0

(αkgk)

∣

∣

∣

∣

−(
∣

∣f(x0 + αkgk)− f(x0 + αkg)
∣

∣+

∣

∣

∣

∣

df
∣

∣

x0

(αkgk)− df
∣

∣

x0

(αkg)

∣

∣

∣

∣

≥ ε0αkr − (Mαk‖gk − g‖+ Lαk‖gk − f‖).

= (ε0r −M‖gk − g‖ − L‖gk − f‖)αk.

There exists an index k0 ∈ IN such that for all k > k0

ε0r −M‖gk − g‖ − L‖gk − f‖ ≥
ε0r

2
,
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where L denotes the Lipschitz constant of df
∣

∣

x0

. Hence for all k ≥ k0 we have

∣

∣

∣

∣

f(x0 + αkg)− f(x0)

αk

− df
∣

∣

x0

∣

∣

∣

∣

≥
ε0r

2
,

which implies that the directional derivative of the function f in direction g at the
point x0 ∈ U does not exist. But this is a contradiction to the assumption, that
f : U → IR is quasidifferentiable at x0 ∈ U.

3.4. Local extrema, ascent and descent directions, examples

For a finite-dimensional spaces X = IRn, the directions of steepest ascent and de-
scent for a DCH-function, i.e. a pointwise difference of support functions, can be
determined by solving a “quadratic minimax” problem (see [3]).

Let X = IRn be equipped with the Euclidean norm ‖x‖ =
√

〈x, x〉. The steepest
descent directions of ϕ ∈ DCH(X) at the point 0 ∈ IRn are the vectors

Desc(ϕ) =

{

x0 ∈ X | ‖x0‖ = 1 and ϕ(x0) = inf
x∈X

‖x‖=1

ϕ(x)

}

and the steepest ascent directions of ϕ = pA − pB ∈ DCH(X) are the vectors

Asc(ϕ) =







x0 ∈ X | ‖x0‖ = 1 and ϕ(x0) = sup
x∈X

‖x‖=1

ϕ(x)







.

Theorem 6 Let X = IRn be equipped with the Euclidean norm. Then for ϕ =
pA − pB = max

a∈A
〈a, x〉 −max

b∈B
〈b, x〉 ∈ DCH(X) holds:

i) x0 ∈ Desc(ϕ) if and only if

x0 = −
w0 + v0
‖w0 + v0‖

with ‖w0 + v0‖ = sup
w∈−B

inf
v∈A

‖w + v‖.

ii) x0 ∈ Asc(ϕ) if and only if

x0 =
w0 + v0

‖w0 + v0‖
with ‖w0 + v0‖ = sup

v∈−A

inf
w∈B

‖w + v‖,

where w0 and v0 are optimal solutions of the corresponding optimization problems.

Proof: It is sufficient to prove the formula only for the steepest descent directions
since the proof for the steepest ascent directions follows exactly from the same
calculation.
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For ϕ = pA − pB ∈ DCH(X) and x0 ∈ Desc(ϕ) there holds:

ϕ(x0) = inf
x∈X

‖x‖=1

ϕ(x) = inf
x∈X

‖x‖=1

(pA(x)− pB(x))

= inf
x∈X

‖x‖=1

(

sup
v∈A

〈v, x〉 − sup
w∈B

〈w, x〉

)

= inf
x∈X

‖x‖=1

(

inf
w∈−B

sup
v∈A

〈v + w, x〉

)

= inf
w∈−B

(

inf
x∈X

‖x‖=1

sup
v∈A

〈v + w, x〉

)

= inf
w∈−B

(

sup
v∈A

inf
x∈X

‖x‖=1

〈v + w, x〉

)

= inf
w∈−B

(

sup
v∈A

−〈v + w,
v + w

‖v + w‖
〉

)

= inf
w∈−B

(

− inf
v∈A

‖v + w‖

)

= − sup
w∈−B

(

inf
v∈A

‖v + w‖

)

.

The proof of the theorem follows immediately from this calculation.
An obvious consequence of Theorem 6 are the following necessary optimality

conditions for quasidifferentiable functions:

Proposition 7 Let U ⊂ IRn be an open set, x0 ∈ U and f : U −→ IR a quasidiffer-
entiable function with the quasidifferential Df

∣

∣

x0

= (∂f
∣

∣

x0

, ∂f
∣

∣

x0

).

i) If f has in x0 ∈ U a local maximum, then −∂f
∣

∣

x0

⊆ ∂f
∣

∣

x0

.

ii) If f has in x0 ∈ U a local minimum, then −∂f
∣

∣

x0

⊆ ∂f
∣

∣

x0

.

Remark: In the notation of the Minkowski–R̊adström–Hörmander space holds

that if f has a local extremum at x0 ∈ U , then the class
[

∂f
∣

∣

x0

,−∂f
∣

∣

x0

]

∈

K2((IRn)′)/
∼

is convex.

Example 8 Typical quasidifferentiable functions are algebraic expressions of max–
min combinations of convex- and C1-functions. The following untypical example of
a quasidifferentiable function is from S. Rolewicz [18]. Let f : IR2 → IR be defined
by

f(x1, x2) =

{

x2

1
x2

x2

1
+x2

2

if (x1, x2) 6= (0, 0),

0 if (x1, x2) = (0, 0).

Obviously f is everywhere differentiable except of (0, 0). Since f is positively homo-

geneous, it follows that
df

dh

∣

∣

∣

∣

0

= lim
α→0

α>0

f(0 + αg)− f(0)

α
= f(h). Now the following

representation of h 7→ df
dh

∣

∣

∣

0
f = f(h) as a pointwise difference of support functions

is possible (see [13], Corollary 8.1.7): Let ‖ · ‖2 be the Euclidean norm and define

Sα(h) = α‖h‖2 + f(h)

for some α > 0. First observe that the restriction of Sα is convex along every line
through the origin. Furthermore observe that Sα is a smooth function outside the
origin. Next, a lengthly but straightforward calculation shows, that for α = 4 the
Hessian of S4 is positive semi-definite at any point outside the origin and hence
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S(h) = 4 · ‖h‖2 + f(h) is positively homogeneous and convex, hence a support
function.

K4 K3 K2 K1 0 1 2 3 4

K4

K3

K2

K1

1

2

3

4

Subdifferential ∂f
∣

∣

0
= ∂S4

∣

∣

0

K4 K3 K2 K1 0 1 2 3 4

K3

K2

K1

1

2

3

Superdifferential ∂f
∣

∣

0
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Figure 1.:

Therefore, df
dh

∣

∣

∣

∣

0

= f(h) = S(h) − 4 · ‖h‖2 which means that f is quasidifferen-

tiable at every point of IR2. In Fig. 1 the quasidifferential of f at the origin is shown
together with the functions f, S0.5 and S4.

Form the two optimization problems

max /min x21x2 under x21 + x22 = 1

follows, that the two steepest descent directions of f are: (− 1
3

√
6,− 1

3

√
3) and

(13
√
6,− 1

3

√
3) and that the two steepest ascent directions of f are: (− 1

3

√
6, 13

√
3)

and (13
√
6, 13

√
3) (cf. also Theorem 6 and Fig. 1).

4. Minimal pairs of compact convex sets

Now we state two typical sufficient conditions for minimality of pairs of compact
convex sets. The first type of criteria uses conditions which ensure that two compact
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convex sets are in a certain ’general position’, while the second type of criteria uses
information about exposed points of the Minkowski sum of compact convex sets.

Theorem 9 Let X be a topological vector space, A a polytope and B ∈ K(X).
Furthermore, let us assume that A has k faces S1 = Hf1(A), ..., Sk = Hfk(A) of
maximal dimension and that for every i ∈ {1, ..., k} we have Hfi(B) = {bi}. Then
the pair (A,B) ∈ K2(X) is minimal.

Proof: Let us assume that there exists a pair (A′, B′) ∈ K2(X) with (A′, B′) ∼ (A,B)
and A′ ⊂ A and B′ ⊂ B. Then it follows from A + B′ = B + A′ that for all
i ∈ {1, ..., k},
Si +Hfi(B

′) = bi +Hfi(A
′) holds. Now let us choose elements b

′

i ∈ Hfi(B
′), i ∈

{1, ..., k}. Then we have for every i ∈ {1, ..., k} that Si + b
′

i ⊂ bi +Hfi(A
′). Now put

xi = b
′

i − bi. Then for every i ∈ {1, ..., k} the inclusion Si + xi ⊂ Hfi(A
′) ⊂ A′ ⊂ A

holds.
Since the polytope A has k-faces S1 = Hf1(A), ..., Sk = Hfk(A) of maximal

dimension it can be described in terms of inequalities as

A = {x ∈ X | fi(x) ≤ αi , i ∈ {1, ..., k}}

for some α1, ..., αk ∈ IR. Hence there exist real numbers β1, ..., βk ∈ IR such that
Ā = {x ∈ X | fi(x) ≤ βi , i ∈ {1, ..., k}} ⊂ A and that for every i ∈ {1, ..., k} we
have Si + xi = Hfi(A) + xi ⊂ Hfi(Ā). Now from Ā ⊂ A it follows that for every
i ∈ {1, ..., k} the inequality βi ≤ αi holds. Since every functional fi, i ∈ {1, ..., k}
determines a face of maximal dimension of A it follows from the condition Si+xi =
Hfi(A) + xi ⊂ Hfi(Ā) that for every i ∈ {1, ..., k} the inequality αi ≤ βi holds,
which means that Ā = A. Hence the pair (A,B) ∈ K2(X) is minimal.

Let X = IRn and P be a polytope. Then the polar polytope is defined by

P o =

{

u ∈ IRn | sup
x∈P

〈u, x〉 ≤ 1

}

,

where 〈·, ·〉 denotes the inner product in IRn.
From the well known correspondence between extreme points of P and faces of

maximal dimension of P o we get:

Corollary 10 Let X = IRn be the Euclidian space with standard topology and P be
a polytope. Then the pair

(P, P o) ∈ K2(IRn)

is minimal.

The next criterium for minimality is based on a sufficient condition on the indecom-
posability of a nonempty compact convex set.

Theorem 11 Let (X, ‖ · ‖) be a real Banach space, and let (A,B) ∈ K2(X). If
for every exposed point a + b ∈ E0(A + B) with a ∈ E0(A), b ∈ E0(B) there exists
b1 ∈ E0(B) or a1 ∈ E0(A) such that a + b1 ∈ E0(A + B) and a − b1 ∈ E(A − B) or
a1 + b ∈ E0(A+B) and a1 − b ∈ E(A−B), then (A,B) is minimal.
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Proof: Let (A,B) ∈ K2(X) and f ∈ X
′

. Then Hf (A + B) = Hf (A) +Hf (B). This
implies the unique representation of every exposed point of A+B as a sum of exposed
points of A and B.

Let us show that the pair (A,B) ∈ K2(X) is minimal. To do this, we choose a
pair (A

′

, B
′

) ∈ K2(X) such that A
′

⊆ A , B
′

⊆ B and A+ B
′

= B +A
′

.
Let a+b ∈ E0(A+B). Without loss of generality we can assume that for a ∈ E0(A)

there exists b0 ∈ E(B) such that a+ b0 ∈ E0(A+ B) and a− b0 ∈ E(A −B). Hence
there exists a continuous linear functional f0 ∈ X∗ such that Hf0(A+B) = {a+b0}.
By the above formula for faces we have

Hf0(A) = {a} and Hf0(B) = {b0}.

Since A + B
′

= B + A
′

=: K, it follows that Hf0(A) +Hf0(B
′

) = Hf0(B) +

Hf0(A
′

). Hence there exist elements a
′

∈ Hf0(A
′

) ⊆ A and b
′

∈ Hf0(B
′

) ⊆ B such

that a + b
′

= b0 + a
′

.
Since a − b0 ∈ E(A − B), it follows that a = a

′

, b0 = b
′

. The equality implies
a = a

′

and B + a ⊆ B + A
′

= K. Hence a+ b ∈ K. Since a+ b ∈ E0(A+B), by
a modification of V. Klee ([14], Theorem 2.4.4 ) of Krein–Milman theorem, follows
that A + B = K.

Hence by the order cancellation law A + B
′

= B + A
′

implies A = A
′

and
A+B

′

= B +A
′

, B = B
′

. Therefore (A,B) ∈ K2(X) is minimal.
We illustrate this criteria by the following two examples:

Example 12 Let us consider the ’Star of David’ which is a pair of polar equilateral
triangles in the plain and can be defined as follows:

For a positive real number R put x = 1
2

√
3R, y = 1

2R, a1 = (0, R), a2 =
(x,−y), a3 = (−x,−y) and let A = a1 ∨ a2 ∨ a3 and B = −A.

By Corollary 10 the pair (A,B) ∈ K2(X) is minimal and the corresponding
support functions are pA, pB : IR2 −→ IR with :

pA(x1, x2) = max

{

Rx2,
1

2

√
2Rx1 −

R

2
x2,−

1

2

√
2Rx1 −

R

2
x2

}

and

PB(x1, x2) = max

{

−Rx2,−
1

2

√
2Rx1 +

R

2
x2,

1

2

√
2Rx1 +

R

2
x2

}

.

In Figure 2 the pair (A,B) and the corresponding pointwise difference of support
functions is depicted.

Example 13 Let us consider the pair (A,B) ∈ K2(IR2) of orthogonal lenses which
is defined as follows:

Let R > 0 be given and consider the Euclidean balls

K1 = IB

((

1

2

√
2R, 0

)

, R

)

, K2 = IB

((

−
1

2

√
2R, 0

)

, R

)

in the plane IR2. Furthermore, let T : IR2 → IR2 be given by T (x1, x2) = (−x2, x1).
Put A = K1 ∩K2 and B = T (A).

Then A+B = A− B = B(0;R) is the ball with radius R at the origin 0 ∈ IR2

and it follows from Theorem 11 that the pair (A,B) is minimal.
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To compute the corresponding pointwise difference of two support functions pA
and pB put a =

(

0, 12
√
2R
)

, b =
(

1
2

√
2R, 0

)

and p = (0,
√
2R), q = (

√
2R, 0). Now

observe that (A,B) ∼ (A+A∨B,B+A∨B) and that A+A∨B = IB(0, R)∨p∨{−p}
(see Fig. 3).

Hence pA(x1, x2) = max
{√

2R|x2|, R
√

x21 + x22

}

and pB(x1, x2) = max
{√

2R|x1| ,

R
√

x21 + x22

}

.
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4.1. Further properties of pairs of bounded closed convex sets

In addition to the above mentioned properties of pairs of compact convex sets in
quasidifferential calculus, a further look to pairs of bounded closed convex sets reveals
an interesting mathematical theory. As an example we consider the possibility of
separating convex sets by convex sets. Formally this goes as follows: Let A,B, S ∈
B(X), then we say that S separates the sets A and B if for every a ∈ A and b ∈ B
we have [a, b] ∩ S 6= ∅, where [a, b] = {a} ∨ {b} the line segment between a and b.

The definition is illustrated in Fig. 4 for the convex sets A,B, S ⊆ IR2. Now the

A BS
a

bx
Figure 4.:

following statements are equivalent:

i) A ∪B is convex, ii) A ∩B separates A and B, iii) A ∨B is a summand of
A+̇B.

This leads to the following algebraic characterization of ’separation’: The condi-
tion that for A,B, S ∈ B(X) the inclusion A + B ⊂ (A ∨ B)+̇S holds is equivalent
to the statement that S separates the sets A and B. This formula is called the sep-
aration law and is an algebraic characterization of ’separation’. Moreover it turns
out, that the separation law is equivalent to the order cancellation law.

This interplay between geometry and algebra is typical for the theory of pairs of
bounded closed convex sets.

Further properties concern the ’translation invariance’ for certain classes of min-
imal pairs of bounded closed convex sets, to which in particular belong the ’reduced’
pairs which where introduced by Ch. Bauer and R. Schneider (see [2]). A pair
(A,B) ∈ B2(X) is called reduced if for any (C,D) ∈ [A,B] there exits anM ∈ B(X)
such that C = A+̇M and D = B+̇M holds.

Beside further properties about ’conditional minimality’, ’invariant convexifica-
tors’ and the ’invariance of dimension’ for minimal pairs, let us finally mention the
’semigroup property’ of B(X). Namely it is possible to consider the theory of pairs of
bounded closed convex sets in the more general frame of a commutative semigroup
S which is ordered by a relation ≤ and which satisfies the order cancellation law,
i.e.: if as ≤ bs for some s ∈ S, then a ≤ b. Within this frame (a, b) ∈ S2 = S × S
corresponds to a fraction a/b ∈ S2 and minimality to a relative prime representation
of a/b ∈ S2.

For more details we refer to the work of J. Grzybowski et al. [5, 6, 7, 14].
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Independently of this work pairs of polytopes have also been extensively studied
in literature as ’virtual polytopes’ in the framework of combinatorial convexity and
algebraic geometry. In this connection we refer to the book of G. Ewald [4] as well
as the paper of R. Langevin, G. Levitt and H. Rosenberg [12] and A.V. Pukhlikov
and A.G. Khovanskĭı [17]. More recent publications on this topic are the papers of
G. Panina [15] and M. Knyazeva and G. Panina [10].
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[5] Grzybowski J., Pallaschke D., Urbański R.; On the reduction of pairs of bounded closed
convex sets, Studia Mathematica 189, 2008, pp. 1–12.
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[8] Grzybowski J., Urbański R.; Minimal pairs of bounded closed convex sets, Studia
Mathematica 126, 1997, pp. 95–99.
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