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Abstract. We derive C?-characterizations for convex, strictly convex, as well
as strongly convex functions on full dimensional convex sets. In the cases of
convex and strongly convex functions this weakens the well-known openness
assumption on the convex sets. We also show that, in a certain sense, the full
dimensionality assumption cannot be weakened further. In the case of strictly
convex functions we weaken the well-known sufficient C?-condition for strict
convexity to a characterization. Several examples illustrate the results.
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1. Introduction

This article derives C?-characterizations for three basic convexity notions of func-
tions on full dimensional convex sets. Recall (e.g. from [1, 3]) that for a nonempty
convex set M C R” a function f : M — R is called convez if

forall z,ye M, A€ (0,1): f(1=Nz+Xy) < 1=Nf(@)+ f(y) (1)

holds, strictly convex if the inequality in (1) is strict for  # y, and strongly (or
uniformly) conver if f(x) — SxTx is convex for some ¢ > 0.

In the framework of function minimization, these convexity notions have impor-
tant and well-known implications. In fact, let M C R"™ be nonempty and convex.
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Then for a convex function f on M the set of minimal points is convex (but possibly
empty), for a strictly convex function f on M the set of minimal points contains
at most one element, and for a strongly convex function f on M the set of min-
imal points contains exactly one element, if M is also closed (but not necessarily
bounded).

For functions f which are twice continuously differentiable on some open set
containing M (briefly, f € C%(M,R)), also the following relations of these concepts
to properties of the Hessians D2 f(x) of f on M are well-known.

Theorem 1 (e.g. [1]) Let M C R™ be nonempty and convez, and let f € C?*(M,R).
Then the following assertions hold.

(i) If D?f(z) is positive semi-definite (briefly: D*f(x) = 0) for all x € M, then
f is convex on M. If M is open, also the converse direction holds.

(ii) If D?f(x) is positive definite (briefly: D?f(x) = 0) for all x € M, then f is
strictly convexr on M.

(iii) If there exists some ¢ > 0 such that the smallest eigenvalue of D?f(x) is
bounded below by c (briefly: Amin(D?*f(z)) > ¢) on M, then f is strongly
conver on M. If M is open, also the converse direction holds.

As opposed to the C?-conditions for convexity and strong convexity, the C?-con-
dition for strict convexity in Theorem 1(ii) is only sufficient but not necessary, even
on open sets M. The latter is illustrated by the function f(z) = x* which is strictly
convex on R, but f”(0) vanishes. This discrepancy between the two function classes
is the motivation to introduce the following terminology (see also [5]).

Definition 1 For a nonempty convex set M C R™ we call f € C?(M,R) truly
convex on M if D?f(x) is positive definite for all x € M.

For C?-functions f on M we have the obvious implications
strongly convex = truly convex = strictly convex = convex,

and on R, for example, f(z) = 22 is strongly convex, f(x) = exp(x) is truly, but not
strongly convex, f(z) = x* is strictly, but not truly convex, and f(r) = z is convex,
but not strictly convex.

The contribution of this paper is twofold. In Section 2, for the C2-characteri-
zations of convexity and strong convexity, we weaken the openness assumption on
convex sets to their full dimensionality. We also show that, in a certain sense, the
full dimensionality assumption cannot be weakened further.

In the subsequent sections we contribute C2-characterizations of strict convexity
on full dimensional convex sets. Section 3 prepares these results by a characteriza-
tion of strict convexity on line segments which does not need full dimensionality or
smoothness assumptions. Section 4 deals with univariate functions, while Section
5 treats the multivariate case. We conclude this paper with some final remarks in
Section 6.
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2. Twice differentiable characterizations of convexity and strong con-
vexity on full dimensional convex sets

The converse direction in the C?-characterization of convexity from Theorem 1(i)
says that, if f € C?(M,R) is convex on some nonempty open convex set M C R",
then D2 f(x) = 0 holds for all x € M. In fact, the well-known example f(z) = 2% —23
on M =R x {0} shows that f may be convex on a non-open set M, while D?f(x)
is indefinite, even for all z € M.

However, for practical applications, in particular in optimization, the openness
assumption does not directly cover many relevant situations in which M is a closed
convex proper subset of R™. Fortunately, the openness assumption can be weakened
to full dimensionality of M, as we will see in the subsequent results. Recall that a
convex set M C R is called full dimensional if its affine hull aff(A) has dimension
n, that aff(M) is the smallest affine set containing M, and that its dimension is
the dimension of the parallel linear space. Note that, here and in the following,
we shall often assume that f is twice continuously differentiable on some open set
containing the topological closure cl(M) of M which, for a non-closed set M, is a
slightly stronger assumption than f € C?(M,R).

Lemma 1 Let f € C?*(cl(M),R) be conver on some full dimensional convex set
M C R™. Then D?f(z) = 0 holds for all z € cl(M).

Proof. By [3, Th. 6.3], cI(M) coincides with cl(int(M)) where int(M ), the topological
interior of M, is nonempty and convex in view of [3, Th. 6.2]. As f is convex on
the nonempty open convex set int(M), Theorem 1(i) implies D?f(z) = 0 for all
x € int(M). The continuity of the eigenvalues of the symmetric matrix D?f(x)
immediately implies D?f(x) = 0 for all z € cl(int(M)) = cl(M). .

Due to M C cl(M) for any set M C R”, the combination of Theorem 1(i) and
Lemma 1 yields the following theorem.

Theorem 2 (C?-characterization of convexity)
Let M C R™ be a full dimensional convex set. Then f € C%(cl(M),R) is convex if
and only if D?f(x) = 0 holds for all x € M.

Note that the set M = R x {0}, on which the function f(z) = x? — 23 with
indefinite Hessian is convex, is not full dimensional.

In contrast to the openness assumption on M, its full dimensionality cannot be
weakened further, when arbitrary convex C? functions shall possess positive semi-
definite Hessians on M. This follows from the subsequent result, which generalizes
the above example to arbitrary ‘flat’ convex sets.

Theorem 3 Let M C R™ be nonempty and conver with dim(M) < n. Then there
exists a function f € C?(M,R) which is convex on M but has an indefinite Hessian

D%f(x) for allx € M.
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Proof. The assertion is trivial in the case when M is a singleton. Hence, in the
following we will assume 1 < m < n for m = dim(M). Let u € M, let the columns
of the (n, m)—matrix V form an orthonormal basis of aff (M) —u, and let the columns
of the (n,n —m)—matrix W form an orthonormal basis of (aff(M) —u)*. Then the
function

f@) = B —w)T (VVT - WWT) (& - )

possesses the Hessian D?f(x) = VVT — WWT which satisfies
WTD2f(x)W = WIVVTW - WTWWTW = —I,

so that D?f(x) is negative definite on span(W). Analogously, it is not hard to
see that D?f(x) is positive definite on span(V) = span(W)=, so that D?f(z) is
indefinite for each x € R™.

On the other hand, each x € M is an element of aff(M) and can, thus, be
written in the form x = u+ Vy with some y € R™. In fact, the affine transformation
x=T(y,z) =u+Vy+Wzwithy € R™ and z € R"~"™ satisfies T(R™ x {O0p—m}) =
aff(M). For the transformed function foT and all y € R™ we obtain

(foT)(y,0) = flu+Vy) = 3yT(VIVVIV - VIWWTV)y = 34Ty,

so that foT is convex on R™ x {0,_,,}. Consequently, f is convex on aff(M) and,
thus, on M. °

We close this section with a simple consequence of Theorems 1(iii) and 2 for the
C?-characterization of strongly convex functions.

Theorem 4 (C?-characterization of strong convexity)

Let M C R™ be a full dimensional convex set. Then f € C?(cl(M),R) is strongly
convex on M if and only if there exists some ¢ > 0 such that Amin(D? f(z)) > ¢ holds
for allz € M.

Proof. In view of Theorem 1(iii) we only have to show that for a strongly convex
function f € C?%(cl(M),R) there exists some ¢ > 0 such that A\nin(D?f(z)) > c
holds for all x € M. In fact, for a strongly convex function f on M there exists
some ¢ > 0 such that f(x) — $2Tx is convex on M. By Theorem 2, the Hessian
D?(f(z) — $aTx) = D?*f(x) — cl is positive semi-definite for all z € M, which

implies the assertion. °

3. A characterization of strict convexity on line segments

The following characterization of strict convexity does not depend on any smooth-
ness or full dimensionality assumptions and seems obvious. As the proof is not
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straightforward, we include it for the sake of completeness. In the following, for a
convex set M C R" and x,y € M

[z,y] = {(1 =Nz +Ay[ A e0,1]}

will denote a (closed) line segment in M. In the case x # y we call it line segment
of positive length.

Condition A. f is convex on M, and f is not linear on any line segment of positive

length in M.

Lemma 2 Let M C R™ be nonempty and convex. Then f is strictly convexr on M
if and only if Condition A holds.

Proof. Clearly, f is not strictly convex on M if Condition A is violated. On the
other hand, let f be convex, but not strictly convex on M. Then there are points
T,y € M, T # 7, as well as some X € (0,1) with

F(A=Nz+Xg) = A=Nf(@)+ (D)

Assume that there exists some A € (0,1) with

F=NZ+Ag) < 1=-Nf(@) + (@)

Without loss of generality, let A < X. Then

A=Nf@+Af(g) = f(Q1-NZ+Ay)
= f(-m(1 =Nz +((1- A+ p)7)
= f((L=pz+py)
< (A-wfE +pf@)
< (= [ =Nf@) + M @) +r@)
= (1=XNf(@) + (@)

Consequently we have
forall Ae[0,1]: f(1=NZ+Xg) = 1=XNf(@)+ (Y
so that the graph of f on [Z, 7] is the line segment of positive length

[(Z, f(2)), (5, f(@))]-

This shows the assertion. °



60

4. Strict convexity in the univariate case

For n = 1 the following C2-characterization of strict convexity is inspired by a
Cl —characterization of strict monotonicity in [2, IV.24 Folgerung(b)].

Condition B. The function " is nonnegative on M, and the set {x € M| f"(z) =
0} does not contain interior points.

Theorem 5 (C?-char. of strict convexity, univariate case)

Let the convexr set M C R contain at least two distinct elements, and let f €
C?(cl(M),R). Then f is strictly convex on M if and only if Condition B holds.

Proof. We use Lemma 2 and show the equivalence of Conditions A and B. By
Theorem 2, the convexity of f on M is equivalent to the nonnegativity of f” on M,
as a one dimensional convex set with at least two distinct elements is full dimensional.
Furthermore, the linearity of f on some line segment of positive length [z,y] C M
is equivalent to [Z,y] C {z € M| f”(x) = 0}. This shows the assertion. o

Example 1 The function f(x) = 2* is not truly convex on R. However, it satisfies

Condition B, so that its strict convexity follows from Theorem 5.

Example 2 With
(x+1)4 z<-1
g(x) = <0, x € [-1,1]
(x—1% z>1
and any a,b € R the function f(x) = g(z) + ax + b is C?, conver, but not strictly
convex on R. Moreover, it violates Condition B.

5. Strict convexity in the multivariate case

For n > 1 the generalization of Condition B is not straightforward. In view of
Condition A, at least it is obvious that the interior point property from Condition B
refers to line segments of positive length in the multivariate case, as in the following
condition.

Condition C. The Hessian D*f is positive semi-definite on M, and the set {x €
M| D?f(z) is singular} does not contain any line segment of positive length.

Condition C is weaker than true convexity on M, since for any truly convex
function f the set {x € M| D?f(x) is singular} is empty. The following theorem
shows, however, that Condition C is sufficiently strong to imply strict convexity of
fon M.
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Theorem 6 Let M C R™ be nonempty and convez (but not necessarily full dimen-
sional), let f € C?(cl(M),R), and let Condition C be satisfied. Then f is strictly
convez on M.

Proof. We use Lemma 2 and show that Condition C implies Condition A. In fact,
under Condition C the convexity of f on M follows from Theorem 1(i). Assume
that Condition A is violated. Then there exists a line segment [Z, 5] C M of positive
length such that the function

() = f@+ Ay —7)) (2)

is linear on [0, 1]. Hence, its second derivative
¢"(N) = F-D)TD*f(F+ G - 2))(F - ) (3)

vanishes on [0,1]. As f is convex on M, we have Df(z + A(y — z)) = 0 for all
A € [0,1]. If D? f(Z+4 A(§ — &)) was nonsingular for some A € [0, 1], this would mean

D%2f(z + A7 — Z)) = 0, so that § —  # 0 leads to the contradiction ¢”(\) > 0.
Consequently, D?f is singular on [z, 7], and Condition C is violated. .

Example 3 Consider f(z) = 2} + 23 on M(t) = {z € R?| (z; —t)> + 23 < 1}
with t € R. For all t < —1 as well as all t > 1 the function f is truly and, thus,
strictly convex on M(t). Fort € {£1} the function f is not truly convex on M(t),
as D2 f(0) is singular. However, since D?f(z) = 0 holds for all x € M(t) \ {0},
Condition C'is satisfied and, by Theorem 6, f is strictly conver on M(t).

Unfortunately, Condition C is too strong to characterize strict convexity, as the
next example illustrates.

Example 4 For f and M(t) from Example 8 andt € (—1,1) Condition C is violated
as the set

{x € R?| D?f(x) is singular} = {x € R?*| z; =0}

contains a line segment of positive length in M (t). However, it is not hard to verify
Condition A (see also Example 5 below), so that f is strictly convex on M(t).

In the following Condition D, for v € R™\ {0} we denote by Alspan(v) the restric-
tion of the symmetric (n,n)—matrix A to the one dimensional space span(v), that
is, the scalar vT Av.

Condition D. The Hessian D?f is positive semi-definite on M, and there is no
line segment [T, 7] of positive length in M such that D2f(x)\span(g_j) vanishes for
all x € [T, 7).

Theorem 7 (C?-char. of strict convexity, multivariate case)
Let M C R™ be a full dimensional convez set, and let f € C*(cl(M),R). Then f is
strictly convex on M if and only if Condition D holds.
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Table 1. C?-characterizations of convexity notions on full dimensional convex sets

convexity notion | C?-characterization

f convex on M D?f>=0on M

f strictly convex on M Condition D

f truly convex on M D2f = 0on M

f strongly convex on M Amin(D?f) > ¢>0o0n M

Proof. We use Lemma 2 and show the equivalence of Conditions A and D. By
Theorem 2, the convexity of f on M is equivalent to D2f = 0 on M.

For any line segment [Z,3] C M of positive length, the linearity of f on [z, 7]
is characterized by ¢” = 0 on [0,1], with ¢ from (2). In view of (3), the latter
is equivalent to DQf(m)|Span(g,f) = 0 for all € [Z, 7], so that the equivalence of
Conditions A and D is shown. .

Note that Condition D collapses to Condition B in the case n = 1.

Example 5 Consider once more the function f on M(t) from Example 8 with t €
(=1,1). In the following we will show that it satisfies Condition D. In fact, assume
that there is some line segment [Z,y] C M(t) such that

2
DQf(I”span(gj—i) = (g - E)T (120171 (2)> (y — 1_7)

vanishes for all x € [Z,9]. In view of D*f(x) = 0 and (§ — Z) # O this can only
happen for singular matrices D? f(x), that is, for x1 = 0. Hence we necessarily have
[Z,9] C {z € R*| &1 = 0}, span(y — ) = {0} x R and, thus, D*f(2)|span(y—z) > O-
This contradiction shows that Condition D is satisfied.

6. Final remarks

In this paper we derived C2-characterizations of plain, strict, as well as strong con-
vexity on full dimensional convex sets. Table 1 summarizes these C2-characteriza-
tions, where the characterization of true convexity actually just repeats its definition.

Note that the characterization of strict convexity on full dimensional convex
sets simplifies to Condition B in the univariate case, so that Theorem 5 clarifies a
remark after [4, Th. 2.13]. Condition C yields a weaker sufficient condition for strict
convexity than true convexity, even without the full dimensionality assumption.

We finally point out that, in optimization, the set M often is given in functional
form as

M = {zeR" gi(x) <0, i€l, hj(zx)=0, je J}
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with finite index sets I and J, convex functions g; : R™ — R, ¢ € I, and affine func-
tions h; : R® = R, j € J. A simple sufficient condition for the full dimensionality of
M then is J = () and the existence of a Slater point z* in the sense that g;(z*) < 0
holds for all ¢ € 1.
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