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Abstract. We derive C2-characterizations for convex, strictly convex, as well

as strongly convex functions on full dimensional convex sets. In the cases of

convex and strongly convex functions this weakens the well-known openness

assumption on the convex sets. We also show that, in a certain sense, the full

dimensionality assumption cannot be weakened further. In the case of strictly

convex functions we weaken the well-known sufficient C
2-condition for strict

convexity to a characterization. Several examples illustrate the results.
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1. Introduction

This article derives C2-characterizations for three basic convexity notions of func-
tions on full dimensional convex sets. Recall (e.g. from [1, 3]) that for a nonempty
convex set M ⊂ R

n a function f : M → R is called convex if

for all x, y ∈ M, λ ∈ (0, 1) : f( (1− λ)x+ λy ) ≤ (1− λ)f(x) + λf(y) (1)

holds, strictly convex if the inequality in (1) is strict for x 6= y, and strongly (or
uniformly) convex if f(x)− c

2x
⊺x is convex for some c > 0.

In the framework of function minimization, these convexity notions have impor-
tant and well-known implications. In fact, let M ⊂ R

n be nonempty and convex.
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Then for a convex function f on M the set of minimal points is convex (but possibly
empty), for a strictly convex function f on M the set of minimal points contains
at most one element, and for a strongly convex function f on M the set of min-
imal points contains exactly one element, if M is also closed (but not necessarily
bounded).

For functions f which are twice continuously differentiable on some open set
containing M (briefly, f ∈ C2(M,R)), also the following relations of these concepts
to properties of the Hessians D2f(x) of f on M are well-known.

Theorem 1 (e.g. [1]) LetM ⊂ R
n be nonempty and convex, and let f ∈ C2(M,R).

Then the following assertions hold.

(i) If D2f(x) is positive semi-definite (briefly: D2f(x) � 0) for all x ∈ M , then
f is convex on M . If M is open, also the converse direction holds.

(ii) If D2f(x) is positive definite (briefly: D2f(x) ≻ 0) for all x ∈ M , then f is
strictly convex on M .

(iii) If there exists some c > 0 such that the smallest eigenvalue of D2f(x) is
bounded below by c (briefly: λmin(D

2f(x)) ≥ c) on M , then f is strongly
convex on M . If M is open, also the converse direction holds.

As opposed to the C2-conditions for convexity and strong convexity, the C2-con-
dition for strict convexity in Theorem 1(ii) is only sufficient but not necessary, even
on open sets M . The latter is illustrated by the function f(x) = x4 which is strictly
convex on R, but f ′′(0) vanishes. This discrepancy between the two function classes
is the motivation to introduce the following terminology (see also [5]).

Definition 1 For a nonempty convex set M ⊂ R
n we call f ∈ C2(M,R) truly

convex on M if D2f(x) is positive definite for all x ∈ M .

For C2-functions f on M we have the obvious implications

strongly convex ⇒ truly convex ⇒ strictly convex ⇒ convex,

and on R, for example, f(x) = x2 is strongly convex, f(x) = exp(x) is truly, but not
strongly convex, f(x) = x4 is strictly, but not truly convex, and f(x) = x is convex,
but not strictly convex.

The contribution of this paper is twofold. In Section 2, for the C2-characteri-
zations of convexity and strong convexity, we weaken the openness assumption on
convex sets to their full dimensionality. We also show that, in a certain sense, the
full dimensionality assumption cannot be weakened further.

In the subsequent sections we contribute C2-characterizations of strict convexity
on full dimensional convex sets. Section 3 prepares these results by a characteriza-
tion of strict convexity on line segments which does not need full dimensionality or
smoothness assumptions. Section 4 deals with univariate functions, while Section
5 treats the multivariate case. We conclude this paper with some final remarks in
Section 6.
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2. Twice differentiable characterizations of convexity and strong con-
vexity on full dimensional convex sets

The converse direction in the C2-characterization of convexity from Theorem 1(i)
says that, if f ∈ C2(M,R) is convex on some nonempty open convex set M ⊂ R

n,
then D2f(x) � 0 holds for all x ∈ M . In fact, the well-known example f(x) = x2

1−x2
2

on M = R× {0} shows that f may be convex on a non-open set M , while D2f(x)
is indefinite, even for all x ∈ M .

However, for practical applications, in particular in optimization, the openness
assumption does not directly cover many relevant situations in which M is a closed
convex proper subset of Rn. Fortunately, the openness assumption can be weakened
to full dimensionality of M , as we will see in the subsequent results. Recall that a
convex set M ⊂ R

n is called full dimensional if its affine hull aff(M) has dimension
n, that aff(M) is the smallest affine set containing M , and that its dimension is
the dimension of the parallel linear space. Note that, here and in the following,
we shall often assume that f is twice continuously differentiable on some open set
containing the topological closure cl(M) of M which, for a non-closed set M , is a
slightly stronger assumption than f ∈ C2(M,R).

Lemma 1 Let f ∈ C2(cl(M),R) be convex on some full dimensional convex set
M ⊂ R

n. Then D2f(x) � 0 holds for all x ∈ cl(M).

Proof. By [3, Th. 6.3], cl(M) coincides with cl(int(M)) where int(M), the topological
interior of M , is nonempty and convex in view of [3, Th. 6.2]. As f is convex on
the nonempty open convex set int(M), Theorem 1(i) implies D2f(x) � 0 for all
x ∈ int(M). The continuity of the eigenvalues of the symmetric matrix D2f(x)
immediately implies D2f(x) � 0 for all x ∈ cl(int(M)) = cl(M). •

Due to M ⊂ cl(M) for any set M ⊂ R
n, the combination of Theorem 1(i) and

Lemma 1 yields the following theorem.

Theorem 2 (C2-characterization of convexity)
Let M ⊂ R

n be a full dimensional convex set. Then f ∈ C2(cl(M),R) is convex if
and only if D2f(x) � 0 holds for all x ∈ M .

Note that the set M = R × {0}, on which the function f(x) = x2
1 − x2

2 with
indefinite Hessian is convex, is not full dimensional.

In contrast to the openness assumption on M , its full dimensionality cannot be
weakened further, when arbitrary convex C2 functions shall possess positive semi-
definite Hessians on M . This follows from the subsequent result, which generalizes
the above example to arbitrary ‘flat’ convex sets.

Theorem 3 Let M ⊂ R
n be nonempty and convex with dim(M) < n. Then there

exists a function f ∈ C2(M,R) which is convex on M but has an indefinite Hessian
D2f(x) for all x ∈ M .
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Proof. The assertion is trivial in the case when M is a singleton. Hence, in the
following we will assume 1 ≤ m < n for m = dim(M). Let u ∈ M , let the columns
of the (n,m)−matrix V form an orthonormal basis of aff(M)−u, and let the columns
of the (n, n−m)−matrix W form an orthonormal basis of (aff(M)− u)⊥. Then the
function

f(x) = 1
2 (x− u)⊺ (V V ⊺ −WW ⊺) (x − u)

possesses the Hessian D2f(x) = V V ⊺ −WW ⊺ which satisfies

W ⊺D2f(x)W = W ⊺V V ⊺W −W ⊺WW ⊺W = −I,

so that D2f(x) is negative definite on span(W ). Analogously, it is not hard to
see that D2f(x) is positive definite on span(V ) = span(W )⊥, so that D2f(x) is
indefinite for each x ∈ R

n.
On the other hand, each x ∈ M is an element of aff(M) and can, thus, be

written in the form x = u+V y with some y ∈ R
m. In fact, the affine transformation

x = T (y, z) = u+V y+Wz with y ∈ R
m and z ∈ R

n−m satisfies T (Rm×{0n−m}) =
aff(M). For the transformed function f ◦ T and all y ∈ R

m we obtain

(f ◦ T )(y, 0) = f(u+ V y) = 1
2y

⊺ (V ⊺V V ⊺V − V ⊺WW ⊺V ) y = 1
2y

⊺y,

so that f ◦ T is convex on R
m ×{0n−m}. Consequently, f is convex on aff(M) and,

thus, on M . •

We close this section with a simple consequence of Theorems 1(iii) and 2 for the
C2-characterization of strongly convex functions.

Theorem 4 (C2-characterization of strong convexity)
Let M ⊂ R

n be a full dimensional convex set. Then f ∈ C2(cl(M),R) is strongly
convex on M if and only if there exists some c > 0 such that λmin(D

2f(x)) ≥ c holds
for all x ∈ M .

Proof. In view of Theorem 1(iii) we only have to show that for a strongly convex
function f ∈ C2(cl(M),R) there exists some c > 0 such that λmin(D

2f(x)) ≥ c
holds for all x ∈ M . In fact, for a strongly convex function f on M there exists
some c > 0 such that f(x) − c

2x
⊺x is convex on M . By Theorem 2, the Hessian

D2(f(x) − c
2x

⊺x) = D2f(x) − cI is positive semi-definite for all x ∈ M , which
implies the assertion. •

3. A characterization of strict convexity on line segments

The following characterization of strict convexity does not depend on any smooth-
ness or full dimensionality assumptions and seems obvious. As the proof is not
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straightforward, we include it for the sake of completeness. In the following, for a
convex set M ⊂ R

n and x, y ∈ M

[x, y] := {(1− λ)x+ λy| λ ∈ [0, 1]}

will denote a (closed) line segment in M . In the case x 6= y we call it line segment
of positive length.

Condition A. f is convex on M , and f is not linear on any line segment of positive
length in M .

Lemma 2 Let M ⊂ R
n be nonempty and convex. Then f is strictly convex on M

if and only if Condition A holds.

Proof. Clearly, f is not strictly convex on M if Condition A is violated. On the
other hand, let f be convex, but not strictly convex on M . Then there are points
x̄, ȳ ∈ M , x̄ 6= ȳ, as well as some λ̄ ∈ (0, 1) with

f( (1− λ̄)x̄+ λ̄ȳ ) = (1− λ̄)f(x̄) + λ̄f(ȳ).

Assume that there exists some λ̂ ∈ (0, 1) with

f( (1− λ̂)x̄+ λ̂ȳ ) < (1− λ̂)f(x̄) + λ̂f(ȳ).

Without loss of generality, let λ̂ < λ̄. Then

µ =
λ̄− λ̂

1− λ̂

is an element of (0, 1). With z̄ = (1− λ̂)x̄+ λ̂ȳ we obtain the contradiction

(1− λ̄)f(x̄) + λ̄f(ȳ) = f( (1− λ̄)x̄+ λ̄ȳ )

= f( (1− µ)(1− λ̂)x̄+ ((1− µ)λ̂+ µ)ȳ )

= f( (1− µ)z̄ + µȳ )

≤ (1− µ)f(z̄) + µf(ȳ)

< (1− µ)
[

(1− λ̂)f(x̄) + λ̂f(ȳ)
]

+ µf(ȳ)

= (1− λ̄)f(x̄) + λ̄f(ȳ).

Consequently we have

for all λ ∈ [0, 1] : f( (1− λ)x̄ + λȳ ) = (1− λ)f(x̄) + λf(ȳ)

so that the graph of f on [x̄, ȳ] is the line segment of positive length

[(x̄, f(x̄)), (ȳ, f(ȳ))].

This shows the assertion. •
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4. Strict convexity in the univariate case

For n = 1 the following C2-characterization of strict convexity is inspired by a
C1−characterization of strict monotonicity in [2, IV.24 Folgerung(b)].

Condition B. The function f ′′ is nonnegative on M , and the set {x ∈ M | f ′′(x) =
0} does not contain interior points.

Theorem 5 (C2-char. of strict convexity, univariate case)
Let the convex set M ⊂ R

1 contain at least two distinct elements, and let f ∈
C2(cl(M),R). Then f is strictly convex on M if and only if Condition B holds.

Proof. We use Lemma 2 and show the equivalence of Conditions A and B. By
Theorem 2, the convexity of f on M is equivalent to the nonnegativity of f ′′ on M ,
as a one dimensional convex set with at least two distinct elements is full dimensional.
Furthermore, the linearity of f on some line segment of positive length [x̄, ȳ] ⊂ M
is equivalent to [x̄, ȳ] ⊂ {x ∈ M | f ′′(x) = 0}. This shows the assertion. •

Example 1 The function f(x) = x4 is not truly convex on R. However, it satisfies
Condition B, so that its strict convexity follows from Theorem 5.

Example 2 With

g(x) =











(x+ 1)4, x < −1

0, x ∈ [−1, 1]

(x− 1)4, x > 1

and any a, b ∈ R the function f(x) = g(x) + ax + b is C2, convex, but not strictly
convex on R. Moreover, it violates Condition B.

5. Strict convexity in the multivariate case

For n > 1 the generalization of Condition B is not straightforward. In view of
Condition A, at least it is obvious that the interior point property from Condition B
refers to line segments of positive length in the multivariate case, as in the following
condition.

Condition C. The Hessian D2f is positive semi-definite on M , and the set {x ∈
M | D2f(x) is singular} does not contain any line segment of positive length.

Condition C is weaker than true convexity on M , since for any truly convex
function f the set {x ∈ M | D2f(x) is singular} is empty. The following theorem
shows, however, that Condition C is sufficiently strong to imply strict convexity of
f on M .
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Theorem 6 Let M ⊂ R
n be nonempty and convex (but not necessarily full dimen-

sional), let f ∈ C2(cl(M),R), and let Condition C be satisfied. Then f is strictly
convex on M .

Proof. We use Lemma 2 and show that Condition C implies Condition A. In fact,
under Condition C the convexity of f on M follows from Theorem 1(i). Assume
that Condition A is violated. Then there exists a line segment [x̄, ȳ] ⊂ M of positive
length such that the function

ϕ(λ) := f(x̄+ λ(ȳ − x̄)) (2)

is linear on [0, 1]. Hence, its second derivative

ϕ′′(λ) = (ȳ − x̄)⊺D2f(x̄+ λ(ȳ − x̄))(ȳ − x̄) (3)

vanishes on [0, 1]. As f is convex on M , we have D2f(x̄ + λ(ȳ − x̄)) � 0 for all
λ ∈ [0, 1]. If D2f(x̄+ λ̄(ȳ− x̄)) was nonsingular for some λ̄ ∈ [0, 1], this would mean
D2f(x̄ + λ̄(ȳ − x̄)) ≻ 0, so that ȳ − x̄ 6= 0 leads to the contradiction ϕ′′(λ̄) > 0.
Consequently, D2f is singular on [x̄, ȳ], and Condition C is violated. •

Example 3 Consider f(x) = x4
1 + x2

2 on M(t) = {x ∈ R
2| (x1 − t)2 + x2

2 ≤ 1}
with t ∈ R. For all t < −1 as well as all t > 1 the function f is truly and, thus,
strictly convex on M(t). For t ∈ {±1} the function f is not truly convex on M(t),
as D2f(0) is singular. However, since D2f(x) ≻ 0 holds for all x ∈ M(t) \ {0},
Condition C is satisfied and, by Theorem 6, f is strictly convex on M(t).

Unfortunately, Condition C is too strong to characterize strict convexity, as the
next example illustrates.

Example 4 For f and M(t) from Example 3 and t ∈ (−1, 1) Condition C is violated
as the set

{x ∈ R
2| D2f(x) is singular} = {x ∈ R

2| x1 = 0}

contains a line segment of positive length in M(t). However, it is not hard to verify
Condition A (see also Example 5 below), so that f is strictly convex on M(t).

In the following Condition D, for v ∈ R
n \ {0} we denote by A|span(v) the restric-

tion of the symmetric (n, n)−matrix A to the one dimensional space span(v), that
is, the scalar v⊺Av.

Condition D. The Hessian D2f is positive semi-definite on M , and there is no
line segment [x̄, ȳ] of positive length in M such that D2f(x)|span(ȳ−x̄) vanishes for
all x ∈ [x̄, ȳ].

Theorem 7 (C2-char. of strict convexity, multivariate case)
Let M ⊂ R

n be a full dimensional convex set, and let f ∈ C2(cl(M),R). Then f is
strictly convex on M if and only if Condition D holds.
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Table 1. C2-characterizations of convexity notions on full dimensional convex sets
convexity notion C2-characterization
f convex on M D2f � 0 on M
f strictly convex on M Condition D
f truly convex on M D2f ≻ 0 on M
f strongly convex on M λmin(D

2f) ≥ c > 0 on M

Proof. We use Lemma 2 and show the equivalence of Conditions A and D. By
Theorem 2, the convexity of f on M is equivalent to D2f � 0 on M .

For any line segment [x̄, ȳ] ⊂ M of positive length, the linearity of f on [x̄, ȳ]
is characterized by ϕ′′ = 0 on [0, 1], with ϕ from (2). In view of (3), the latter
is equivalent to D2f(x)|span(ȳ−x̄) = 0 for all x ∈ [x̄, ȳ], so that the equivalence of
Conditions A and D is shown. •

Note that Condition D collapses to Condition B in the case n = 1.

Example 5 Consider once more the function f on M(t) from Example 3 with t ∈
(−1, 1). In the following we will show that it satisfies Condition D. In fact, assume
that there is some line segment [x̄, ȳ] ⊂ M(t) such that

D2f(x)|span(ȳ−x̄) = (ȳ − x̄)⊺
(

12x2
1 0

0 2

)

(ȳ − x̄)

vanishes for all x ∈ [x̄, ȳ]. In view of D2f(x) � 0 and (ȳ − x̄) 6= 0 this can only
happen for singular matrices D2f(x), that is, for x1 = 0. Hence we necessarily have
[x̄, ȳ] ⊂ {x ∈ R

2| x1 = 0}, span(ȳ − x̄) = {0} × R and, thus, D2f(x)|span(ȳ−x̄) > 0.
This contradiction shows that Condition D is satisfied.

6. Final remarks

In this paper we derived C2-characterizations of plain, strict, as well as strong con-
vexity on full dimensional convex sets. Table 1 summarizes these C2-characteriza-
tions, where the characterization of true convexity actually just repeats its definition.

Note that the characterization of strict convexity on full dimensional convex
sets simplifies to Condition B in the univariate case, so that Theorem 5 clarifies a
remark after [4, Th. 2.13]. Condition C yields a weaker sufficient condition for strict
convexity than true convexity, even without the full dimensionality assumption.

We finally point out that, in optimization, the set M often is given in functional
form as

M = {x ∈ R
n| gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J}
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with finite index sets I and J , convex functions gi : R
n → R, i ∈ I, and affine func-

tions hj : R
n → R, j ∈ J . A simple sufficient condition for the full dimensionality of

M then is J = ∅ and the existence of a Slater point x⋆ in the sense that gi(x
⋆) < 0

holds for all i ∈ I.
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