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Abstract. In this paper we study the nonlinear elliptic problem with p(x)-
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω and N > 2. In this paper

we consider a differential inclusion in Ω involving a p(x)-Laplacian of the type

{

−∆p(x)u− λ|u(x)|p(x)−2u(x) ∈ ∂j(x, u(x)) in Ω,
u = 0 on ∂Ω,

(P)

where p : Ω → R is a continuous function satisfying

1 < p− := inf
x∈Ω

p(x) 6 p(x) 6 p+ := sup
x∈Ω

p(x) < N <∞

and

p+ 6 p̂∗ :=
Np−

N − p−
.
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A functional j(x, t) is a measurable in the first variable and locally Lipschitz in the
second variable. By ∂j(x, t) we denote the subdifferential of j(x, ·) in the sense of
Clarke [5]. The operator

∆p(x)u := div
(

|∇u(x)|p(x)−2∇u(x)
)

is the so-called p(x)-Laplacian, which becomes p-Laplacian when p(x) ≡ p. Problems
with p(x)-Laplacian are more complicated than with p-Laplacian, in particular, they
are inhomogeneous and possesses ’more nonlinearity.’

In our problem (P) a parametr λ appears, for which we will assume that λ <
p−

p+ λ∗, where λ∗ is defined by

λ∗ = inf
u∈W

1,p(x)

0
(Ω)\{0}

∫

Ω
|∇u(x)|p(x)dx

∫

Ω |u(x)|p(x)dx
.

It may happen that λ∗ = 0 (see Fan–Zhang–Zhao [9]).

More recently, the existence of solutions for variable exponent differential in-
clusions with different boundary value conditions have been widely investigated by
many authors, which are usually reduced to the solutions of Dirichlet and Neumann
type problems. For instance, we have papers where hemivariational inequalities
involving p(x)-Laplacian are studied. In Ge–Xue [16] and Qian–Shen [24], differ-
ential inclusions involving p(x)-Laplacian and Clarke subdifferential with Dirichlet
boundary condition is considered. In the last paper the existence of two solutions of
constant sign is proved. Hemivariational inequalities with Neumann boundary con-
dition were studied in Qian–Shen–Yang [25] and Dai [7]. In Qian–Shen–Yang [25],
the inclusions involve a weighted function which is indefinite. In Dai [7], the exis-
tence of infinitely many nonnegative solutions is proved. All the above mentioned
papers deal with the so-called hemivariational inequalities, i.e. the multivalued
part is provided by the Clarke subdifferential of the nonsmooth potential (see e.g.
Naniewicz–Panagiotopoulos [23]).

Our starting point for considering problems with p(x)-Laplacian were the papers
of Gasiński–Papageorgiou [13, 14, 15] and Kourogenic–Papageorgiou [18], where the
authors deal with the constant exponent problems i.e. when p(x) = p. Moreover,
the similar kind of problems were considered in D’Agùı–Bisci [6] and Marano–Bisci–
Motreanu [20]. In the first of this paper, the authors deal with a perturbed eigenvalue
Dirichlet-type problem for an elliptic hemivariational inequality involving the p-
Laplacian. In the last paper, the existence of multiple solutions is investigated by
the use of classical techniques due to Struwe and a recent saddle point theorem for
locally Lipschitz continuous functionals.

In a recent paper (see Barnaś [2]), we examined nonlinear hemivariational in-
equality with p(x)-Laplacian. We proved an existence theorem under the assump-
tions that the Clarke subdifferential of the generalized potential is bounded. In the
present paper, this hypothesis is more general and we assume the so-called sub-
critical growth condition. Moreover, we also take more general assumption about
behaviour in the neighbourhood of 0.

The techniques of this paper differ from these used in the above mentioned paper.
Our method is more direct and general.
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Hemivariational inequalities arise in physical problems when we deal with non-
convex nonsmooth energy functionals. Such functions appear quite often in me-
chanics and engineering. For instance, we have a lot of applications to modelling
electrorheological fluids (see Ružička [27]) and image restoration.

2. Mathematical preliminaries

Let X be a Banach space and X∗ its topological dual. By ‖ · ‖ we will denote the
norm in X and by 〈·, ·〉 the duality brackets for the pair (X,X∗). In analogy with
the directional derivative of a convex function, we define the generalized directional
derivative of a locally Lipschitz function f at x ∈ X in the direction h ∈ X by

f0(x;h) = lim sup
x′→0,λ→0

f(x+ x′ + λh)− f(x+ x′)

λ
.

The function h 7−→ f0(x, h) ∈ R is sublinear, continuous so it is the support function
of a nonempty, convex and w∗-compact set

∂f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 6 f0(x, h) for all h ∈ X}.

The set ∂f(x) is known as generalized or Clarke subdifferential of f at x. If f is
strictly differentiable at x (in particular if f is continuously Gâteaux differentiable
at x), then ∂f(x) = {f ′(x)}.

Let f : X → R be a locally Lipschitz function. From convex analysis it is
well know that a proper, convex and lower semicontinuous function g : X → R =
R ∪ {+∞} is locally Lipschitz in the interior of its effective domain domg = {x ∈
X : g(x) <∞}.

A point x ∈ X is said to be a critical point of the locally Lipschitz function
f : X → R, if 0 ∈ ∂f(x). If x ∈ X is local minimum or local maksimum of f , then x is
critical point, and moreover this time the value c = f(x) is called a critical value of f .
From more details on the generalized subdifferential we refer to Clarke [5], Gasiński–
Papageorgiou [14], Motreanu–Panagiotopoulos [21] and Motreanu–Radulescu [22].

The critical point theory for smooth functions uses a compactness type condition
known as the Palais–Smale condition. In our nonsmooth setting, the condition takes
the following form. We say that locally Lipschitz function f : X → R satisfies
the nonsmooth Palais–Smale condition (nonsmooth PS-condition for short), if any
sequence {xn}n>1 ⊆ X such that {f(xn)}n>1 is bounded and m(xn) = min{‖x∗‖∗ :
x∗ ∈ ∂f(xn)} → 0 as n→ ∞, has a strongly convergent subsequence.

The first theorem is due to Chang [4] and extends to a nonsmooth setting the
well known ’mountain pass theorem’ due to Ambrosetti–Rabinowitz [1] (see also
Radulescu [26]).

Theorem 1. If X is a reflexive Banach space, R : X → R is a locally Lipschitz
functional satisfying PS-condition and for some ρ > 0 and y ∈ X such that ‖y‖ > ρ,
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we have
max{R(0), R(y)} < inf

‖x‖=ρ
{R(x)} =: η,

then R has a nontrivial critical point x ∈ X such that the critical value c = R(x) > η
is characterized by the following minimax principle

c = inf
γ∈Γ

max
06τ61

{R(γ(τ))},

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = y}.

In order to discuss problem (P), we need some theories on the spaces Lp(x)(Ω)
and W 1,p(x)(Ω), which we call generalized Lebesgue–Sobolev spaces (see Fan–Zhao
[10, 11] and Kováčik–Rákosnik [19]).

By S(Ω) we denote the set of all measurable real-valued function defined on R
N .

We define

Lp(x)(Ω) = {u ∈ S(Ω) :

∫

Ω

|u(x)|p(x)dx <∞}.

We furnish Lp(x)(Ω) with the following norm (known as the Luxemburg norm)

‖u‖p(x) = ‖u‖Lp(x)(Ω) = inf
{

λ > 0 :

∫

Ω

∣

∣

∣

u(x)

λ

∣

∣

∣

p(x)

dx 6 1
}

.

Also we introduce the variable exponent Sobolev space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

and we equip it with the norm

‖u‖ = ‖u‖W 1,p(x)(Ω) = ‖u‖p(x) + ‖∇u‖p(x).

By W
1,p(x)
0 (Ω) we denote the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Lemma 1 (Fan–Zhao [10]). If Ω ⊂ R
N is an open domain, then

(a) the spaces Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Ba-

nach spaces;
(b) the space Lp(x)(Ω) is uniformly convex;
(c) if 1 6 q(x) ∈ C(Ω) and q(x) 6 p∗(x) (respectively q(x) < p∗(x)) for any x ∈ Ω,
where

p∗(x) =

{

Np(x)
N−p(x) p(x) < N

∞ p(x) > N,

then W 1,p(x)(Ω) is embedded continuously (respectively compactly) in Lq(x)(Ω);

(d) Poincaré inequality in W
1,p(x)
0 (Ω) holds i.e., there exists a positive constant c

such that
‖u‖p(x) 6 c‖∇u‖p(x) for all u ∈W

1,p(x)
0 (Ω);

(e) (Lp(x)(Ω))∗ = Lp′(x)(Ω), where 1
p(x) +

1
p′(x) = 1 and for all u ∈ Lp(x)(Ω) and

v ∈ Lp′(x)(Ω), we have
∫

Ω

|uv|dx 6

( 1

p−
+

1

p′−

)

‖u‖p(x)‖v‖p′(x).
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Lemma 2 (Fan–Zhao [10]). Let ϕ(u) =
∫

Ω
|u(x)|p(x)dx for u ∈ Lp(x)(Ω) and let

{un}n>1 ⊆ Lp(x)(Ω).
(a) for u 6= 0, we have

‖u‖p(x) = a⇐⇒ ϕ(u
a
) = 1;

(b) we have

‖u‖p(x) < 1(respectively = 1, > 1) ⇐⇒ ϕ(u) < 1(respectively = 1, > 1);

(c) if ‖u‖p(x) > 1, then

‖u‖p
−

p(x) 6 ϕ(u) 6 ‖u‖p
+

p(x);

(d) if ‖u‖p(x) < 1, then

‖u‖p
+

p(x) 6 ϕ(u) 6 ‖u‖p
−

p(x);

(e) we have

lim
n→∞

‖un‖p(x) = 0 ⇐⇒ lim
n→∞

ϕ(un) = 0;

(f) we have

lim
n→∞

‖un‖p(x) = ∞ ⇐⇒ lim
n→∞

ϕ(un) = ∞.

Similarly to Lemma 2, we have the following result.

Lemma 3 (Fan–Zhao [10]). Let Φ(u) =
∫

Ω(|∇u(x)|
p(x) + |u(x)|p(x))dx for u ∈

W 1,p(x)(Ω) and let {un}n>1 ⊆W 1,p(x)(Ω). Then
(a) for u 6= 0, we have

‖u‖ = a ⇐⇒ Φ(u
a
) = 1;

(b) we have

‖u‖ < 1(respectively = 1, > 1) ⇐⇒ Φ(u) < 1(respectively = 1, > 1);

(c) if ‖u‖ > 1, then

‖u‖p
−

6 Φ(u) 6 ‖u‖p
+

;

(d) if ‖u‖ < 1, then

‖u‖p
+

6 Φ(u) 6 ‖u‖p
−

;

(e) we have

lim
n→∞

‖un‖ = 0 ⇐⇒ lim
n→∞

Φ(un) = 0;

(f) we have

lim
n→∞

‖un‖ = ∞ ⇐⇒ lim
n→∞

Φ(un) = ∞.
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Consider the following function

J(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx, for all u ∈ W

1,p(x)
0 (Ω).

We know that J ∈ C1(W
1,p(x)
0 (Ω)) and operator −div(|∇u|p(x)−2∇u), is the deriva-

tive operator of J in the weak sense (see Chang [3]). We denote

A = J ′ :W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗,

then

〈Au, v〉 =

∫

Ω

|∇u(x)|p(x)−2(∇u(x),∇v(x))dx, (1)

for all u, v ∈W
1,p(x)
0 (Ω).

Lemma 4 (Fan–Zhang [8]). If A is the operator defined above, then A is a contin-
uous, bounded, strictly monotone and maximal monotone operator of type (S+) i.e.,

if un → u weak in W
1,p(x)
0 (Ω) and lim sup

n→∞

〈Aun, un − u〉 6 0, implies that un → u in

W
1,p(x)
0 (Ω).

3. Existence of solutions

We start by introducing our hypotheses on the function j(x, t).
H(j) j : Ω× R → R is a function such that j(x, 0) = 0 on Ω and
(i) for all x ∈ R, the function Ω ∋ x→ j(x, t) ∈ R is measurable;
(ii) for almost all x ∈ Ω, the function Ω ∋ t→ j(x, t) ∈ R is locally Lipschitz;
(iii) for almost all x ∈ Ω and all v ∈ ∂j(x, t), we have |v| ≤ a(x) + c1|t|

r(x)−1 with

a ∈ L∞
+ (Ω), c1 > 0 and r ∈ C(Ω), such that p+ ≤ r+ := max

x∈Ω
r(x) < p̂∗ := Np−

N−p−
;

(iv) we have

lim sup
|t|→∞

j(x, t)

|t|p(x)
< 0,

uniformly for almost all x ∈ Ω;
(v) there exists µ > 0, such that

lim sup
|t|→0

j(x, t)

|t|p(x)
6 −µ,

uniformly for almost all x ∈ Ω;

(vi) there exists u ∈W
1,p(x)
0 (Ω) \ {0}, such that

1

p−

∫

Ω

|∇u(x)|p(x)dx+
λ−
p−

∫

Ω

|u(x)|p(x)dx 6

∫

Ω

j(x, u(x))dx,

where λ− := max{0,−λ}.
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Remark 2. Hypothesis H(j)(vi) can be replaced by

(vi’) there exists u ∈ W
1,p(x)
0 (Ω) \ {0}, such that

c‖u‖p
+

6

∫

Ω

j(x, u(x))dx, if ‖u‖ > 1,

or

c‖u‖p
−

6

∫

Ω

j(x, u(x))dx, if ‖u‖ < 1,

where c := max{ 1
p−
, λ−

p−
}.

We introduce locally Lipschitz functional R :W
1,p(x)
0 (Ω) → R defined by

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx,

for all u ∈W
1,p(x)
0 (Ω).

Remark 3. The existence of nontrival solution for problem (P) was also consid-
ered in paper Barnaś [2]. In contrast to the last paper, instead of linear growth in
H(j)(iii) we assume the so-called sub-critical growth condition. Moreover, condition
H(j)(v) is more general.

Lemma 5. If hypotheses H(j) hold and λ ∈ (−∞, p
−

p+ λ∗), then R satisfies the
nonsmooth PS-condition.

Proof. Let {un}n≥1 ⊆ W
1,p(x)
0 (Ω) be a sequence such that {R(un)}n≥1 is bounded

and m(un) → 0 as n→ ∞. We will show that {un}n≥1 ⊆W
1,p(x)
0 (Ω) is bounded.

Because |R(un)| ≤M for all n ≥ 1, we have
∫

Ω

1

p(x)
|∇un(x)|

p(x)dx−

∫

Ω

λ

p(x)
|un(x)|

p(x)dx−

∫

Ω

j(x, un(x))dx ≤M. (2)

So we obtain
∫

Ω

1

p+
|∇un(x)|

p(x)dx−

∫

Ω

λ+
p−

|un(x)|
p(x)dx−

∫

Ω

j(x, un(x))dx ≤M, (3)

where λ+ := max{λ, 0}.
From the definition of λ∗, we have

λ∗

∫

Ω

|un(x)|
p(x)dx ≤

∫

Ω

|∇un(x)|
p(x)dx, (4)

for all n ≥ 1.
Using (4) in (3), we get

( λ∗
p+

−
λ+
p−

)

∫

Ω

|un(x)|
p(x)dx−

∫

Ω

j(x, un(x))dx ≤M. (5)

By virtue of hypotheses H(j)(iv), we know that

lim sup
|t|→∞

j(x, t)

|t|p(x)
< 0,
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uniformly for almost all x ∈ Ω. So we can find L > 0, such that for almost all x ∈ Ω,
all t such that |t| ≥ L, we have

j(x, t)

|t|p(x)
< −c < 0. (6)

It immediately follows that

j(x, t) ≤ −c|t|p(x) for all t such that |t| > L.

On the other hand, from the Lebourg mean value theorem (see Clarke [5]), for
almost al x ∈ Ω and all t ∈ R, we can find v(x) ∈ ∂j(x, ku(x)) with 0 < k < 1, such
that

|j(x, t)− j(x, 0)| ≤ |v(x)||t|.

So from hypothesis H(j)(iii), for almost all x ∈ Ω

|j(x, t)| ≤ a(x)|t| + c1|t|
r(x) ≤ a(x)|t|+ c1|t|

r+ + c2, (7)

for some c1, c2 > 0. Then for almost all x ∈ Ω and all t such that |t| < L, from (7)
it follows that

|j(x, t)| ≤ c3, (8)

for some c3 > 0. Therefore, it follows that for almost all x ∈ Ω and all t ∈ R, we
have

j(x, t) ≤ −c|t|p(x) + β, (9)

where β > 0.
We use (9) in (5) and obtain

( λ∗
p+

−
λ+
p−

)

∫

Ω

|un(x)|
p(x)dx ≤M −

∫

Ω

(c|un(x)|
p(x) − β)dx,

for all n ≥ 1, which leads to

( λ∗
p+

−
λ+
p−

+ c
)

∫

Ω

|un(x)|
p(x)dx ≤M1 ∀n ≥ 1, (10)

for some c,M1 > 0.
We know that λ∗

p+ − λ+

p−
+ c > 0, so

the sequence {un}n≥1 ⊆ Lp(x)(Ω) is bounded (11)

(see Lemmata 2 (c) and (d)).

Now, let us consider two cases.
Case 1.
Suppose that λ 6 0.
In this case, from (3), we get

1

p+

∫

Ω

|∇un|
p(x)dx−

∫

Ω

j(x, un(x))dx ≤M.
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Using (9) and fact that {un}n≥1 ⊆ Lp(x)(Ω) is bounded, we obtain

1

p+

∫

Ω

|∇un|
p(x)dx ≤M2,

for some M2 > 0. So, we have that

the sequence {∇un}n≥1 ⊆ Lp(x)(Ω;RN ) is bounded (12)

(see Lemmata 3 (c) and (d)).

Case 2.
Suppose that λ > 0.
Similar to the first part of our proof, by using again (4) in (3) in another way,

we obtain
( 1

p+
−

λ+
λ∗p−

)

∫

Ω

|∇un|
p(x)dx−

∫

Ω

j(x, un(x))dx ≤M.

In a similar way, from (9) and fact that {un}n≥1 ⊆ Lp(x)(Ω) is bounded, we
obtain

( 1

p+
−

λ+
λ∗p−

+ c
)

∫

Ω

|∇un|
p(x)dx ≤M3,

for some M3, c > 0. From fact that 1
p+ − λ+

λ∗p−
> 0, we have that

the sequence {∇un}n≥1 ⊆ Lp(x)(Ω;RN ) is bounded. (13)

From (11), (12) and (13), we have that

the sequence {un}n≥1 ⊆W
1,p(x)
0 (Ω) is bounded (14)

(see Lemmata 3 (c) and (d)).

Hence, by passing to a subsequence if necessary, we may assume that

un → u, weakly in W
1,p(x)
0 (Ω),

un → u, in Lr(x)(Ω),
(15)

for any r ∈ C(Ω), with r+ = max
x∈Ω

r(x) < p̂∗ := Np−

N−p−
.

Since ∂R(un) ⊆ (W
1,p(x)
0 (Ω))∗ is weakly compact, nonempty and the norm

functional is weakly lower semicontinuous in a Banach space, then we can find
u∗n ∈ ∂R(un) such that ||u∗n||∗ = m(un), for n ≥ 1.

Consider the operator A :W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ defined by (1).

Then, for every n ≥ 1, we have

u∗n = Aun − λ|un|
p(x)−2un − v∗n, (16)

where v∗n ∈ ∂ψ(un) ⊆ Lp′(x)(Ω), for n ≥ 1, with 1
p(x) +

1
p′(x) = 1.

ψ : W
1,p(x)
0 (Ω) → R is defined by ψ(un) =

∫

Ω

j(x, un(x))dx. We know that, if

v∗n ∈ ∂ψ(un), then v
∗
n(x) ∈ ∂j(x, un(x)) (see Clarke [5]).
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From the choice of the sequence {un}n≥1 ⊆ W
1,p(x)
0 (Ω), at least for a subse-

quence, we have

|〈u∗n, w〉| ≤ εn for all w ∈W
1,p(x)
0 (Ω), (17)

with εn ց 0.
Putting w = un − u in (17) and using (16), we obtain

∣

∣

∣
〈Aun, un−u〉−λ

∫

Ω

|un(x)|
p(x)−2un(x)(un−u)(x)dx−

∫

Ω

v∗n(x)(un−u)(x)dx
∣

∣

∣
≤ εn,

(18)
with εn ց 0.

Using Lemma 1(e), we see that

λ

∫

Ω

|un(x)|
p(x)−2un(x)(un − u)(x)dx

6 λ
( 1

p−
+

1

p′−

)

‖ |un|
p(x)−1‖p′(x)‖un − u‖p(x),

where 1
p(x) +

1
p′(x) = 1.

We know that {un}n>1 ⊆ Lp(x)(Ω) is bounded, so using (15), we conclude that

λ

∫

Ω

|un(x)|
p(x)−2un(x)(un − u)(x)dx → 0 as n→ ∞

and
∫

Ω

v∗n(x)(un − u)(x)dx → 0 as n→ ∞.

If we pass to the limit as n→ ∞ in (18), we have

lim sup
n→∞

〈Aun, un − u〉 ≤ 0. (19)

So from Lemma 4, we have that un → u in W
1,p(x)
0 (Ω) as n → ∞. Thus R

satisfies the PS-condition.

Lemma 6. If hypotheses H(j) hold and λ < p−

p+ λ∗, then there exist β1, β2 > 0 such

that for all u ∈W
1,p(x)
0 (Ω) with ‖u‖ < 1, we have

R(u) > β1‖u‖
p+

− β2‖u‖
θ,

with p+ < θ 6 p̂∗ := Np−

N−p−
.

Proof. From hyphothesis H(j)(v), we can find δ > 0, such that for almost all x ∈ Ω
and all t such that |t| 6 δ, we have

j(x, t) 6
−µ

2
|t|p(x).

On the other hand, from hypothesis H(j)(iii), we know that for almost all x ∈ Ω
and all t such that |t| > δ, we have

|j(x, t)| ≤ a1|t|+ c1|t|
r(x),
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for some a1, c1 > 0. Thus for almost all x ∈ Ω and all t ∈ R we have

j(x, t) 6
−µ

2
|t|p(x) + γ|t|θ, (20)

for some γ > 0 and p+ < θ < p̂∗.

Let us consider two cases.

Case 1. Suppose that λ 6 0.
By using (20), we obtain that

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx

>

∫

Ω

1

p+
|∇u(x)|p(x)dx+

∫

Ω

µ

2
|u(x)|p(x)dx− γ

∫

Ω

|u(x)|θdx.

So, we have

R(u) > β1

[

∫

Ω

|∇u(x)|p(x)dx+

∫

Ω

|u(x)|p(x)dx
]

− γ‖u‖θθ,

where β1 := min{ 1
p+ ,

µ
2 }.

Case 2. Suppose that λ ∈ (0, p
−

p+ λ∗).

By using (20) and the Rayleigh quotient, we obtain that

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx

>

∫

Ω

1

p+
|∇u(x)|p(x)dx−

∫

Ω

λ

p−
|u(x)|p(x)dx

+

∫

Ω

µ

2
|u(x)|p(x)dx− γ

∫

Ω

|u(x)|θdx

>
1

p+

∫

Ω

|∇u(x)|p(x)dx+
µ

2

∫

Ω

|u(x)|p(x)dx

−
λ

λ∗p−

∫

Ω

|∇u(x)|p(x)dx− γ‖u‖θθ

=
( 1

p+
−

λ

λ∗p−

)

∫

Ω

|∇u(x)|p(x)dx+
µ

2

∫

Ω

|u(x)|p(x)dx− γ‖u‖θθ.

In our case, we have
1

p+
−

λ

λ∗p−
> 0,

so

R(u) > β1

[

∫

Ω

|∇u(x)|p(x)dx+

∫

Ω

|u(x)|p(x)dx
]

− γ‖u‖θθ,

where β1 := min{ 1
p+ − λ

λ∗p−
, µ2 }.
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As θ 6 p∗(x) = Np(x)
N−p(x) , then W

1,p(x)
0 (Ω) is embedded continuously in Lθ(Ω) (see

Lemma 1(c)). So there exists c > 0 such that

‖u‖θ 6 c‖u‖ for all u ∈W
1,p(x)
0 (Ω). (21)

Using (21) and Lemma 3(d), for all u ∈ W
1,p(x)
0 (Ω) with ‖u‖ < 1, we have

R(u) > β1‖u‖
p+

− β2‖u‖
θ,

where β2 = γcθ.

Using Lemmata 5 and 6, we can prove the following existence theorem for problem
(P).

Theorem 4. If hypotheses H(j) hold and λ < p−

p+ λ∗, then problem (P) has a non-
trival solution.

Proof. From Lemma 6 we know that there exist β1, β2 > 0, such that for all u ∈

W
1,p(x)
0 (Ω) with ‖u‖ < 1, we have

R(u) > β1‖u‖
p+

− β2‖u‖
θ = β1‖u‖

p+
(

1−
β2
β1

‖u‖θ−p+
)

.

Since p+ < θ, if we choose ρ > 0 small enough, we will have that R(u) > L > 0, for

all u ∈W
1,p(x)
0 (Ω), with ‖u‖ = ρ and some L > 0.

Now, let u ∈ W
1,p(x)
0 (Ω). We have

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx

6
1

p−

∫

Ω

|∇u(x)|p(x)dx+
λ−
p−

∫

Ω

|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx,

where λ− := max{0,−λ}.
From hyphothesis H(j)(v), we get R(u) 6 0. This permits the use of Theorem

1 which gives us u ∈ W
1,p(x)
0 (Ω) such that R(u) > 0 = R(0) and 0 ∈ ∂R(u). From

the last inclusion we obtain

0 = Au− λ|u|p(x)−2u− v∗,

where v∗ ∈ ∂ψ(u). Hence
Au = λ|u|p(x)−2u+ v∗,

so for all v ∈ C∞
0 (Ω), we have 〈Au, v〉 = λ〈|u|p(x)−2u, v〉+ 〈v∗, v〉.

So we have
∫

Ω

|∇u(x)|p(x)−2(∇u(x),∇v(x))RN dx

=

∫

Ω

λ|u(x)|p(x)−2u(x)v(x)dx +

∫

Ω

v∗(x)v(x)dx,
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for all v ∈ C∞
0 (Ω).

From the definition of the distributional derivative we have
{

−div
(

|∇u(x)|p(x)−2∇u(x)
)

= λ|u(x)|p(x)−2u(x) + v(x) in Ω,
u = 0 on ∂Ω,

(22)

so
{

−∆p(x)u− λ|u(x)|p(x)−2u(x) ∈ ∂j(x, u(x)) in Ω,
u = 0 on ∂Ω.

(23)

Therefore u ∈W
1,p(x)
0 (Ω) is a nontrivial solution of (P).

Remark 5. A nonsmooth potential satisfying hypothesis H(j) is for example the
one given by the following function:

j(x, t) =







−µ|t|p(x) if |t| 6 1,
(µ+ σ − |2|p(x))|t| − 2µ− σ + |2|p(x) if 1 < |t| 6 2,

σ − |t|p(x) if |t| > 2,

with µ, σ > 0 and continuous function p : Ω → R which satisfies 1 < p− 6 p(x) 6
p+ < N <∞ and p+ 6 p̂∗.
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[2] Barnaś S.; Existence result for hemivariational inequality involving p(x)-Laplacian,
Opuscula Mathematica 32, 2012, pp. 439–454.

[3] Chang K.C.; Critical Point Theory and Applications, Shanghai Scientific and Tech-
nology Press, Shanghai 1996.

[4] Chang K.C.; Variational methods for nondifferentiable functionals and their applica-
tions to partial differential equations, J. Math. Anal. Appl. 80, 1981, pp. 102–129.

[5] Clarke F.H.; Optimization and Nonsmooth Analysis, Wiley, New York 1993.
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