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Abstract. We consider a nonlinear Neumann elliptic equation driven by
the p-Laplacian and a Carathéodory perturbation. The energy functional of
the problem need not be coercive. Using variational methods we prove an
existence theorem and a multiplicity theorem, producing two nontrivial smooth
solutions. Our formulation incorporates strongly resonant equations.
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1. Introduction

Let Q C RY be a bounded domain with a C2-boundary 9. We study the following
nonlinear Neumann problem:

—Apu(z) = f(z,u(z)) ae inQ,
(1)
% =0 on 0.
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Here A, denotes the p-Laplace differential operator, defined by
Apu(z) = div ([Vu()|[P"*Vu(z)) Yue WHP(Q)

(with 1 < p < 400). Also, f(z,() is a Carathéodory function, i.e., for all { € R,
the function z — f(z,() is measurable and for almost all z € Q, the function
¢ — f(z,¢) is continuous.

The aim of this work is to prove existence and multiplicity results for problem
(1), when the energy functional of the problem is noncoercive. In fact, our hypothe-
ses on the reaction f incorporate in our framework equations which are strongly
resonant at infinity. Such problems are of special interest, since they exhibit a
partial lack of compactness. Recently, there have been some existence and multi-
plicity results for Neumann problems driven by the p-Laplacian. We mention the
works of Anello [1], Filippakis—Gasiniski-Papageorgiou [3], Motreanu—Papageorgiou
[6], O’'Regan—Papageorgiou [7], Wu-Tan [8]. In Anello [1] and Wu-Tan [8], the
key hypothesis is that p > N (low dimension problems). This condition implies
that W1P(Q) is embedded compactly in C(2) (Sobolev embedding theorem) and
this is their key mathematical tool. In Filippakis—Gasiriski-Papageorgiou [3] and
Motreanu—Papageorgiou [6], the potential function is nonsmooth (hemivariational
inequality) and the energy function is coercive. Finally in O’Regan—Papageorgiou
[7], the energy function is bounded below but need not be coercive. In fact, the
potential function

¢
F(t,¢) = / f(z,5)ds
0

is unbounded below as ( — H+o0o0. The authors prove a multiplicity theorem using
the notion of homological linking.

2. Mathematical background

Let X be a Banach space and let X* be its topological dual. In what follows, by
{-,-) we denote the duality brackets for the pair (X*, X). Let ¢ € C'(X) and ¢ € R.
We say that ¢ satisfies the Palais—Smale condition at level ¢ € R, if the following is
true:

Every sequence {z, }n>1 C X, such that
o(zy) — ¢ and ¢'(z,) — 0 inX*,
admits a strongly convergent subsequence.

The following result is an easy consequence of the above definition (see Gasinski—
Papageorgiou [4, p. 650]).
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THEOREM 1. If ¢ € CY(X) is bounded below, ¢ = igl(fgo and ¢ satisfies the

Palais—Smale condition at level ¢, then there exists xg € X, such that ¢ = (xg), i.e.
xg is a critical point of .

For ¢ € C*(X) and ¢ € R, we introduce the following sets:

¢ = {:L'EX: go(a:)gc},
K, = {zeX: ¢(z) =0},
K, = {zeK,: ox)=c}.

The next result is a basic tool in the minimax theorems of the critical point theory
and it is known as the “second deformation theorem” (see Gasiriski-Papageorgiou
[4, p. 628]).

THEOREM 2. If ¢ € CYX), a € R, a < b < +00, ¢ satisfies the Palais—
Smale condition for every c € [a,b), ¢ has no critical values in (a,b) and p~*({a})
contains at most a finite number of critical points of p, then there exists a homotopy
h:[0,1] x (" \ K&) — b, such that

(a) h(1,¢" \ K) C %

(b) h(t,z) =z for allt € [0,1], all x € p%;

(c) o(h(t,z)) < @(h(s,z)) for allt,s €[0,1], s <t, all x € ¢* \ KL.

Let A: WLP(Q) — WLP(Q)* be the nonlinear map, defined by

(A(u),v) = /||Vu||p72(Vu,Vv)RN dz Yu,v € WHP(Q). (2)
Q

From Gasiriski-Papageorgiou [4, p. 746], we have

PROPOSITION 3. The nonlinear map A: WHP(Q) — WIP(Q)* defined by (2)
18 bounded, continuous, strictly monotone, hence maximal monotone too and of type

(S)+, i.e. Zf
w, — u weakly in WHP(Q)

and

lim sup <A(un), un—u> < 0,

n—-+oo

then u, — u in WHP(Q).

In what follows by || - | we denote the norm of W1P(Q), i.e.

lull = (llully +1Vulp)?  Yue WHP(Q).

Also, if g: © x R — R is a measurable function (for example a Carathéodory
function), then
Ny(u)(-) = g(-u()) Yue WHP(Q).

Finally, by | - |y we denote the Lebesgue measure on RY.
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3. Existence theorem

The existence theorem will be obtained for a more general version of problem than
(1). Namely, let h € L>°(Q) be such that

/ h(z)dz = 0.

Q
We consider the following nonlinear Neumann problem:
—Apu(z) = f(z,u(z)) +h(z) inQ,
ou (3)

a—n:O on 0f2.

We work with the Sobolev space W1P(Q) and consider the following direct sum
decomposition of this space

WHP(Q) = R@V,
where
V = {ueW"r(Q): /udz =0}.
Q
Hence, every u € W1P(Q) admits a unique decomposition

u=7u+u, withueR and weV.
Recall that the elements of V satisfy
lully < co(N,p)[Vull, VueV, (4)

for some ¢o(N,p) > 0 (this is the so called Poincaré-Wirtinger inequality; see
Gasiriski-Papageorgiou [4, p. 841]). In particular, (4) implies that

u — VUl

is an equivalent norm on V.

For h € L*°(Q) with
/h(z) dz = 0,
Q

we consider the following auxiliary Neumann problem:
—Apu(z) = h(z) in Q,
ou (5)

%:0 on O0f2.

Let 1v: V — R be the C'-functional, defined by

v(@) = %HV@HZ— / h(2)a(z)dz VeV
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PROPOSITION 4. Problem (5) has a unique solution iy € V N CY(Q), which is
the unique minimizer of 1.

Proof. By virtue of the Poincaré—Wirtinger inequality (see (4)), we see that v is
coercive. Also, using the Sobolev embedding theorem, we see easily that i is se-
quentially weakly lower semicontinuous. Hence, by the Weierstrass theorem, we can
find uy € V, such that

Y(ty) = inf{y(@): ueV},

SO
' (Up) = 0 inV*
and thus
(A(Go),v) = /hvdz Yo e V. (6)
Q
Let

v(z) = y(z)— L /ydz with y € WhP(Q).
QN
Then v € V and from (6), we have

(A(to),y) = [ hydz
/

(since [hdz =0), so
’ A@y) = h in WP (Q)*
(since y € WHP(Q) is arbitrary) and thus
—Apup(z) = h(z) ae. inQ,
g

87:0 on 0f).

Nonlinear regularity theory (see Lieberman [5]) implies that
iy € VNnoH(Q).

The uniqueness of g follows from the strict monotonicity of A (see Proposition
3). O

Now let us introduce our hypotheses on the reaction f:

H: f: QxR — R is a Carathéodory function, such that f(z,0) = 0 for almost all
z € Q and
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(i) we have
|f(z,0)] < a(z)+c[¢|"™" for almost all z € Q, all ( €R,

with a € L>®(Q)4, ¢ > 0, p < r < p*, where

Np

if p<N,
+00 if p>=N;
(ii) if
¢
F(z,0) = / F(z,s) ds,
0

then
F(z,¢) < &(z) for almost all z € Q, all ( € R,

with & € L1(Q);

(iii) there exists ¢g € R\ {0}, such that

/F(z,co)dz > 0.
Q

EXAMPLE 5. The following function satisfies hypotheses H (for the sake of sim-
plicity we drop the z-dependence):

¢ ¥ 1<,
f(Q) = ¢ 4¢ '
e taweng Yt

In this case the potential function F' is given by

Lep if lel<,
p
F(O) =

1
—— +4darctan || —7 if |¢|>1.

pl¢lP

Let ¢: WP(2) — R be the energy functional for problem (3), given by

1
olu) = EHVUHZ - /F(z, u(z)) dz — /h(z)u(z) dz Yu € WhP(Q).
Q Q
Evidently ¢ € C1(W'?()). Recall that for every u € WP((), we have in a unique

way
u=7u+u withueR, ueV.
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So, we can write

p(u) = (@) - /F(z,u(z)) dz Yu e WhP(Q)

Q
(recall that [hdz =0).
Q

Hypotheses H incorporate in our framework, problems which are strongly reso-
nant at infinity. It is well known that such problem exhibit a partial lack of compact-
ness (see Bartolo-Benci-Fortunato [2]). This is reflected in the next proposition. In
what follows 1y € V N C*(Q) is the unique solution of problem (5), established in
Proposition 4. Also

8 = /limsupF(z,C)dz.
P, [F=ares

By virtue of hypothesis H(ii), 8 € [—00, +00).
PROPOSITION 6. If hypotheses H hold and

¢ < P(W) -8 = & € (—o0,+00),
then @ satisfies the Palais—Smale condition at level c.

Proof. Let {uy}n>1 € WHP(Q) be a sequence, such that

p(un) — ¢ < & (7)
and
¢ (uy) — 0 in WHP(Q)*. (8)
Recall that
Up = ﬂn+an VTL} 1,

with @, € R, 4, € V. On account of (7), we have
o(un) < M; Vn =1,
for some M; > 0, so
1
M, > f||Vﬂn||gf/F(z,un)dzf/hﬂndz
p

Q Q
1, .
> §||Vun||g—cl||Vun||p—02 Vn > 1, (9)

for some ¢1,co > 0. Here we have used hypothesis H(ii) and the Poincaré—Wirtinger
inequality (see (4)). Since p > 1, from (9), we infer that
the sequence {1, }n>1 € W'P(Q) is bounded. (10)

So, by passing to a suitable subsequence if necessary, we may assume that

U, — u weaklyin W'P(Q), (11)
U, — u in LP(Q), (12)
Un(z) — u(z) for almost all z € Q (13)
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and
|Un(2)| < 7(z) for almost all z € Q, all n > 1,

with 7 € LP(Q).
Claim. The sequence {uy, },>1 € WHP(Q) is bounded.

Arguing by contradiction and passing to subsequence if necessary, we may sup-
pose that
llunll — Hoc.

Since

from (10), it follows that |u@,| — +oo (recall that {@,}n>1 C R). We have
|un(2)| 2 [Unl = [tn(2)] = || —7(2) for almost all z € Q, all n > 1

(see (11)), so
|un(2)| — 400 for almost all z € Q.

Since ug € V is the minimizer of ¢ (see Proposition 4), we have

P(un) = w(ﬁn)—/F(z,un(z)) > w(ao)—/F(z,un(z)) dz.

Q Q

From (7) and the Fatou lemma (see hypothesis H (i7)), we have

£ > ¢ > u(@) - [lmswpFleu)ds = U@ -5 = ¢

n——+00
a contradiction. This proves the Claim.

By virtue of the Claim, passing to a subsequence if necessary, we may assume
that

u, — u weakly in W'P(Q), (14)
u, — wu in L"(Q). (15)

From (8), we have
(¢ (un), 9)| < enllyl Yy e WHP(Q),
with €, \( 0, so

‘<A(un), y>—/f(z,un)ydz—/hydz
Q Q

< eyl Yn = 1.

We choose y = u,, —u € WHP(Q). Then

'(A(un), U — ) — /f(z, ) (1 — 1) d — /h(un —u)dz)

Q Q
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From (14), we have

/fzun up, —u)dz — 0 and /h(un—u)dz—>0.

Therefore, if in (16) we pass to the limit as n — 400, then
ngrfoo <A(un), Uy — u> = 0,
SO
u, — u in WP(Q)
(see Proposition 3) and so ¢ satisfies the Palais-Smale condition at any level ¢ <
&*. O
Using this proposition, we can have an existence theorem for problem (1).
THEOREM 7. If hypotheses H hold and
ﬂ < /F(Z,ao)d27
Q
then problem (3) admits a nontrivial solution u* € C*(Q).
Proof. From Proposition 4 and hypothesis H (ii), we have
e(u) = (u) - /F(Z,U) dz = Y(uo) = €]y Yue WHP(Q),

Q

so ¢ is bounded below.
Let

Then

so  satisfies the Palais-Smale condition at level m,, (see Proposition 6).
Theorem 1 implies that we can find u* € WP(Q), such that

pu) = my < @) < 0 = ¢(0)
(see hypothesis H(iii)), so

u* # 0.
Also, we have
'(u”) =0,
S0
A(u*) = Ny(u*)+h
and thus u* € C1(Q) (see (7)) is a nontrivial solution of (3). O

REMARK 8. A careful inspection of the above proof, reveals that hypothesis H (4i%)
is needed only if h = 0, to guarantee the nontriviality of u*.
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4. Multiplicity theorem

In this section we prove a multiplicity theorem for problem (1) (i.e., now h = 0).
For this purpose, we strengthen the hypotheses on f as follows:

H': f: QxR — R is a Carathéodory function, such that f(z,0) = 0 for almost all
z € Q, hypotheses H'(i) — (iii) are the same as H (i) — (iii) and

(iv) we have

8 = /limsupF(z,C) <0
& |¢]—+o0

and there exists ¥ € L>(Q)4, ¥ # 0, such that

¥(z) < liminf F(z.¢) uniformly for almost all z € €;

¢—»0 |¢JP

(v) we have

o~

A
F(z,0) < 2X[¢[P for almost all z € Q, all ¢ €R,
p

with //\\1 > 0 being the first nonzero eigenvalue of the negative Neumann p-
Laplacian.

EXAMPLE 9. The following function satisfies hypotheses H' (as before, for the
sake of simplicity, we drop the z-dependence):

M¢P2¢ if 1¢l<1,

f(¢) = =R ¢
(A1+1>|dp+2—|<|“2< if Icl>1,

where p < r < p*. In this case the potential function F is given by

)
jw if l¢l<1,
F(O) =1
M1 11 r—p
» W—;K\ T if |¢] > 1.

Now the energy functional : WP(Q2) — R is given by

ou) = %”VUHZ - Q/F(z,u(z)) dz Yu e WhP(Q).

Evidently 3 € C*'(WP(Q)).
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THEOREM 10. If hypotheses H' hold, then problem (1) has at least two nontrivial
smooth solutions u*,v* € C1(Q).

Proof. Since h = 0, we have

Therefore

/ F(z,00(2)) d= = o.

Q

Since by hypothesis H'(iv), § < 0, we can apply Theorem 7 and have one nontrivial
smooth solution u* € C1(€Q).
By virtue of hypothesis H'(iv), for a given € > 0 we can find § = 6(g) > 0, such
that
F(z,¢) > (9(z) —¢)[¢|P for almost all z € Q, all |¢] < 6.

If ¢ € [-4, 4], then

©(c) —/F(Z,E)dz < |ap(s|Q|N—/19dz).

Q Q

Choosing ¢ € (0, ﬁ J9dz), we see that ¢(¢) < 0 and so

max {p(v) : veBrNR} = ug < 0 YRe (0, 62%), (17)

where

Br = {ue W"P(Q): |u| < R}.

We consider the set

Clp) = {uer’p(Q): /|u(z)|”*2u(z) iz = o}.

Q

Then for every u € C(p), we have
1 A
u) = —[|Vul|? — —||ul||?
p(u) pll I3 » [[ul|5

(see H'(v)), so

inf =0 18
dnf ¢ (18)

(see Gasinski-Papageorgiou [4]).
1
Let us fix r € (0, §|Q[%). Let

I = {yeC(B,NR, W'P(Q)) : 1]

OBrNR Zd|a§,,.nR}

and define

¢, = inf max v)). 19
’YGF'L}EETQR@(,}/( >) ( )
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Note that
(0B, NR) NC(p) = 0.

Also, let v € T and define

o(§) = /Iv(&)lp”w(g)dz Ve € B, NR.

Q

Then )
OB, NR = {+ro==+rQ|%}

and so
U(—To) < 0 < O'(’I’()).

By virtue of the Bolzano theorem, we can find E € B, NR, such that

o = / WOP 2@ dz = o,
Q

SO
16 € C),
thus
v(B,NR)NC(p) # 0
and finally

¢ =20 (20)
(see (18) and (19)). Suppose that {0,u*} are the only critical points of p. We set

a = infy = pw*) < 0 and b = ¢(0) = 0.

By virtue of Proposition 6 and hypothesis H'(iv), we see that ¢ satisfies the Palais—
Smale condition for every level ¢ € [a,b]. Also,

¢ ({a}) = {u"}.

Therefore, we can apply the second deformation lemma (see Theorem 2) and have
a homotopy R

h: [0, 1] X (Qob\Kcl;) - Qoba
such that b

h(Le"\K) € ¢ = {u'} (21)
and R N

o(h(t,w)) < o(h(s,u)) Vs,te[0,1], s<t, allue ¢\ Kf;. (22)
We consider the map -
Y: B, NR — WhHP(Q),

defined by
u* if lul| <3,

0 =3 ol (23)
" JEESTIRA I

ro

NI
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If w € R and |ju|| = %, then

5
2 —
h( (r IIuII)’Tu> Ch2u) =

r el

(see (17) and (21)). Hence, from (23), we see that 7o is continuous. Also, if u €

0B, NR, then

o~

Yo(u) = h(0,u) = u
(see (23)). Therefore vy € I'. From (17), (22) and (23), we have

¢(r0(w) < 0 VYueB,.NR,

SO
& <0 (24)

(see (19)).
Comparing (20) and (24), we reach a contradiction. This means that we can find
v* € K, such that v* ¢ {0,u*}. Then

A(v") = Ny(v"),

S0

—Apv*(2) = f(z,v*(2)) ae. inQ,

a *

5 =0 ondQ.
(see (7)). Nonlinear regularity theory (see Lieberman [5]) implies that v* € C*(Q).
This is the desired second nontrivial smooth solution of (1). O
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