
S C H E D A E I N F O R M A T I C A E

VOLUME 20 (2011) DOI 10.4467/20838476SI.11.010.0296

The Efficiency Analysis of the Object Oriented Realization of
the Client-Server Systems Based on the CORBA Standard1

Zdzis law Onderka
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: onderka@ii.uj.edu.pl

Abstract. The aim of this work was to analyze the cooperation efficiency of

the distributed objects based on the CORBA standard. The obtained results

show the possibilities of application to the object-relational databases or ob-

ject oriented computation of data received via the network from the object

managed data base. The distributed objects for the client-server model were

implemented in Java and C++ languages. All possible configurations of the

implementation for the client and the server were analyzed. Best results were

received for the client and the server implementation in C++ language. The

worst results were received for the client and the server implementation in

Java.

Keywords: distributed objects, CORBA, object-relational database, client-

server.

1. Distributed objects

Because of the growing importance of the object technology, and global access to
computer networks, more and more frequently computations are realized in the form
of distributed objects which communicate with one another in the network. It could
be any client-server application, for example the client application which performs
the computation of data received from the management server of the object-oriented
database [1, 2, 5].

1Topic realized within statutory work: 11.11.140.561.

182

Other applications of the distributed objects are the distributed computations in
the heterogeneous local (mainly) networks [13]. In this case, it could be a master-
slave application or an application consisting of a collection of equivalent processes.
In practice frequently applied models are as follows: one server and several clients or
one client and several servers. In each case it is possible to use different programming
languages to implement distributed objects.

Appropriate standards such as the distributed object and heterogeneous sys-
tems were defined by the OMG consortium (Object Management Group). The main
known advantages of the development of a homogeneous architecture based on the
object technology for the integration of distributed applications are: the possibility
of reusing software components and data processing, portability, the possibility of
using the abstract data types, modularization and faciliting interaction.

OMG defined the OMA architecture (Object Management Architecture) [6] with
its most important component which is CORBA (Common Object Request Broker)
[8] based on the object exchange mechanism defined in the middleware software ORB
(Object Request Broker) [7]. It can be seen as an intermediary interface between
hardware and software components for different manufacturers. Another important
result from the work of the consortium OMG, was to define the standard of com-
munication between the ORB-s that is IIOP protocol (Inter ORB Protocol), based
on TCP/IP and applied in the CORBA standard since version 2.0.

One of the advantages of CORBA applications to achieve interoperability of dis-
tributed objects, among others, is the possibility of implementing objects in different
object-oriented programming languages, among which Java and C++ are the most
popular [3, 4]. Of course, the software engineers may apply other programming lan-
guages or communication standards (regardless of the level of abstraction) but most
of them are dedicated for specific programming languages or system environments
such as DCOM [10], .NET Remoting, WCF (Windows Communication Foundation)
[11, 12], EJB, RMI etc. The text-based protocols were not taken into account due
to the need of high communication efficiency for high performance computing.

Both Java and C++ are often used to implement the calculations in a network
environment. For example, it could be the database that shares data over the
network (the server application) or the client-side processing the data received from
the database via a network (numerical or simulation calculations based on data
received from the database).

Therefore, it seems important in terms of efficiency of communication between
distributed objects, to test interoperability of these objects in different systems,
namely the client and server implemented in C++, client and server implemented
in Java and integrated mixed C++ – Java and Java – C++.

Another advantage of the CORBA standard is the ability to use different system
platforms (such as Windows, UNIX etc.), as opposed to a dedicated technology, for
example distributed communication technologies on the .NET.

183

2. The structure of the test application

To test the efficiency of interaction of distributed objects, based on the CORBA
standard an application was implemented with the aim to calculate the so-called
perfect numbers in a chosen numerical range. A perfect number is the natural
number equal to the sum of its divisors, excluding this number. The greatest perfect
even number was calculated in 2001, and its value is 23466917 − 1 [9].

This problem, despite its simplicity is a good example to show the possibility of
scattering calculations and collaboratively distributed objects. The perfect number
search algorithm is very simple, which allows to minimize the differences between the
way of its implementation in C++ and Java, and thus better test the communications
of the distributed objects (implemented in different programming languages) using
the CORBA standard. The functional diagram of the computation of the perfect
number (at the server side) is shown in Fig. 1.

Fig. 1. The scheme of the algorithm of the perfect number computation

To communicate with the ORB core, the test application uses a static IDL stub
on the client side and the static IDL skeleton on the server side, which involves the
implementation of an IDL file that contains the primary interface. The IDL file
content (Fig. 2) is not complicated, has one definition of sequences and an interface
containing the method to calculate the perfect number. The method is passed two
parameters, one specifying the current scope of the calculation, the second is the
number of the thread, which is the number of the server. Simplicity of the IDL file
is the intended treatment, this facilitates testing and leads to the transparent code.

module DoskMod{

typedef sequence<long> LongSeq;

interface Dosk{

LongSeq Oblicz(in long zakres,in long ns);

};

};

Fig. 2. The IDL interface

184

During the startup, the client receives the three input parameters: the range
of numbers, the number of available (running) servers and the number of threads.
Threads have been used for parallelization of calculations. The numerical scope is
divided into approximately equal sub-numbers, dependent on the number of servers
(or clients or threads – depending on the test scenario – Section 3).

Fig. 3. The diagram of the objects for the test application

The application object diagram of the test application was presented in Fig. 3.
Here the object representing a thread which initiates the execution of the program
refers to the ORB object to send requests of the appointment of a perfect number
by the server.

The object servant realizes the task of finding the perfect numbers in a given
numerical input range and after the calculations forwards the result (the array of
the found perfect numbers) through the ORB object to the thread object, which
expects the solution.

3. The research methodology

All tests were carried out on a network (switch 1GB, Ethernet 1GB) of computers
with the same hardware platform and configuration shown in Tab. 1.

Tab. 1. The hardware platform of computers

Itemt Parameter
Procesor type Intel Pentium 4, 2800MHz

RAM 1014 MB
Disk ST380013AS (80GB, 7200 RPM, SATA)

Network Card Realtek RTL8139/810x Family Fast Ethernet

The tests were run on the operating system Linux Fedora Core kernel-6.2.1912,
Sun Microsystems Java Virtual Machine version 1.6.0 14 and the environment MICO

185

2.3.13. to run applications written in C++. The built-in library org.omg.CORBA
was used to run the CORBA mechanism implemented in Java. The general schema
for tests was as follows:

• launch the server application,

• remote the IOR file copy to the client,

• launch the client application with the respective switches.

Each of the following scenarios was carried out for all the implementations on av-
erage ten times. This was to calculate the average result of the test and to eliminate
errors caused by the packed collision over the network.

3.1. Test scenarios

The scenario “1 on 1”: Two computers were used. The client application was run
on the first one and the server application on an other one (Tab. 2).

The scenario configuration “X on 1” also consists of two computers, where on
one of them was running the server, while the client program on the second one, but
through the threads (2, 4, 6, 8 (Tab. 3)) more clients were simulated. This scenario
was designed to check the server performance during the calculation demands of
a higher number of clients at the same time – each thread sends other sub-range of
numbers.

Tab. 2. Scenario “1 on 1”

Server number 1
Thread number 1

Range 1000 10000 1000000

Tab. 3. Scenario “X on 1”

Server number 1
Thread number 2, 4, 6, 8

Range 1000 10000 1000000

Tab. 4. Scenario “1 on X”

Server number 2, 4, 6, 8, 10, 12 10, 12
Thread number 2, 4, 6, 8, 10, 12 10, 12

Range 1000 10000 100000 1000000

However, in the other scenario, the test designated as “1 in X”, there is only one
client and a variable number of servers. The scenario has been tested for 2, 4, 6, 8,

186

10 and 12 computers that are running servers (Tab. 4). Also in this case, the client
uses threads in the same quantities as the number of servers in order to send a range
of calculations in approximately the same time. The purpose of this scenario was to
present the speedup of calculation with respect to the number of servers.

All scenarios were carried out for two implementations of C++ and JAVA. The
task of scenarios was also checking the implementation functionality between client
and server programming in these languages. Therefore, all these scenarios have been
run in client-server patterns presented in Tab. 5.

Tab. 5. Client-server patterns (programming languages)

Client Server
C++ C++
C++ Java
Java C++
Java Java

4. Obtained results and discussion

This chapter presents a comparison of the results, visually presented in charts, struc-
tured according to the scenarios presented in the previous chapter. The measured
time covers: the clients execution time depends on the clients threads execution
times, communication time and remote object execution time. The startup time of
a Java virtual machine was not included. The client (or each client in the scenario
“X on 1”) made only one synchronous call of the remote object (the client waits for
results).

Additionally, the following figures (Figs 4, 5 and 6) present the execution times
for the client and for the method of the remote object (at the server side).

The scenario “1 on 1”

After comparing the above three charts (Figs 4, 5 and 6), one can say that the most
optimal configuration is such, when the server and the client are implemented in
C++. The differences are almost double for the 10000 range for the implementation
of the client. One can also conclude that when the server is implemented in C++
calculations are performed relatively faster than when it is implemented in Java.

In Figs 4 and 5 the difference between the client time and the server time is shown.
This is due to the initialization time of ORB (function CORBA::ORB init()). For

187

Fig. 4. The calculation time (ms) for the range 1000, the scenario 1-1

Fig. 5. The calculation time (ms) for the range 10000, the scenario 1-1

Fig. 6. The calculation time (ms) for the range 1000000, the scenario 1-1

188

the range 1000000 (Fig. 6) the ORBs initialization time is not significant. Especially
for the case of the client implementation in Java the ORBs initialization time is
dominant.

Scenario “X on 1”

Fig. 7. The calculation time (ms) for the range 1000, scenario X-1

Fig. 8. The calculation time (ms) for the range 10000, the scenario X-1

In this scenario the range of numbers was divided into the approximately equal
sub-ranges which number depends on the number of threads (the whole range of
numbers is divided by the number of threads).

The implementation in C++, in all three ranges is the quickest. Charts (Figs 7,
8 and 9), however, did not show a clear conclusion about the mixed implementation.
In the case of the range 1000000 one can see that the calculation time for the
tested configuration client in Java and the server in C++ is comparable with the
implementation of the two components in C++. And when the 10000 range is used

189

Fig. 9. The calculation time (ms) for the range 1000000, the scenario X-1

calculations in the schema JAVA-C++ for example for eight clients are about 288
[ms] slower than in C++.

Moreover, for the range 1000 and 10000 calculations in the schema C++-Java
are comparable with these when the two components are implemented in C++. The
implementation of the client and server in Java is still the slowest of the tested ones.

In Figs 7 and 8 the ORBs initialization time is still significant (like in the scenario
“1 on 1”). Additionally, the number of threads decreases efficiency because of the
startup time of threads and the scheduling time of threads. For the range 1000000
(Fig. 9) for the three configurations: C++-C++, Java-C++ and Java-Java the most
significant is the calculation of the perfect numbers in so large range of numbers,
that the server in C++ is the quickest. Only for the case of Java-Java the impact
of the threads startup time is slightly visible.

Unexpected results were obtained for the case of C++-Java. Probably the long
execution time at the server side resulted in the fact that the clients processes went
into the sleeping mode. In the case of Java-Java the similar effect is not observed
probably because of a different execution way of Java threads in the environment of
the operating system.

The scenario “1 on X”

The fact that the implementation in C++ is faster than any other described in the
paper, was predictable. All of the graphs (Figs 10, 11, 12 and 13) presented below
confirm this fact. However, the difference in the 1000, between the implementation
in C++ and Java, using the twelve servers, amounts to almost 500 [ms]. This
demonstrates that the Java program is 34 times slower.

For the ranges of 1000 and 10000 implementations for the schemas C++-C++
and C++-Java are the fastest. Moreover, for these schemas (for the ranges 10000
and 100000) the efficiency increases with the number of servers as well as for the
range 100000 for the schemas Java-C++ and Java-Java. Even for the range of 1000
the increase in the number of servers decreases the efficiency. In this case, the
greatest impact on the performance has the ORBs initialization time at the servers

190

Fig. 10. The calculation time (ms) for the range 1000, the scenario 1-X

Fig. 11. The calculation time (ms) for the range 10000, the scenario 1-X

side. Moreover, over a short time of calculation (the small range of numbers) the
communication overhead is significant too. Therefore, the increase in the number of
servers increases the execution time.

Fore the range of 10000 (Fig. 11) for the schemas Java-C++ and Java-Java first
the increase of server numbers causes the increase of the application performance
but for 12 servers, causes a sudden decrease of performance. Too many servers cause
the increase in the communication overhead which is significant in comparison with
the perfect numbers calculation.

For small ranges (Figs 10 and 11), similar results can be observed in the case
of the schemas C++-C++ and C++-Java. By contrast, for greater ranges (Figs 11
and 12) the similar results can be observed for the schemas C++-C++ and Java-
C++. It should be also mentioned that for small ranges a significant impact on the
obtained results has the time of initialization of ORB objects, and for large ranges
it has a minimal impact.

The application written in Java for almost all charts achieves the highest values.
The implementation in C++ is the opposite, as almost all the tests show that it is the
fastest in execution. However, for the range of 100000 (Fig. 12) the performance of

191

Fig. 12. The calculation time (ms) for the range 100000, the scenario 1-X

Fig. 13. The calculation time (ms) for the range 1000000, the scenario 1-X

Java-Java definitely improves (is similar to C++-C++) which is particularly evident
for the 10 and 12 servers. By contrast, for the range 1000000 (Fig. 13) a significant
deterioration of the performance for the schema Java-Java relatively to C++-C++
can be seen. This may imply that Java begins to lose its effectiveness with too large
computational tasks regardless of the number of servers.

5. Summary and conclusions

In this work opportunities of the usage of the CORBA middleware for distributed
objects for programming languages Java and C++ were presented, with particular
emphasis on the joint implementation. It may be important for the implementation
of object-oriented or object-relational databases and distributed computing object-
oriented applications. CORBA is a standard independent of a hardware architecture

192

or programming language, which makes it a very affordable tool to implement dis-
tributed computing projects. But it is not a simple mechanism. Its independence is
overpayed by the need to use external tools, such as MICO, or omniORB for C++.
In the alternative mechanisms such as RMI, EJB, DCOM, .NET Remoting or WCF
there are no such complexities, but in these standards there is no so great freedom
to use a programming language and hardware as well as system platform.

After conducting all the test scenarios (Chapter 3), analyzing the results shown in
the charts (Chapter 4), it can be concluded that the implementation of the server and
the client in C++ is the most effective method of the distributed object interaction,
for example, in determining perfect numbers. However, in the respective ranges,
the mixed implementations: C++-Java and Java-C++ matched the efficiency of
C++-C++.

Mixed implementations can be used in client server systems in which numerical
calculations are performed in the language C++. For example the server imple-
mented in Java provides data from a database to the client – implemented in C++
performing numerical calculations (for example some simulations).

Easiness of writing in Java has been fraught with a high computation time,
but the use of CORBA in C++ was necessary to use an external server MICO.
Each schema has its own advantages and disadvantages. The use of a program-
ming language depends on the type and size of calculations, as is well illustrated by
implementations of the mixed schemes.

6. References

[1] Lausen G., Vossen G.; Models and Languages of Object Oriented Databases, WNT,
Warszawa 2000.

[2] Vossen G.; Bibliography on Object-Oriented Database Management, Technical report
No. 9301, Computer Science Group, Univ. of Giessen, Germany, 1993.

[3] Onderka Z.; Computer Aided Network Access to Data from Geological and Geophysical
Databases (in Polish), in: Kozielski S., Ma lysiak B., Kasprowski P., Mrozek D. (ed.),
Bazy Danych, Rozwój Metod i Technologii II, WKi L, Warszawa 2008, pp. 219–229.

[4] Piórkowski A., Onderka Z.; Project and Implementation of the Geological Data Base in
the Internet Network (in polish), in: Pochopień B., Kwiecień A., Grzywak A., Klamka
J. (ed.), New Technologies for the Computer Networks, WKi L, Warszawa 2006.

[5] Stonebraker M.; Object-Relational DBMSs – The Next Great Wave, Morgan Kauf-
mann, CA, 1996.

[6] Object Management Group; Object Management Architecture Guide, OMG Document
Number 92.11.1, Revision 2.0, 1992.

[7] Object Management Group; The Common Object Request Broker: Architecture and
Specification, OMG Document, Version 2.0., 1995.

193

[8] Siegel J.; CORBA Fundamentals and Programming J. Wiley, New York 1996.

[9] Wibig T.; University of Lódź Physics Dept. Perfect Numbers. Available via http:

//www.u.lodz.pl/~wibig/hieronim/hie15pok.htm.

[10] Onderka Z., Cichy M.; The Comparision of the Communication Efficiency for the
CORBA and DCOM Standards in the Client Server Systems, Computer Networks,
2011. Will be published in Studia Informatica.

[11] Gupta S.; A Performance Comparison of Windows Communication Foundation
(WCF) with Existing Distributed Communication Technologies, Available via http:

//msdn.microsoft.com/en-us/library/bb310550.aspx.

[12] What Is Windows Communication Foundation?, Available via http://msdn.

microsoft.com/en-us/library/ms731082.aspx.

[13] Onderka Z., Uhruski P.; The SDK for the Process Migration in the Heterogeneous

Computer Networks, Schedae Informaticae, 11, 2002, pp. 99–114.

Received September 22, 2010

