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1.   Introduction 

 A field of science such as artificial neural networks (ANN) arouses more 

and more interest all over the world, not only among academics and 

researchers. Since its beginning in the 1940‟ties it has experienced its ups and 

downs. From the huge fascination in the early stage to nearly falling into 

oblivion after Minsky‟s book [10]. Then in the 80‟ties interest in ANN 

experienced a rapid growth which surprised everyone and resulted in 

a dramatic rise and demand for information about ANN. This interest is also 

a result of a very dynamic development of computer science in the recent 

years as well as increasing need for iterative computational models, to which 

most definitely we can include ANN. 

 Generally speaking, we can say that artificial neural networks is an 

advanced technology used as a statistical data modelling tool. It is a tool used 

in decision making processes. ANN is so successful thanks to its two 

important characteristics: ability of approximation any given function and 

ability to generalize gained knowledge. It allows us to find important 

correlations between processes, which observations are used as input data. It 

does not require to have any knowledge of analytical form of the described 
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model. Another big advantage is also ability to conduct computation in 

parallel resulting in possibility to process huge amounts of data. 

 An attempt to describe a data processing system in a form of an artificial 

neural network and resulting practical applications in the modern world of 

economy is the purpose of this paper. High frequency time series forecasting 

on the example of trends of the indices on the Warsaw Stock Exchange with 

the use of artificial neural networks is the main issue of this dissertation. In 

the following chapters efficacy results of selected types of artificial neural 

networks in forecasting trends of the index under consideration are shown, 

together with a debriefing. 

2.   Examples of implementing artificial neural networks in financial 

markets 

 Empirical researches on implementation of artificial neural networks and 

selected econometric models in the capital market have been conducted for 

a long time. In the article [16] results of research on implementation of neural 

networks to forecast directions of short-term trends and to predict price 

changes in ten-days time horizon are presented. Indicators used for technical 

analyse were used as the input data, and in the case of share price forecast 

also some fundamental data was used. The tested type of a neural network 

was a perceptron with one hidden layer, trained using the back propagation 

method. Also some empirical research of the size of hidden layer took place, 

issues of selection and preliminary data processing of the size of training data 

set and the length of the training process were analysed in brief. The obtained 

results were very promising. In the case of share price prediction – 68% of 

forecasts were correct regarding direction. Additionally it was proved that 

efficacy of this strategy for the Greek market (similarly to the Polish market, 

it is a developing market with a relatively low effectiveness) was much higher 

than for the significantly more developed German market.  

 Another example of using artificial neural networks is connected with 

choosing the right investment portfolio [5]. The future annual profit of 

investment in a particular company was chosen as a criterion for selecting 

right shares. The training data set comprises eighty eight input variables, 

which include twenty eight fundamental factors (linked with fourteen chosen 

indicators of a given firm), twenty five values showing of a given firm in its 

market and thirty five values created basing on seven macroeconomic 

indicators. Data from 231 firms was used and obtained results were very 

promising. If we talk about dividing shares into two categories (making profit 

and making loss), in about 66,4% cases, networks made right decisions, in 

26,2% decisions were incorrect and in 7,4% cases the networks were not able 

to make a decision.  
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 In the paper [13] Polish market forecasting of short term contracts on 

index WIG20 is presented. As the input data, nineteen values describing 

dynamism of changes of index WIG20 and chosen contract, were used. The 

testing and training data was taken from the two-year period (from 2nd 

February 1998 to 31st January 2000). Models of the network of the type – 

perceptron were used. They generated significant levels of profit between 50% 

to 78% in the testing period of around a hundred market sessions. By the way, 

some comparisons of efficiency between different types of neural networks and 

neural methods with the classic linear regression were made. They outcome 

was that a non-linear network of the perceptron type is much more efficient 

for modelling phenomena under consideration. 

 In the book [8] an innovative idea of decomposition of time series into 

a few separate components of different types can be found. Time series used, 

include absolute changes of WIG in the period between 23rd April 1991 and 3rd 

November 1997, what covers 1187 values. Authors have carried out two 

experiments. In both cases one way multi layer networks trained with the use 

of the Marquardt–Levenberg method were used, the output variable was 

described by values of six previous series. In the first experiment an original 

unprocessed series was used. On a few different networks thirty iterations of 

the Marquardt–Levenberg algorithm were conducted, then the best one was 

trained in the same way. The obtained network was able to forecast right 

direction of changes in 61% of cases for tested data. In the second experiment, 

the previously mentioned decomposition of time series was used. For this 

purpose the discrete wavelet transform was used in order to separate 

components of different frequencies and to place them in time. A filter 

function of the type Daubechies4 was used. Wavelet analysis separated ten 

components. Each of them was independently trained, analogously to the first 

experiment, although partial models differed in the size of hidden layers and 

what follows in the number of connections. The value of the original series 

was obtained through adding up the theoretical value of each component. In 

this case the model was able to forecast right direction of changes in 86% of 

cases, what gives us a very good forecasting result.   

3.   Forecasting future values of WIG20 

3.1.   Introduction 

 In this part of the paper results of the research obtained by forecasting 

indexes of the largest companies with the use of artificial neural networks are 

briefly described. In all experiments, data from the period between 1st August 
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2002 and 31st October 2007 (what gives us 1322 Stock Exchange quotation) 

was used. As we can see in Fig. 1 it was a period slightly longer than the 

longest bull market in the history of the Warsaw Stock Exchange. 

 

 

 

 

 

 

Fig. 1. WIG20 

The above chart could suggest a very large domination of increases over 

decreases, however in the period under investigation, they account for „only‟ 

53% sessions. So, the model to show any usefulness should achieve minimum 

the level of 53% correct direction forecasts. Whilst it is generally accepted that 

forecasting at the level of 60% allows us to think about making profits on the 

stock exchange.  

 

In order to simulate and test all kinds of neural models the “Statistica 

Neural Networks” software version 7.1. was used. Three types of networks 

have been tested – a multi layer perceptron, RBF network and General 

Regression Neural Network (GRNN). There exist many measures of absolute 

and relative errors which could be used to assess obtained results, however 

output time series in many experiments was significantly transformed and 

the only fully comparable value is a variable determinative a properly 

forecasted direction of the change of the index (DIR). This value is treated as 

the most important measure of model's usefulness in practice, as what really 

interests most stock investors (and most definitely all speculators) is 

information about changes of discussed values during the next session. An 

average from five independent experiments and a so-called “committee” are 
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given as results for each model. A “committee” can be defined as a network 

with averaged results on the level of each session.  

In the following chapters assumptions and results obtained in each 

experiment are presented. 

3.2.   First experiments 

 The research was started with the most common type of neural networks 

– a multi layer perceptron (MLP). Capabilities of this “classic” network in the 

area of forecasting financial time series and influence of different methods of 

teaching on the results, were tested on the examples of 4 small architectures. 

“Statistica Neural Networks” contains several implemented methods of 

teaching. Networks described below were tested with the use of four most 

common methods of teaching: back propagation, back propagation trained 

with the use of the conjugate gradient method, Quasi-Newton method and 

Marquardt–Levenberg method. The main aim of this experiment was to test 

whether any significant statistical differences in results of WIG20 forecasting 

appear when different methods of teaching are used and whether adding 

hidden layers markedly improves results. 

  First experiments results are shown in Tab. 1. The first conclusion after 

analysing Tab. 1 is the fact that initial results are not very promising. Similar 

results can be obtained by simply tossing a coin. Efficacy at the level of 50% 

tells us nothing and has no practical value. Taking into consideration the 

above results we can list out three main conclusions or, in point of fact, three 

problematic questions: 

 

 are MPL networks not suitable for forecasting financial time series?  

 is forecasting stock exchange not possible basing only on past values? 

 is forecasting horizon too narrow (here maximum eleven)? 

 

 In the following sections, where more advanced models will be tested, 

answers for these and many more questions can be found. 

 As for the above results, it is a difficult task to present any clear rules and 

correlations basing only on them. Maximum discrepancy between the results 

of our research is 3%, and taking into consideration that these are averages 

from only five tests (where the standard deviation was sometimes higher than 

3) it is impossible to choose a training algorithm which gives significantly 

better results than the other ones1.  

                                                 
1 There are many papers that try to prove the existence of “better” and “worse” methods for 

training neural networks. For example in the paper [7], superiority of the Marquardt–Levenberg 
method over other training algorithms was proved. However research done in that article was of 
different character to the one presented in this dissertation. There the task of a network was to 
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Tab. 1. Efficacy of small networks of the perceptron type with the use of different 

training algorithms 

Network description 

Training data Testing data 

DIR 

(%) 

DIR- 

incre-

ases 

(%) 

DIR- 

decre-

ases 

(%) 

DIR 

(%) 

DIR- 

incre-

ases 

(%) 

DIR- 

decre-

ases 

(%) 

Architecture: 6-6-1 average 51,8 54 48,8 50,2 51 47,6 

Algorithm: back propagation committee 51,9 54,2 46,5 49,3 49,6 48,7 

Architecture: 6-6-1 average 52,1 55,7 47,4 50,5 49,4 51,5 

Algorithm: backpropag.+conjug.grad. committee 52,6 56 47,9 51,5 50,3 53,1 

Architecture: 6-6-1 average 54,8 56 52,1 50,8 51,6 49,2 

Algorithm: Quasi-Newton committee 54,4 56,3 50 54 51,4 61,3 

Architecture: 6-6-1 average 54,6 55,7 52,2 51 53,3 47,6 

Algorithm: Marquardt–Levenberg committee 54,8 56,7 50,6 53,7 51,7 57,7 

Architecture: 6-12-6-1 average 51,5 56 48,4 49,6 49 49,5 

Algorithm: back propagation committee 50 54,2 45,5 46,5 44,9 47,9 

Architecture: 6-12-6-1 average 52,9 55,7 48 49,8 48,9 51,3 

Algorithm: backpropag.+conjug.grad. committee 52,6 55,3 47,4 49,9 48,9 51,4 

Architecture: 6-12-6-1 average 54,2 56,8 49,8 49,1 48,3 50,3 

Algorithm: Quasi-Newton committee 55,6 57,6 51,9 49,5 48,7 50,9 

Architecture: 6-12-6-1 average 52,5 55,5 47,6 48 47,2 49 

Algorithm: Marquardt–Levenberg committee 53,4 55,9 48,6 45,8 45,7 45,9 

Architecture: 11-11-1 average 51,9 56,3 48,1 47 44,8 48,3 

Algorithm: back propagation committee 50,1 54,7 46,2 46,5 44,9 47,9 

Architecture: 11-11-1 average 53 56 48,5 46,8 46,2 47,5 

Algorithm: back 

propag.+conjug.grad. 

committee 53,1 55,9 48,5 44,8 44,8 44,9 

Architecture: 11-11-1 average 54,6 57,5 50,4 48,6 47,7 49,8 

Algorithm: Quasi-Newton committee 55,1 58 51,1 46,8 46,2 47,7 

Architecture: 11-11-1 average 54,8 57,4 50,8 47,1 46,6 47,8 

Algorithm: Marquardt–Levenberg committee 55,4 57,6 51,6 42,8 43,2 42,2 

Architecture: 11-22-11-1 average 53,1 55,4 49,7 49,3 48,4 51,1 

Algorithm: back propagation committee 54,8 56,1 51,2 49,8 49,1 51,9 

Architecture: 11-22-11-1 average 52,4 55,5 47,7 49,8 48,8 51,2 

Algorithm: back 

propag.+conjug.grad. 

committee 52,8 55,6 48,1 50,5 49,4 52 

Architecture: 11-22-11-1 average 54,3 57,2 50,1 47,1 46,3 48 

Algorithm: Quasi-Newton committee 53,5 56,5 49,1 47,8 47 48,9 

Architecture: 11-22-11-1 average 52,5 55,8 48 47,3 46,5 48,2 

Algorithm: Marquardt–Levenberg committee 52,3 55,7 47,6 50,8 49,7 52,2 

 

                                                                                                                           
compute results of function z = f (x, y) with x and y given. The function was complex, but its form 
was known. Here we deal with financial time series, where it is very difficult to find any 
correlations. 
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 However, it is worth mentioning that the classic method of teaching – 

back propagation offered us one of the best results. But, when we look at the 

results of networks on the training data we can notice that back propagation 

gives the worst results. It does not, however, puts this method in an 

unfavourable position. We can assume, basing on this, that this method is to 

the smallest degree affected by the process of learning by heart input vectors 

and that it best generalizes the obtained knowledge. Considering the above 

arguments and the fact that it is the fastest method of the four chosen, back 

propagation was used in the following sections to test bigger and more 

advanced architectures, where the teaching speed plays a key role.  

 It was surprising to find out that the smallest (6-6-1) of tested 

architectures  gave the best results. So it is only natural that we can find it in 

several papers, e.g. [8]. The use of committees also did not improve results as 

expected. In only a few cases we can notice 2–3% increase of efficacy. In most 

of the cases we not only did not benefit from the use of committees but even 

suffered from a few percent decrease in results. This decrease is most visible 

on the testing data. On the training data, committees usually did not worsen 

results. 

 Additionally, the standard deviation was calculated for each experiment. 

In order to have a better clarity, the results are given in a separate table. 

 
Tab. 2. The standard deviation of errors 

Network description 

Standard 

deviation DIR 

on training data 

Standard deviation 

DIR on testing data 

6-6-1 (back propagation) 1,4 3,4 

6-6-1 (back propagation + gradients) 0,4 2,3 

6-6-1 (Quasi-Newton method) 0,8 2,1 

6-6-1 (Marquardt–Levenberg method) 0,8 3,5 

6-12-6-1 (back propagation) 2,8 2,3 

6-12-6-1 (back propagation + gradients) 1,2 1,6 

6-12-6-1 (Quasi-Newton method) 0,6 1,9 

6-12-6-1 (Marquardt–Levenberg method) 0,6 1 

11-11-1 (back propagation) 1,9 1,2 

11-11-1 (back propagation + gradients) 0,8 2,4 

11-11-1 (Quasi-Newton method) 1,2 2,4 

11-11-1 (Marquardt–Levenberg method) 1 2,6 

11-22-11-1  (back propagation) 2,1 0,9 

11-22-11-1  (back propagation + gradients) 1,3 2,9 

11-22-11-1  (Quasi-Newton method) 1,6 1,6 

11-22-11-1  (Marquardt–Levenberg method) 1,1 3 
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 In our case considerations concerning standard deviations of network 

results are not the most important so we will not discuss it in much detail. 

Nonetheless, we have to mention two, one might say obvious, conclusions: 

 

 standard deviation on testing are larger than on the training data, 

 small networks with one hidden layer are characterized by bigger 

variability of results.  

 

 Smaller networks with one hidden layer are more affected by different 

fluctuations. To stabilize results we can either add another hidden layers or 

enlarge a network. 

 In the next section, results of MLP networks with a much larger 

forecasting horizon (up to 200) will be presented. 

3.3.   MLP Networks and large forecasting horizons 

 In the previous section abilities of small MLP networks on the financial 

market were presented. The forecasting horizon was rather small – maximum 

eleven. It could have been a cause of not good results, that is why for the next 

stage of research we will use up to 200 past values. However, it is related with 

the use of much bigger architectures and what follows, much longer time 

needed for teaching such networks.  

 All of the networks were trained with the use of the back propagation 

method with momentum (1000 iterations), and then trained with the use of 

the conjugate gradient method (500 iterations). The coefficient of teaching was 

0,6 at the beginning and was gradually decreasing with successive iterations 

to 0,012, and the component of momentum was 0,3. Numerous experiments 

showed that networks with two hidden layers give the best results. One and 

three hidden layers gave notably worse results. In the case of two hidden 

layers, a rule was used, which stated that the first layer had a number of the 

input data and the second was a half of the first. Results are presented in Tab. 

3. 

 Extending the forecasting horizon brought the expected improvement of 

results. Networks systematically improved their forecasting abilities up to the 

moment when 100 past values were used. Over this number, excess of 

information became visible and networks were less efficient. To summarize, 

forecasting horizon of 100 was optimal for MLP networks.  

 

 

                                                 
2 This value of the coefficient of teaching and its changes during the teaching process were 

mentioned in [19]. 
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Tab. 3. Perceptron and large forecasting horizons 

Network description 

Training data Testing data 

DIR (%) 

DIR- 

increases  

(%) 

DIR- 

decreases 

(%) 

DIR (%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

25-25-13-1 
average 52,3 56 47,8 48,4 47,5 49,4 

committee 52,9 56,5 48,4 49 48,1 50 

50-50-25-1 
average 52,9 56,8 48,4 53 52 54,1 

committee 52,1 55,9 47,5 56,6 55,6 57,5 

75-75-38-1 
average 53,7 57,9 49,3 56,2 54,6 57,9 

committee 55,5 59,4 51,2 60,4 58,7 62 

100-100-50-1 
average 56,9 61,4 52,1 60,3 57,5 63,4 

committee 59,7 63,7 55,2 62,3 58,6 67,2 

140-140-70-1 
average 57,9 62,6 52,6 57,3 55,1 60 

committee 59,9 64,3 54,8 59,8 56,8 64 

150-150-75-1 
average 57,9 62,7 52,5 58,2 55,6 61,3 

committee 62,5 66,5 57,6 61,1 58,1 65 

200-200-100-1 
average 59,9 65 54,5 58,9 56,5 61,8 

committee 62 66,4 56,9 61,8 58,7 66 

 

 Looking at the above results we come to very interesting conclusions for 

which it is difficult to find a rational explanation. First of all, in four out of 

seven cases, forecasts on the testing data were better than on the training 

data. Another interesting thing is that in all tests on the training data 

forecasts of increases were better than the forecasts of decreases. However, on 

the testing data, we can see the opposite situation. Differences were relatively 

significant. 

 Efficacy of networks at the level of 60% provides us with some optimism 

as these results offer basis for practical applications as well as for future 

experiments – see Tab. 3. 

3.4.   Input data transformation 

All of the previous experiments took place with the use of raw data. In this 

section, results of networks trained on the previously processed data will be 

presented. We can find many methods of preprocessing data in literature. 

Here, some of the most common ones will be discussed:  

 

Publikacja objęta jest prawem autorskim. Wszelkie prawa zastrzeżone. Kopiowanie i rozpowszechnianie zabronione



 
 
 
 
 
 
88 

 

 absolute changes of time series values (xt – xt–1), 

 absolute changes with correction3 (xt – xt–1), 

 percentage changes (xt – xt–1)/ xt, 

 percentage changes with correction4 (xt – xt–1)/ xt, 

 thresholds –1, 1 (index decrease marked as –1, increase as 1). 

 

New possibilities were tested on a small MLP network with 6-6-1 architecture 

(six input data, one hidden layer). Results are presented in Tab. 4. 

 

Tab. 4. Use of data transformation on the example of perceptron type 6-6-1 

Network description 

Training data Testing data 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

Unchanged series 
average 52,1 55,7 47,4 50,5 49,4 51,5 

Committee 52,6 56 47,9 51,5 50,3 53,1 

Absolute changes 
average 55,3 55 55,8 53,7 53,5 55 

committee 55,9 55,5 57,3 54,5 53,9 57,8 

Absolute changes 

with correction 

average 56 55,7 57,4 52,3 53,2 48,6 

committee 57,2 56,3 61,6 53,2 53,6 51 

% changes 
average 54,8 55,3 52,5 49,3 48,7 51,9 

committee 55,1 55,5 53,6 49,3 48,7 51,7 

% changes with 

correction 

average 56,6 56,3 58,3 51 49,7 57,7 

committee 57 56,3 60,5 51,2 49,8 60 

Thresholds 
average 55,1 58,6 52,7 51,5 59,5 45,8 

committee 57,2 59,8 54,9 51,3 58,2 45,3 

 

Only the use of percentage change worsened results. Another four 

methods of preprocessing the input data helped to achieve better results than 

unprocessed series. The best solution was the use of absolute changes which 

gave 3% improvement. Nonetheless, the obtained results are still not good 

enough for any practical use. The use of committees also bettered results, but 

not as significantly as in the previous experiments (Tab. 4). 

                                                 
3 If the change was over 3% (what is an unusual situation) then this value was set to 3%. 
4 The same situation as above. 
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The results obtained in this section give hope that with the use of large 

forecasting horizons and absolute changes, it will be possible to get results 

better than those presented in Tab. 4. Such a combination is shown in Tab. 5. 

All details of the process are the same as those described in the previous 

section. 

This time, the results of our experiments are very disappointing. As for 

the testing data, efficacy of networks was only around 50% and using 

committees did not improve the obtained results. The best result was achieved 

when the forecasting horizon was 140, however the result was still lower than 

for the 6-6-1 network. Very good results on the training data are a curiosity. 

We can see that generalization of networks decreases as we use absolute 

changes. Networks in this case are negatively affected by the process of 

learning by heart of the input data. With the use of raw values described 

processes seem to be much more beneficial. 

 
Tab. 5. Input data transformation and perceptrons with large forecasting horizons 

Network description 

Training data Testing data 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

25-25-13-1 
average 58,3 58,7 57,7 52,1 53,2 49,8 

committee 61,6 60,7 63,5 51,9 52,8 49,4 

50-50-25-1 
average 61,9 62,2 61,4 49,6 51,1 46,8 

committee 65,3 64,1 67,8 50,2 51,5 47,3 

75-75-38-1 
average 64 64,5 63,4 48,2 49,9 45,2 

committee 68,3 66,6 71,8 47,4 48,2 44,1 

100-100-50-1 
average 67,5 68,3 66,7 49 50,7 46,7 

committee 71,2 70,2 72,9 48,6 50,3 45,5 

140-140-70-1 
average 69,7 69,8 69,5 52,8 54,1 50,6 

committee 76,3 72,9 83,1 52,6 53,6 50,6 

150-150-75-1 
average 70,8 70 72,2 51,1 52,9 48 

committee 77,1 73,2 85,2 49,8 51,7 46,3 

200-200-100-1 
average 72 71,8 72,5 51,5 53 49,4 

committee 78,6 75,6 83,9 51,4 52,6 48,8 

 

In order to finally determine usefulness of the previously mentioned series 

transformations, we carry out another series of experiments, showing results 
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of networks with the use of more preprocessing methods on the example of 

a 140-140-70-1 architecture. Technical details of the training process stay the 

same as in the whole section. Results are presented in Tab. 6. 

Tab. 6 confirms the fact that using input data transformation does not 

improve network efficacy. This time the best results were achieved with the 

use of absolute changes, but they are still lower by about 4% compared to the 

case with raw series. 

 
Tab. 6. Use of data transformation on perceptron type 140-140-70-1 

Network description 

Training data Testing data 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

Unchanged series 
average 57,9 62,6 52,6 57,3 55,1 60 

committee 59,9 64,3 54,8 59,8 56,8 64 

Absolute changes 
average 69,7 69,8 69,5 52,8 54,1 50,6 

committee 76,3 72,9 83,1 52,6 53,6 50,6 

Absolute changes 

with correction 

average 76,8 75,9 78,3 53 55,9 48,8 

committee 82,8 78,9 89,3 57,4 59 54,6 

% changes 
average 72,4 72,7 72 51,8 52 51,4 

committee 81 78,9 84,2 51,1 51,6 50,5 

% changes with 

correction 

average 84,3 84,3 84,2 50,1 49,2 51,1 

committee 86,9 86,6 87,2 47,4 47,1 48 

Thresholds 
average 89,2 89 89,4 49,7 57,9 39,1 

committee 89,9 89,8 90 49 57 38 

 

 

To summarize, input data transformations which were used in this 

section, do not improve network efficacy at all. All of the used methods of 

preprocessing not only, did not improve the obtained results but they also 

worsened them by a few percent (of course, taking into consideration 

directions of changes of index WIG20). Most likely, transformations of original 

series, described in this section, lead to loss of important information that 

helps to forecast, and enlarging the forecasting horizon only increases the 

level of data dredging and lowers the possibility of training data 

generalization. Experiments described in this section tend to support this 

argument. Small architectures MLP, e.g. 6-6-1 (Tab. 4) proved in many cases 

to be better than large ones: 140 140 70-1 (Tab. 6). 
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3.5.   Financial time series forecasting with the use of RBF networks 

In the previous section we obtained MLP networks efficacy at the level of 

60%. It is a maximal result that was obtained with the use of multi layer 

perceptrons and with original series values in the training process. In this 

section RBF network's ability in the area of financial time series forecasting 

will be presented. 

In the first series of experiments original series were used and RBF 

networks, characterized by the input layer of 25 to 200 neurons and variable 

number of neurons in one hidden layer, were tested. Results are presented in 

Tab. 7. 

 
Tab. 7. Efficacy of RBF networks 

Network description 

Training data Testing data 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

DIR (%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

25-25-1 
average 50,6 55,1 46,4 53,4 52,7 54 

committee 51 55,4 46,7 52 51,2 52,6 

25-50-1 
average 52,8 56,7 48,4 48,7 47,9 49,7 

committee 53,5 57,2 49,1 49,3 48,4 50,4 

25-100-1 
average 58 61,2 54 43,7 43,2 44,2 

committee 59,2 62,2 55,4 38,9 39,4 38,3 

50-50-1 
average 52,4 56,5 47,9 55,4 54,5 56,2 

committee 53 57,1 48,6 54,1 53,1 55,2 

50-100-1 
average 54,7 58,6 50,3 53,4 52,4 54,3 

committee 56,6 60,1 52,5 52,1 51,1 53 

50-200-1 
average 60,7 63,7 57 48,1 47,2 49 

committee 64 66,3 61 47,6 47 48,4 

100-100-1 
average 57,4 61,8 52,7 57,9 55,2 61,1 

committee 58,8 62,3 54,3 59,8 57 62,9 

100-200-1 
average 64 67,3 60 60,3 57,2 64,1 

committee 67,1 70 63,6 60,5 57,4 64,3 

100-300-1 
average 69,6 72,4 66,2 60,7 57,9 63,8 

committee 74,1 76,5 71,2 61,9 59,1 65,2 

100-400-1 
average 74,7 76,9 72,1 58 55,2 61,4 

committee 77,5 78,9 75,8 61,6 58,7 64,9 
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140-280-1 
average 70,5 73,6 66,8 63,8 61,2 66,8 

committee 74,6 76,8 71,9 67 64 70,6 

140-400-1 
average 76,5 78,3 74,1 64,9 61,6 69,2 

committee 81,5 81,9 81 66,7 63,1 71,4 

140-600-1 
average 84,1 85,4 82,4 63 60,2 66,6 

committee 86,1 86,8 85,2 64,5 61,4 68,3 

140-800-1 
average 92,3 93,3 91,1 64 61,2 67,3 

committee 93,7 94,4 92,8 63,8 61,1 66,9 

150-300-1 
average 73,2 76,1 69,7 66,3 63,3 70 

committee 77,9 79,9 75,3 70,5 67,3 74,2 

150-450-1 
average 79,3 81,3 76,8 65,4 62,5 68,7 

committee 83,7 84,4 82,7 66,9 63,8 70,6 

150-600-1 
average 84,6 86,5 82,2 65,8 62,9 69,2 

committee 86,9 88,4 84,9 65,5 62,6 68,8 

150-800-1 
average 92,9 94,1 91,5 63,4 60,2 67,6 

committee 95,2 96,3 93,8 62,5 59,5 66,4 

200-200-1 
average 69,2 72,7 65 64,7 61,8 68,3 

committee 73 76,2 69,3 65,3 61,6 70,3 

200-400-1 
average 79,3 81,1 77 68,2 65 72,3 

committee 82,8 83,9 81,4 70,2 66,7 74,6 

200-600-1 
average 87,4 88,7 85,9 69,2 65,8 73,4 

committee 89,9 90,6 89,1 68,3 64,4 73,5 

200-800-1 
average 91,3 92,2 90,3 68 64,6 72,5 

committee 93,3 93,7 92,8 69,5 65,3 75 

 

It is easy to see that RBF networks have advantage over MLP networks in 

financial time series forecasting. With the forecasting horizon between 25 and 

100 the advantage is insignificant, but above this level, the efficacy of 

networks increased by almost 10% with 200 past series values used as the 

input data. The best networks and their committees were characterized by 

efficacy at the level of almost 70% which is a great achievement. The 

forecasting horizon equal 200 seems to be optimal in the case of RBF networks 

as experiments on larger networks did not bring any improvements of the 

results.  

The type of the network under consideration gave best results when the 

hidden layer was 2–3 times bigger than the input layer. The bigger layer led 

to a situation, when the network started to learn by heart the input data and 

decreased generalization of results. The used committees in this case gave us 
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1–2% increase of results. Only it the case of two smaller architectures, the 

efficacy of networks decreased. 

RBF networks were also tested with the use of the preprocessed input 

data. Tests were done on a few architectures and the results on the 100-200-1 

network are presented in Tab. 8. 

 
Tab. 8. RBF networks and input data transformation 

Network description 

Training data Testing data 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

Unchanged series 
average 64 67,3 60 60,3 57,2 64,1 

committee 67,1 70 63,6 60,5 57,4 64,3 

Absolute changes 
average 63,7 63 65,1 47,9 49,8 43,7 

committee 71,1 69,7 73,5 46,4 48,7 41,2 

Absolute changes 

with correction 

average 62,4 61,5 64,9 53,1 54,7 48,8 

committee 72,7 69,5 79 54,6 55,3 52,3 

% changes 
average 62,4 62 63,1 49,6 49,8 49,1 

committee 72 70 75,6 49,8 50 49,2 

% changes with 

correction 

average 63,2 59,6 88,1 48,4 49,5 47,7 

committee 76,5 69,7 90 48,2 49,3 47,6 

Thresholds 
average 61,6 57,4 90,2 52,3 54,2 49,8 

committee 74,9 67,4 92,3 51,4 53,6 49,5 

 

Similarly as in the case of the perceptron, efficacy of RBF networks 

trained on the preprocessed data is much worse than in the case of original 

series. Even though in this case the best solution was the use of absolute 

changes with correction, still the result offers very little forecasting value. 

Committees in this case worsened the obtained results. 

 To summarize, the use of RBF networks helped us to increase efficacy of 

artificial neural networks by almost 10%. Results at the level of 70% correctly 

forecasted directions of change are a considerable result and offer much 

forecasting value. Their advantage over the multi layer perceptron is visible 

only when we consider large architectures and the forecasting horizon equal 

or larger than 100. It seems that RBF networks have better ability to analyse 

high frequency data such as financial time series and especially WIG20 index 

quotation. 
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3.6.   Use of GRNN networks in time series forecasting 

General regression neural networks are a specific type of neural networks, 

mostly due their structure and the way they work. GRNN networks have 

a pre-set architecture and are always composed of four layers. First radial –  

hidden layer has as many neurons as the number of training data cases. For 

each of them, one neuron is available which stretches out over his case a “bell” 

of a suitable Gaussian function. Training data cases, which are “copied” to 

neurons of the hidden layer estimate network answers also for testing data. 

Weights, which depend on the distance between point tested and particular 

training points, set once at the beginning are not modified in the training 

process. That is why training of GRNN networks is so fast. Second hidden 

layer has one neuron more than the input layer, so in our case two. One of 

them calculates a weighted sum from the previous layer and the second sums 

up weighted coefficients.  

 
Tab. 9. Efficacy of GRNN networks 

Forecasting 

horizon 

Training data Testing data 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

DIR 

(%) 

DIR- 

increases 

(%) 

DIR- 

decreases 

(%) 

5 49,4 53,6 44,8 60 58,2 62 

10 49,5 53,8 45,3 60,9 59,7 62 

15 49,4 53,8 45,2 60,1 59,1 61,1 

25 50,5 54,8 46,1 57,4 56,2 58,6 

50 52,7 56,8 48,3 57,9 56,3 60 

100 59 63 54,4 64,1 60,9 67,7 

140 64,6 68,2 60,2 68,5 64,7 73,3 

150 66,5 69,7 62,5 67,3 63,3 72,6 

200 69,8 72,8 66 69,5 65,3 75 

 
The network output is a quotient of those values, that is, weighted 

average of first hidden layer outputs. Considering that effects of GRNN 

networks work on a given data set are always the same, it makes no sense to 

use average and committees. Efficacy of this type of networks is presented in 

Tab. 9. 

As we can see in the above table GRNN networks achieve as good results 

as RBF networks and in the case of small architectures they are even better. 

With a maximum forecasting horizon they also reached efficacy of almost 70%. 
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Similarly as in the case of other networks, also here in tests on the training 

data, forecasts of increases were better than the forecasts of decreases. 

However on the testing data, we can see the opposite situation. A strange 

situation or even a phenomenon is a fact that network efficacy on the training 

data was slightly worse than on the testing data. This was especially visible in 

the case of small architectures. 

GRNN networks were also tested in order to check usefulness of series 

transformation but once again the outcome was disappointing and there is not 

point in presenting these results. 

4.   Concluding remarks 

In Section 3 three main types of artificial neural networks were tested: 

a multi layer perceptron (MLP), radial basis function (RBF) and finally 

general regression neural networks (GRNN). 

First experiments dealt with perceptions and small forecasting horizons 

(maximum eleven). Also some training algorithms were tested. The best 

results were obtained with the use of the classical back propagation technique 

supported by the conjugate gradient method. However, all of the results were 

around 50% efficacy of forecasting direction of changes, so these results have 

no practical value. Slightly better efficacy was achieved by enlarging the 

forecasting horizon to maximum 200 historical values. Thanks to this 

operation the perceptron with two hidden layers and over 100 historical 

values used could predict changes of direction in about 60% of cases. When 

committees were used results were slightly over 60%. This level of results 

gives a basis to practical use in financial forecasting.  

Next sections of the paper concerned transformation of the input data. 

The time series under consideration was first pre-processed and then used for 

neural networks training, also those of the perceptron type. However, it 

helped only in the case of a small 6-6-1 architecture, next attempts of 

enlarging the forecasting horizon did not increase the results and the level of 

53% turned out to be maximal. It seems that series transformation led to loss 

of some information important for the forecasting process. 

In the sequel efficacy of RBF networks was tested. In this case we can talk 

about very satisfying results. Efficacy at a very promising level of 70% was 

achieved. This result most definitely offers us practical value. At the same 

time some regularities and correlations regarding the size of radial and input 

layers in this type of networks became more visible.  

The last section concerned research focused on GRNN networks. General 

regression neural networks also achieved a high level of efficacy and similarly 

to RBF networks reached the level of almost 70%. 
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Looking at all of the results presented in this dissertation we come into 

a number of interesting conclusions, which are described in detail in 

particular sections. 
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