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Abstract. This work is motivated by the Černý Conjecture – an old

unsolved problem in the automata theory. We describe the results of

the experiments on synchronizing automata, which have led us to two

interesting results. The first one is that the size of an automaton al-

phabet may play an important role in the issue of synchronization: we

have found a 5-state automaton over a 3-letter alphabet which attains

the upper bound from the Černý Conjecture, while there is no such

automaton (except Černý automaton C5) over a binary alphabet. The

second result emerging from the experiments is a theorem describing the

dependencies between the automaton structure S expressed in terms of

the so-called merging system and the maximal length of all minimal

synchronizing words for automata of type S.

1. Introduction and motivation

We define an automaton as a triple A = (Q,A, δ), where Q is a finite set
of states, A is an alphabet and δ : Q×A → Q is a transition function defining
the action of an automaton. We can interpret the automaton as a directed
labelled graph in which vertices represent states and labelled arrows represent
δ. By A∗ we denote the set of all words over A. A transition function can be
naturally extended on the set 2Q ×A∗:

∀P ⊆ Q,∀a ∈ A,∀w ∈ A∗ δ(P, aw) =
⋃
p∈P

δ(δ(p, a), w). (1)
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In the following we deal only with deterministic, strongly connected and
complete automata. This means that δ is a total function and the following
condition holds:

∀p, q ∈ Q ∃w ∈ A∗ : δ(p,w) = q.

If there is a word w ∈ A∗ such that for all states p, q ∈ Q we have δ(p,w) =
δ(q, w) (or, equivalently, |δ(Q,w)| = 1), then we say that w synchronizes A
and we call A a synchronizing automaton. If there is no shorter word, we call
w the minimal synchronizing word for A. We denote by m(A) the length
of a minimal synchronizing word for A. The set of all synchronizing words
(not necessarily minimal) is denoted by S(A). In the following we use the
simplified notion for δ definition. If |Q| = n, |A| = m and δ(i, j) = qji for
i = 1, 2, ..., n, j = 1, 2, ...,m, then we write δ = (q11 ...q

1
n)...(q

m
1 ...qmn ).

LetA = (Q,A, δ). If |Q| = n, then we say thatA is an n-state automaton.
The famous Černý Conjecture [5] states that if A is an n-state synchronizing
automaton, then m(A) ≤ (n − 1)2. The Conjecture was stated in 1964 and
is still open. Černý proved that for each n there exists an n-state automaton
with a minimal synchronizing word of length exactly (n − 1)2, therefore the
upper bound from the Conjecture can be reached for each n ≥ 1. These
special automata are so-called Černý automata. By Cn we denote an n-state
Černý automaton.

The Černý Conjecture seems to be only a nice combinatorial puzzle, but in
fact the synchronization theory has many important applications in industry
(particulary in so-called ‘part orienters’), bio-computing (the reset problem),
network theory, theory of codes etc. Therefore, the problem is of general
interest.

The synchronization problem can be easily formulated as a pure mathe-
matical problem from the semigroup theory. Notice that each a ∈ A repre-
sents the function fa : Q → Q. All fa’s, together with the composition op-
eration form a semigroup S = (F, ◦) of functions generated by {fa : a ∈ A}.
Finding the minimal synchronizing word in a finite automaton is equivalent
to the problem of finding the minimal-length composition f = fi1 ◦fi2 ◦...◦fik
of elements from S, such that f is a constant map (see [20]).

The reader is referred to [2, 4, 12, 14, 18] for more details on the role of
the synchronization problem and to [8, 14, 19, 22] for polynomial algorithms
for finding the shortest possible synchronizing words. The paper [8] contains
also the NP-completeness proof for the problem of finding the synchronizing
word of a given length. The Černý Conjecture turned to be true for some
special cases (see for example [2, 3, 6, 7, 8, 11, 22]) but in general case it is
still open. The best known upper bound for m(A), where A has n states, is
n3−n

6 [9, 13, 16].

The rest of the paper is organized as follows. In Section 2 we introduce
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the notion of merging states and merging systems for finite automata. In Sec-
tion 3 we explain why we refine the set of analyzed automata only to these of
particular merging types. This is done due to some heuristic reasoning and
also in order to shorten the computing time. Section 4 contains the exper-
imental results and the theorem emerged from the experiments, describing
the dependencies between some merging types and the m(A) values for A
being of that types. In Section 5 we show that the size of an alphabet may
play an important role in the synchronization theory – we give an example of
a 5-state automaton (found by the computer) over a 3-letter alphabet, which
does not contain C5 as its subautomaton and attains the upper bound from
the Černý Conjecture. We also discuss the importance of this result. The
source code of the application, its executable version and the detailed results
of computations can be found in [17].

2. Classification of finite automata

Let A = (Q,A, δ) be an automaton. By δ−1
a (q) we denote the set of states

incoming to q under the letter a: δ−1
a (q) = {p ∈ Q : δ(p, a) = q}.

Definition 1. We say that q ∈ Q is the merging state of degree k for
a ∈ A, if |δ−1

a (q)| = k.

Notice that it is possible for a state to be of degree 0. The set M = δ−1
a (q)

is called the merging system (for a, of q and of degree k) and q is called the
merging state for M . The merging system M , such that |M | > 1, will be
called a proper one.

Let M = δ−1
a (q) for a given q ∈ Q and a ∈ A. Note that two situations

can take place: q ∈ M or q 
∈ M . We will distinguish them: if q ∈ M (resp.
q 
∈ M), then q will be called the internal merging state (resp. external merg-
ing state). Let q be the external merging state and let P = {p1, ..., pk} be its
merging system for a ∈ A. Then q may belong to another merging system
R = {r1, ..., rt} (P ∩R = ∅) for the same letter a but it cannot be the merging
state for R. In other words – if s is a merging state for R, then q 
= s only if
q ∈ R. This property flows directly from the definition of the merging state
and from the automaton determinism: each state, for a given letter, can be
a merging state only for one merging system (see Propositions 1 and 2). In
the following we assume that the merging systems will always be considered
for a fixed letter a ∈ A, but first let us introduce the generalized notion of
a merging type.
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Definition 2. Let A = (Q,A, δ), where |Q| = n, |A| = m, has λi
t

external merging systems of degree t and μi
t internal merging systems of

degree t for ai, i = 1, ..., m. Let the maximal degrees of these merging
systems do not exceed ki. Then such automaton will be described in the
following way:

A ∼ [1λ
1
11

μ1
1∗ ...k1

λ1
k1k1

μ1
k1∗ ]a1 ...[1

λm
1 1

μm
1∗ ...km

λm
kmkm

μm
km∗ ]am .

The above notation will be called a merging type of A.

We will use the following convention: if there are not any proper merging
systems for a given letter or if the merging system is of degree 1, this part of
notation will be omitted. This convention will be used if there is no need to
distinguish external and internal merging systems of degree 1. For example,
we will write [23∗ 32 31∗] instead of [13 12∗ 23∗ 32 31∗]a[112 18∗]b.

The following propositions are true. The first one shows that each state
is involved in exactly one merging system, the second one gives the relation
between a transition function and a merging system in terms of the so-called
letter deficiency [1] (for the sake of simplicity we give here the version of the
merging for one letter only).

Proposition 1. If [1λ11μ1∗ ...kλkkμk∗ ] is the merging type for an n-state
automaton A = (Q,A, δ), then

∑k
i=1 i · (λi + μi) = |Q| = n.

Proposition 2. Let A = (Q,A, δ) be of type [1λ11μ1∗ ...kλkkμk∗ ]a. Then
|Q| − |δ(Q, a)| = ∑k

i=2(i− 1)(λi + μi).

3. Merging states and synchronizing words

In the next section we present the results of computer experiments, which
aim was to compute the longest word among the minimal synchronizing words
for automata of certain merging types. We are interested only in automata
with one merging system, because this is probably the sufficient condition
which should be fulfilled by an n-state automata in order to find the minimal
synchronizing word of the maximal length for a given n. Namely, we strongly
believe in the following conjectures.

Conjecture 1. If A is an n-state synchronizing automaton with k
merging systems S1, S2, ..., Sk (k > 1) of degree greater than 1, then there
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exists an n-state synchronizing automaton B with l < k merging systems
Si1 , Si2 , ..., Sil (being the l-subset of {S1, ..., Sk}), such that m(A) ≤ m(B).

Conjecture 2. If A is an n-state synchronizing automaton with a merg-
ing system of degree k > 2, then there exists a synchronizing n-state automa-
ton B with a merging system of degree l < k such that m(A) ≤ m(B).

According to these two conjectures, the automata considered in the ex-
periment are intuitively “difficult” to synchronize: one of the input letters
merges a small number of states while all other input letters simply permute
the states.

It intuitively seems that the first conjecture should be true. Notice that
there are automata with more than one proper merging systems, for which the
m() value is greater than m(B), where B is an automaton with fewer proper
merging systems. For example, A = ({1, 2, 3, 4, 5}, {a, b, c}, δ) defined by
the transition function δ = (23111)(23114)(21453) has two external merging
systems of degrees 2 and 3 and m(A) = 11, while maxB m(B) = 9, where
each B has only one proper external merging system of degree 3 (see Tab.
1). But it does not refute Conjecture 1: for B we can choose the external
merging system of degree 2. In such class of 5-state automata there exists an
automaton with the minimal synchronizing word of length 15 (see Tab. 1).

Computations support the second conjecture: for 4, 5 and 6-state au-
tomata with one merging system P of degree greater than 2 the computer
found that for all of them, if q∗ is the merging state and R = {q ∈ Q :
δ−1
a (q) = ∅}, then there always exist p ∈ P, r ∈ R such that if we change
the value δ(p, a) from q∗ into r, then the length of a minimal synchroniz-
ing word for the new automaton is greater than the length of such a word
for the initial automaton. This method fails for n = 7, but Conjecture 2
is still true (the other transformation δ must be used). If the above con-
jectures are true, then in order to prove the Černý Conjecture it would be
enough to prove it only for automata with some special, simple merging type:

Proposition 3. If Conjectures 1 and 2 are true, then Černý Conjecture
holds iff m(A) ≤ (n− 1)2 for each A of merging type [2] or [2∗].

Proof. Let Ak be an automaton with k merging systems. Then, according
to Conjecture 1, we can build the sequence of automata Ak, Ak−1, ..., A1

such that Ai has i merging systems and m(Ai) ≥ m(Aj) for i < j. Then,
applying the Conjecture 2 to the automaton A1 = At

1 with one merging
system of degree t we can again build the sequence At

1, ..., A2
1 such that

Ai
1 has one merging system of degree i and m(Ai

1) ≥ m(Aj
1) for i < j. For

a given Ak we have found an automaton A2
1 such that m(A2

1) ≥ m(Ak).
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Tab. 1. Results for certain merging types

Merg. 2 3 4 5 6 7 8 9

2∗ 1,1,1 4,4,4 9,9,9 16,16,16 25,25 36,36 49 64

2 4,4,4 9,9,9 15,16,16 25,25 32,32 44 58

3∗ 1,1,1 4,4,4 9,9,9 16,16,16 25,25 36 49

3 4,4,4 9,9,9 17,17,17 25,25 33 44

4∗ 1,1,1 4,4,4 9,9,9 16,16 25 36

4 4,4,4 10,10,10 18,20 28 37

5∗ 1,1,1 4,4,4 9,9 16 25

5 4,4,4 11,11 21 31

6∗ 1,1,1 4,4,4 9,9 16

6 4,4,4 12,12 22

7∗ 1,1,1 4,4,4 9

7 4,4,4 13

8∗ 1,1,1 4,4,4

8 4,4,4

9∗ 1,1,1

4. Experiments and results

In this section we present the experimental results on the lengths of the
minimal synchronizing words for automata with one merging system, but of
different degrees. The computations were done for 2 ≤ n ≤ 9, 2 ≤ |A| ≤ 4
and for the merging types [2], [2∗], ..., [(n − 1)], [(n − 1)∗], where n is the
number of states and |A| is the alphabet size. For a given n, A and proper
merging system M all n-state automata over A with one proper merging
system M were generated. For each of them the minimal synchronizing word
was computed and, as the result, the length of the longest one was returned.
We denote this value by M(T ), where T is a merging type.

In Tab. 1 the M(T ) values for automata of certain classes are shown.
These classes are defined by the merging types. Each table cell has one, two
or three values. These are the experiment results for different alphabet sizes:
the first (resp. second, third) one is the result for a binary (resp. 3-letter,
4-letter) alphabet. In some cells the values for a 3 or 4-letter alphabet are
missing. This is due to the very long time needed for the computations to be
finished. We discuss below the experimental results, emphasizing the role of
an alphabet size in the synchronization process.

In most cases there is no difference between the values for various alphabet
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sizes. Some irregularities were bolded. Special attention should be paid to
the bolded values 15, 16 for n = 5 and merging type [2]. We will discuss this
case in the next section.

The following propositions are true for n-state automata with arbitrary
alphabets. They establish the ’boundary’ values from the Tab. 1.

Proposition 4. M([n∗]) = 1.

Proposition 5. M([n − 1]) = 4.

Proposition 6. M([(n − 1)∗]) = 4.

Proposition 4 is trivial. We omit the very easy proofs for Propositions 5
and 6.

In Tab. 1 there is also a regularity for merging types [n− 2]. The follow-
ing theorem says that this dependence indeed holds for each n:

Theorem 1. For the family of n-state automata of type [n − 2] over
a binary alphabet the following equality holds:

M([n− 2]) =

{
9 for |Q| = 4

n+ 4 for |Q| ≥ 5.

The proof (very technical) of the nontrivial equality from Theorem 1 is
given in the Appendix. It is a well-known fact ([13], Corollary 3) that for an
n-state synchronizing automaton and for an arbitrary m-subset of Q there
exists a word w of length

(n−m+2
2

)
such that |δ(P,w)| < |P |. Notice, that in

the synchronizing automaton of type [n−2] there exists a such that |Q.a| = 3.
Using the above fact we could bound the length of the minimal synchronizing
word: M([n − 2]) ≤ 1 +

(n−3+2
2

)
+

(n−2+2
n

)
= n2−3n+6

2 . Theorem 1 states,
that this bound can be reduced into a linear one.

There are two important reasons for introducing the notion of a merging
type. They are closely related with the A5 automaton described in the next
section:

• the notion of a merging type allows us to reduce the computation time.
Instead of doing the computations for each automaton and checking the
type for each of them it is enough to fix an automaton type and perform
the computations only for all automata of this type (these automata
can be generated in a simple way) with no need to check the type for
each automaton;

• the notion of a merging type allows us to distinguish the Černý au-
tomata from the non-Černý ones – in fact this allowed us to find the
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important A5 automaton – it’s type is [2∗], while all Černý automata
are of type [2] (see the next section).

5. Automaton A5

In Section 1 it was told that for each n ≥ 2 there exists an n-state Černý
automaton Cn for which the conjectured upper bound (n−1)2 is attained. The
transition function for Cn, assuming Q = {0, 1, ..., n − 1} and A = {a0, a1},
is defined as follows:

δ(q, a) =

⎧⎨
⎩

q + 1 (mod n) for a = a0,
q for a = a1 ∧ q 
= n− 1,
0 for a = a1 ∧ q = n− 1.

We say that an n-state automaton A is C-free if Cn is not a subautomaton
of A. For |A| = 2 it just means that A is not isomorphic with Cn (up to
alphabet relabeling) and for |A| > 2 – that for each a, b ∈ A, A|{a,b} is not
isomorphic with Cn, where A|B denotes A with the alphabet restricted to
B ⊂ A.

It is an interesting fact that for some n there exist C-free automata (over
a binary alphabet) with the minimal synchronizing words of length (n− 1)2,
but it is hard to find the examples. Till now we know only 8 C-free automata
[21].

For a binary alphabet it is easy to find the examples of C-free automata
for n = 2, 3; for n = 4 the example was given by Černý himself in [6]; there
is no such automaton for n = 5; for n = 6 the example was given by J. Kari
[10].

In Fig. 1 a 5-state C-free automaton A5 = (QA5 , AA5 , δA5) over the 3-
letter alphabet is shown. It can be verified that the minimal synchronizing
word for A5 is w = abcacacbcaacabca and |w| = 16, so the upper bound
(n − 1)2 = (5 − 1)2 = 16 is reached. The proof, in the form of the power-
set automaton P(A5) for A5, is shown in Fig. 2 (for the sake of simplicity
only ‘forward’ arrows are presented). States of P(A5) are identified with the
subsets of QA5 and the transition function is defined in a natural way (see
equation (1)). The following lemma is a classical result [6] establishing the
connection between automaton synchronization and the existence of some
paths in its power automaton:
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Lemma 1. A is synchronizing iff there exists a path in P(A) leading from
the state {Q} to the state labelled by a one-element set.

3

2

4

1

5
a

bc

b

a

c

a

b

c

a,b
c

a,b
c

Fig. 1. Automaton A5

Let l be the labelling function for the power automaton’s edges. If
e1, e2, ..., et is the shortest path from Q to some “singleton” state {q}, then
l(e1)l(e2)...l(et) is the minimal synchronizing word for A. In Fig. 2 this path
is bolded.

Let us now define m(n, l) as the maximal value among the lengths of
minimal synchronizing words for n-state C-free automata over an l-letter al-
phabet. Using this notion we have:

Theorem 2. m(3, 2) = 4, m(4, 2) = 9, m(5, 2) = 15, m(6, 2) = 25.

These values were found by the computer in the experiment described in
Section 4. The second and the fourth statement of Theorem can also be
found in [10] and [6], resp. The result from Section 3 can be also formulated
in the terms of m:

Theorem 3. m(5, 3) = 16.

Notice that the computer examined all 5-states automata over a 3-letter
alphabet and each of them had a minimal synchronizing word of length not
exceeding 16, so we can put an equality in Theorem 3 (finding the automaton
A for which m(A) = k allows us to claim only that m(5, 3) ≥ k).

The following relation holds:
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12345 1245 1345 2345 245

234 135 125 145 345

24 15 124 134 235

34 35 14 25 45

12 13 23 4

a b c a

c b

abc

a c

c b c

a

c

b

ac

a

b c a

Fig. 2. Power-set automaton P(A5)

Proposition 7.

l1 < l2 =⇒ m(n, l1) ≤ m(n, l2).

The relation is obvious: one can take an l1-letter automaton A = (Q,A, δ)
with a minimal synchronizing word w of length m(n, l1) and for the new l2−l1
letters put δ(q, ai) = δ(Q,w), i = l1+1, ..., l2. The new automaton over an l2-
letter alphabet possesses the same minimal synchronizing word as the initial
automaton with an l1-letter alphabet.

Theorem 3 and the fact that there is no 5-state C-free automaton over
binary alphabet attaining the upper bound from the Černý Conjecture show
that in some cases increasing the alphabet size results in increasing the
lengths of minimal synchronizing words for C-free automata with the same
number of states. Therefore in some cases the relation from Proposition 7 is
sharp.

It seems to us that the alphabet size plays an important role in the syn-
chronization problem. It is quite possible that for some n-state automaton
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with the large set of states and the alphabet large enough (and, therefore,
with a complex internal structure) its minimal synchronizing word could be
of the length greater than (n − 1)2, which would disprove the Černý Con-
jecture. Therefore, if one would like to try to find a counterexample for the
Černý Conjecture, she/he probably should search it in the class of automata
over large alphabets and with few small merging systems.

Moreover, it seems that the ‘exotic’ examples of automata like A5 have
some interesting properties in synchronization issues. For example, the Kari’s
automaton was used as the counterexample to the generalized version of the
Černý Conjecture proposed by Pin [15, 16]. Their existence, in view of the
alphabet size, could also be an argument against the conjecture.

Till now there has been no research on the role of the alphabet size in the
synchronization problem. We think that further studies in this field should
be done. It can lead us to new facts about synchronization, discover some
wide class of automata fulfilling the Černý Conjecture, reduce the conjecture
to the simpler problem or even prove or disprove it.

6. Proof of Theorem 1

Let A = (Q,A, δ) be of type [n − 2]a and let Q = T ∪ {p, q}, where p is
an external merging state of degree n − 2 (for a) and T is its merging set,
i.e. |T | = n− 2 and δ(T, a) = p. For the sake of simplicity we will write p.a
instead of δ(p, a). Consider the following cases: 1) p.a ∈ T ∧ q.a = q; 2)
p.a = q ∧ q.a ∈ T ; 3) p.a ∈ T ∧ q.a ∈ T . Because of the [n − 2]a type of A
no other possibility of transforming p and q with a is allowed.

All possible cases are shown in Fig. 3. Other cases are excluded because
of the automaton type or the synchronizing property. State T represents
schematically the group of n−2 merging states for p. An arrow leading from
r 
∈ T to T means that r is transformed into one of the n− 2 merging states
for p. By ti we denote the states from T .

Case 1a). To synchronize some states into a two-element set we have
to use the word aba (if p.ab 
= q) or abba (if p.ab = q). We have Q.aba =
{ti, p}, Q.abba = {ti, p}, where ti = p.a (let us denote by w one of these two
words, which has to be used). If w = abba, then in order to synchronize
the automaton it is enough now to use babba, so m(A) = 9. Notice that
this case holds for 4-state automata. Consider now the case with w = aba.
State ti must be transformed into q, while p will be transformed into itself.
To transform ti into q, we have to use v = bi for some i. In the worst case
i = n− 2. We have Q.wv = {p, q}. We need to use abja for some j such that
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T T T

T T T

T T T

T T T

q q q

q q q

q q q

q q q

p p p

p p p

p p p

p p p

1a 1b 1c

1d 2a 2b

2c 2d 2e

3a 3b 3c

b b

b b

b

a

a,b

a

a,b

a

a,b

a,b

a

a

a

a

a a a

b

a a a

a

b

b

b

b

a

a

a

a

a

a,b

a

a,b

a

b

a

b

a

b
ab

a

a

a

a,b

a

a

Fig. 3. All possible cases of Theorem 1

|{p, q}.abja| = 1, that is {p, q}.abj ∈ T . Because {p, q}.a = {q, ti}, states q
and ti must be transformed into some states of T . If ti.b = q, it is enough
to use abba, if q.b = ti, it is enough to use aba. Let us denote this word
(abba or aba) by u. We have n + 4 ≤ |Q.wvu| ≤ n + 5, but notice that
|Q.wvu| = n + 5 holds only when w = abba. This implies m(A) = 9, so this
equality holds only for a 4-state automaton. For automata with |Q| > 4 we
have m(A) ≤ n+ 4.

Case 1b). A minimal synchronizing word must start with a. If q.bb = p,
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then abaaba ∈ S(A) and m(A) ≤ 6. If q.bb ∈ T , then Q.abba = {p, q} if
(p.a).b = p, {p, t} if (p.a).bb = p or p in other cases. If Q.abba = {p, q}, then
(abba)(bba) ∈ S(A) and m(A) ≤ 7. If Q.abba = {p, t}, then (abba)(babba) ∈
S(A) and m(A) ≤ 9 (notice that the very last case holds only for |Q| ≥ 5).

Case 1c). If (p.b).b ∈ T , then Q.abba = {p} or Q.abba = {p, q}. In the
first case we have m(A) ≤ 4, in the second one we have (abba)(bba) ∈ S(A)
and therefore m(A) ≤ 7. If (p.b).b = q, then (p.a).bi ∈ T ∀i, so |Q.ababa| = 1
and m(A) ≤ 5.

Case 1d). A minimal synchronizing word must start with aba. Q.aba =
{p, q} (if (p.a).b = q), {p, ti} (if (p.a).b = p) or p in other cases. In the
first situation we have ababa ∈ S(A) and m(A) ≤ 3. In the second one, for
p.b = p.a an automaton is not a synchronizing one, so the only possibility is
(p.b).b ∈ T or (p.b).b = q. In the first case we have (aba)(bba) ∈ S(A) and
m(A) ≤ 6. In the second one, we have (aba).(bbaba) ∈ S(A) and m(A) ≤ 8.

Case 2a). If q.a = q.b, then for A to be synchronized q.bb must be in T
and then (aba)(aba) ∈ S(A) and m(A) ≤ 6. If q.a 
= q.b, then consider two
subcases: q.ab ∈ T and q.ab = q. In the first one we have Q.(aba)(aba) =
{p, q}.aba = p and therefore m(A) ≤ 6. The second subcase implies q.bb ∈ T
and we have Q.(abba)(abba) = {p, q}.abba = p, so m(A) ≤ 8.

Case 2b). If q.a = q.b, then necessarily q.ab ∈ T and Q.(aba)(abba) = p,
so m(A) ≤ 7. If q.a 
= q.b, we consider two subcases: q.ab = p and q.ab ∈ T .
If q.ab = p, then Q.(abba)(bbba) = {p, q.a}.bbba = p and m(A) ≤ 8. If
q.ab ∈ T , then Q.(aba)(aaba) = {p, q.a}.aaba = p and m(A) ≤ 7.

Case 2c). If (q.a).b ∈ T , then Q.aba = p; if (q.a).b = p then Q.aba =
{p, q} and (aba)(ba) ∈ S(A); if (q.a).b = q, thenQ.aba = {p, t} and (aba)(aba)
∈ S(A). In any case we have m(A) ≤ 6.

Case 2d). If (q.a).b = p, then (p.b).b ∈ T and after applying abbabba
we have (Q.abba).bba = {p, q.a}.bba = p, so m(A) ≤ 7. If (q.a).b ∈ T , then
(Q.aba).ba = p and m(A) ≤ 5.

Case 2e). If q.a = p.b and (q.a).b = q, then an automaton is not a syn-
chronizing one; if (q.a).b ∈ T , then (Q.aba).bba = {p, q}.bba andm(A) ≤ 6. If
q.a 
= p.b and (q.a).b = q, then (p.b).b ∈ T and (Q.abba).bba = {p, q}.bba = p,
so m(A) ≤ 7; if (q.a).b ∈ T , then (Q.aba).bba = {p, q}.bba = p, provided
(p.b).b ∈ T ; if (p.b).b = q, then (Q.aba).bbaba = p and m(A) ≤ 8.

Case 3a). If p.b = b, then ∃t ∈ T : t.b = q ∧ ∃1 ≤ j ≤ n − 2 : p.bj = t,
so in the worst case abn−2a2 ∈ S(A) and m(A) ≤ n+ 1.

Case 3b). Let us consider three subcases. 3b.1) p.ab ∈ T . Then aaba ∈
S(A). 3b.2) p.ab = p. If p.bb ∈ T , then aabba ∈ S(A). If p.bb = q, then
aab4a ∈ S(A) or, if q.b = p.a, aabbaba ∈ S(A). 3b.3) p.ab = q. If p.b = p,
then aabaa ∈ S(A). If p.b ∈ T , we have again four subcases: 3b.3.1) q.ab ∈ T .
Then aababa ∈ S(A). 3b.3.2) q.ab = p, p.b 
∈ {p.a, q.a}. Then aabba ∈ S(A).
3b.3.3) q.ab = p ∧ p.b = p.a. Then q.b 
= q.a and aabbba ∈ S(A). 3b.3.4)
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q.ab = p ∧ p.b = q.a. Then q.b 
= p.a and aabbba ∈ S(A). Putting all cases
together, we have m(A) ≤ 7.

Case 3c). If p.b = q, then necessarily q.b ∈ T . Consider two subcases:
3c.1) p.abb ∈ T . Then aabba ∈ S(A). 3c.2) p.abb = p. Then aabaa ∈ S(A).
Therefore, m(A) ≤ 5.

Putting all these cases together we obtain the following inequality:

M([n− 2]) ≤
{

9 if |Q| = 4
n+ 4 if |Q| ≥ 5.

We will show that these values are reachable. For 4-state automata
it is enough to take an automaton B4 with the transition function δ =
(2131)(1342). We have then m(B4) = 9. For n > 4 we construct the au-
tomaton B>4 with the following transition function:

δB>4 = (2 1 1 ... 1 n)(1 3 4 5 6 ... n 2).

2 3 n-2 n-1

1

n

a
a

a a a

b b b b

bb

b

a

Fig. 4. Automaton B>4

Construction of B4 and B>4 is derived from the analysis of Case 1a). We
will show that m(B>4) = n+ 4. To do this we use the power-set automaton
P(B>4). The shortest path from Q to a ”singleton” state is bolded. The
power-set automaton in Fig. 5 is simplified; we omitted labels on some
edges, for example {1, 2}.bi = {1, 2} for i 
= k(n − 2), k ∈ N. However, it is
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easy to check that the word labelling the bolded path is the shortest possible
one and therefore it is the minimal synchronizing word for B>4.

Q {1, 2, n} {1, 2} {1, n} {2, 3} {1}a ba
bn−2

b

ab a

b a a aa

Fig. 5. Power-set automaton P(B>4)

The length of the shortest path is |a|+ |ba|+ |bn−2|+ |ab|+ |a| = n+ 4.

By giving the examples of B4 and B>4 we have shown that the following
equality holds:

M([n− 2]) =

{
9 if |Q| = 4

n+ 4 if |Q| ≥ 5,

which ends the proof.

Automaton B4, constructed as in Case 1a), is exactly the same as the
automaton given by Černý in [6] as one of the 4-state C-free automata. This is
not only the single 4-state automaton of type [n−2] reaching the upper bound
from the Černý Conjecture, but also the only one 4-state C-free automaton
over a binary alphabet [23].
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