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Abstract. In this paper, we place some left restrictions on derivations

in CD grammar systems with phrase-structure grammars, controlled by

the regular languages. The first restriction requires that every produc-

tion is always applied within the first k nonterminals in every sentential

form, for some k ≥ 1. The second restriction says how many blocks of

non-terminals can be in each sentential form. The third restriction ex-

tends the second restriction and says how many blocks of non-terminals

with limited length can be in each sentential form. We demonstrate

that under these restrictions, the grammar systems generate different

families of languages. Indeed, under the first restriction, these systems

generate only context-free languages. Under the second restriction, even

one-component systems characterize the entire family of recursively enu-

merable languages. In the end, the family of languages generated by

grammar systems under the third restriction is equal to the family of

languages generated by programmed grammars with context-free rules

without ε-rules of finite index.
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1. Introduction

The formal language theory has investigated various left restrictions placed
on derivations in grammars working in a context-free way. In ordinary
context-free grammars, these restrictions have no effect on the generative
power. In terms of regulated context-free grammars, the formal language the-
ory has introduced a broad variety of leftmost derivation restrictions, many of
which change their generative power (see [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14]).
In terms of grammars, working in a context-sensitive way, significantly fewer
left derivation restrictions have been discussed in the language theory. In-
directly, this theory has placed some restrictions on the productions so the
resulting grammars make only derivations in a left way (see [1, 2]). This
theory also directly restricted derivations in the strictly leftmost way so the
rewritten symbols are preceded only by terminals in the sentential form dur-
ing each derivation step (see [11]). In essence, all these restrictions result in
decreasing the generative power to the power of context-free grammars (see
page 198 in [16]). The present paper generalises the discussion of this topic
by investigating regularly controlled cooperating distributed (CD) grammar
systems (see chapter 4 in [16]) whose components are phrase-structure gram-
mars restricted in some new left ways.

More specifically, the first restriction requires that each production is al-
ways applied within the first k nonterminals in every sentential form, for some
k ≥ 1. The second restriction says how many blocks of non-terminals can be
in each sentential form. The third restriction extends the second restriction
and says how many blocks of non-terminals with limited length can be in
each sentential form. As already stated, we investigate these restrictions in
terms of CD grammar systems which are controlled by regular languages and
whose components are phrase-structure grammars. Without these restric-
tions, these systems generate the family of recursively enumerable languages.
We demonstrate that under these restrictions, the grammar systems gener-
ate different families of languages. Indeed, under the first restriction, these
systems generate only the family of context-free languages. Under the sec-
ond restriction, even one-component versions of these systems generate the
entire family of recursively enumerable languages. In the end, the family
of languages generated by grammars systems under the third restriction is
equal to the family of languages generated by programmed grammars with
context-free rules without ε-rules of finite index.
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2. Preliminaries

In this paper, we assume that the reader is familiar with the formal
language theory (see [15]). For a set, Q, |Q| denotes the cardinality of Q. For
an alphabet, V , V ∗ represents the free monoid generated by V . The identity
of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically, V + is thus the free
semigroup generated by V . For w ∈ V ∗, |w| denotes the length of w, wR

denotes the mirror image of w, alph(w) = {a1, . . . , an ∈ V : w = a1 . . . an},
sub(w) denotes the set of all substrings of w, and suf(w) denotes the set
of all suffixes of w. For Λ ⊆ V ∗, let suf(Λ) = {w ∈ suf(w′) : w′ ∈ Λ}.
Analogously for a set of prefixes, we define pref(w) and pref(Λ). ForW ⊆ V ,
occur(w,W ) denotes the number of occurrences of symbols from W in w.

A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is an alphabet, q0 ∈ Q is the initial state, δ is a finite set
of rules of the form qa → p, where p, q ∈ Q and a ∈ Σ ∪ {ε}, F ⊆ Q is
a set of final states. A configuration of M is any word from QΣ∗. For any
configuration qay, where q ∈ Q, y ∈ Σ∗, a ∈ Σ ∪ {ε} and any qa → p ∈ δ,
M makes a move from configuration qay to configuration py according to
qa → p, written as qay ⇒ py [qa → p], or, simply, qay ⇒ py. If x, y ∈ QΣ∗

and m > 0, then x ⇒m y if there exists a sequence x0 ⇒ x1 ⇒ · · · ⇒ xm,
where x0 = x and xm = y. Then, we say x⇒+ y if there exists m > 0 such
that x ⇒m y, and x ⇒∗ y if x = y or x ⇒+ y. If w ∈ Σ∗ and q0w ⇒∗ f ,
where f ∈ F , then w is accepted by M , and q0w ⇒∗ f is an acceptance of w
in M . The language of M is defined as L(M) = {w ∈ Σ∗ : q0w ⇒∗ f is an
acceptance of w}. Let REG denote the family of regular languages.

A pushdown automaton is a septuple M = (Q,Σ,Ω, δ, q0, Z0, F ), where
Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is the initial state, Ω is
a pushdown alphabet, δ is a finite set of rules of the form Zqa→ γp, where
p, q ∈ Q, Z ∈ Ω, a ∈ Σ ∪ {ε}, γ ∈ Ω∗, F ⊆ Q is a set of final states, and
Z0 ∈ Ω is the initial pushdown symbol. A configuration ofM is any word from
Ω∗QΣ∗. For any configuration xAqay, where x ∈ Ω∗, y ∈ Σ∗, q ∈ Q, and any
Aqa→ γp ∈ δ, M makes a move from configuration xAqay to configuration
xγpy according to Aqa → γp, written as xAqay ⇒ xγpy [Aqa → γp], or,
simply, xAqay ⇒ xγpy. If x, y ∈ Ω∗QΣ∗ and m > 0, then x ⇒m y if there
exists a sequence x0 ⇒ x1 ⇒ · · · ⇒ xm, where x0 = x and xm = y. Then,
we say x⇒+ y if there exists m > 0 such that x⇒m y, and x⇒∗ y if x = y
or x ⇒+ y. If w ∈ Σ∗ and Z0q0w ⇒∗ f , where f ∈ F , then w is accepted
by M , and Z0q0w ⇒∗ f is an acceptance of w in M . The language of M is
defined as L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f is an acceptance of w}. Let CF
denote the family of context-free languages and CF − ε denote the family of
languages generated by context-free grammars without ε-rules.
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A phrase structure grammar is a quadruple G = (N,T, S, P ), where N
and T are alphabets such that N ∩ T = ∅, S ∈ N , and P is a finite set
of productions of the form α → β, where α ∈ N+ and β ∈ (N ∪ T )∗. If
α→ β ∈ P , u = x0αx1, and v = x0βx1, where x0, x1 ∈ V ∗, then u⇒ v [α→
β] in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗ denote the transitive closure of
⇒ and the transitive-reflexive closure of ⇒, respectively. The language of G
is denoted by L(G) and defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}. Let RE
denote the family of recursively enumerable languages.

A programmed grammar (see [6]) is a septuple G = (N,T, S, P,Λ, σ, φ),
where N and T are alphabets such that N ∩ T = ∅, S ∈ N , P is a finite
set of productions of the form α → β and Λ is a finite s et of labels for
the productions in P . Λ can be interpreted as a function which outputs
a production when being given a label. σ and φ are functions from Λ into
the 2Λ. For (x, r1), (y, r2) ∈ V ∗×Λ and Λ(r1) = (α→ β), we write (x, r1)⇒
(y, r2) iff either x = x1αx2, y = x1βx2 and r2 ∈ σ(r1), or x = y, and rule
α → β is not applicable to x, and r2 ∈ φ(r1). Let ⇒ + and ⇒ ∗ denote the
transitive closure of⇒ and the transitive-reflexive closure of⇒, respectively.
The language of G is denoted by L(G) and defined as L(G) = {w ∈ T ∗ :
(S, r1)⇒∗ (w, r2), for some r1, r2 ∈ Λ}. Let P(CF, ac) denote the family of
languages generated by programmed grammars containing only context-free
rules. If φ(r) = ∅ for each r ∈ Λ, we are led to the family P(CF).

Let G be a programmed grammar. For a derivation D : S= w1 ⇒ w2

⇒ . . . ⇒ wn = w, w ∈ T ∗, of G, ind(D,G) = max{|wi|N : 1 ≤ i ≤ n},
and for w ∈ T ∗, ind(w,G) = min{ind(D,G) : D is a derivation of w in G}.
The index of G is ind(G) = sup{ind(w,G) : w ∈ L(G)}. For a language L
in the family P(X) of languages generated by programmed grammars with
productions of type X, indX(L) = inf{ind(G) : L(G) = L and G has
productions of type X}. For a family P(X), Pn(X) = {L : L ∈ P(X) and
indX(L) ≤ n for n ≥ 1} (see [6]).

3. Definitions

Now, we define the three derivation restrictions discussed in this paper.
Let G = (N,T, S, P ) be a phrase structure grammar. Let V = N ∪ T be the
total alphabet of G.
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3.1. First restriction

Let l ≥ 1. If there is α → β ∈ P , u = x0αx1, and v = x0βx1, where
x0 ∈ T ∗N∗, x1 ∈ V ∗, and occur(x0α,N) ≤ l, then u l�⇒ v [α → β] in G or,
simply, u l�⇒ v. Let l�⇒k denote the k-fold product of l�⇒, where k ≥ 0.
Furthermore, let l�⇒∗ denote the transitive-reflexive closure of l�⇒.

3.2. Second and third restrictions

Let m,h ≥ 1. W (m) denotes the set of all strings x ∈ V ∗ satisfying 1
given next. W (m,h) denotes the set of all strings x ∈ V ∗ satisfying 1 and 2.

1. x ∈ (T ∗N∗)mT ∗,

2. (y ∈ sub(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

Let u ∈ V ∗N+V ∗, v ∈ V ∗ and u ⇒ v. u h
m◦⇒ v if u, v ∈ W (m,h), and

u m◦⇒ v if u, v ∈ W (m). Let h
m◦⇒k and m◦⇒k denote the k-fold product of

h
m◦⇒ and m◦⇒, respectively, where k ≥ 0. Furthermore, let h

m◦⇒∗ and m◦⇒∗
denote the transitive-reflexive closure of h

m◦⇒ and m◦⇒, respectively.

3.3. Cooperating distributed grammar system

A cooperating distributed grammar system (a CD grammar system for
short) is an (n+ 3)-tuple Γ = (N,T, S, P1, . . . , Pn), where N,T are alphabets
such that N ∩ T = ∅, V = N ∪ T , S ∈ N , and Gi = (N,T, S, Pi), 1 ≤ i ≤ n,
is a phrase structure grammar.

Let u ∈ V ∗N+V ∗, v ∈ V ∗, k ≥ 0. Then, we write u l�⇒k
Pi
v, u h

m◦⇒k
Pi

v, and u m◦⇒k
Pi

v to denote that u l�⇒k v, u h
m◦⇒k v, and u m◦⇒k v,

respectively, was performed by Pi. Analogously, we write u l�⇒∗Pi
v, u h

m◦⇒∗Pi

v, u m◦⇒∗Pi
v, u l�⇒

+
Pi
v, u h

m◦⇒+
Pi
v, and u m◦⇒+

Pi
v.

Moreover, we write u l�⇒t
Pi
v if u l�⇒

+
Pi
v and there is no w such that

v l�⇒Pi
w. Analogously, we write u h

m◦⇒t
Pi
v and u m◦⇒t

Pi
v.

For a CD grammar system Γ = (N,T, S, P1, . . . , Pn) and a controll lan-
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guage L, we set

lLL(Γ) = {w ∈ T ∗ : S l�⇒t
Pi1

w1 l�⇒t
Pi2

. . . l�⇒t
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L}
NLL(Γ,m, h) = {w ∈ T ∗ : S h

m◦⇒t
Pi1

w1
h
m◦⇒t

Pi2
. . . hm◦⇒t

Pip
wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L}
NLL(Γ,m) = {w ∈ T ∗ : S m◦⇒t

Pi1
w1 m◦⇒t

Pi2
. . . m◦⇒t

Pip
wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L}.

Let GSs denote the family of all CD grammar systems. Let l,m, h ≥ 1.
Define the following language families:

lGS
REG = {lLL(Γ) : Γ ∈ GSs, L ∈ REG},

NGS
REG(m,h) = {NLL(Γ,m, h) : Γ ∈ GSs, L ∈ REG},

NGS
REG(m) = {NLL(Γ,m) : Γ ∈ GSs, L ∈ REG}.

4. Results

This section proves the main results of this paper:

1. CF = lGS
REG,

2. RE = NGS
REG(1),

3. Pm(CF− ε) = NGS
REG(m,h).

First, we show that for any language L from lGS
REG there exists a push-

down automaton M , such that L = L(M) and for every pushdown automaton
M ′ language L(M ′) is in lGS

REG. That is CF = lGS
REG.

Lemma 1. For every CD grammar system Γ = (N,T, S, P1, . . . , Pn),
every finite automaton M̄ and every l ≥ 1, there is a pushdown automaton
M , such that L(M) = lLL(M̄)(Γ).

Proof of Lemma 1. Let Γ = (N,T, S, P1, . . . , Pn), M̄ = (Q̄, Σ̄, δ̄, s̄0, F̄ ),
l ≥ 1 and Nleft(P ) = {α |α → β ∈ P}. Consider the following pushdown
automaton M = ({s0, f} ∪ {[γ, s, s̄, i] : γ ∈ N∗, |γ| ≤ l, s ∈ {q, r, e}, s̄ ∈
Q̄, i ∈ {1, . . . , n}}, T, T ∪ N ∪ {Z}, δ, s0, Z, {f}), where Z 6∈ T ∪ N and δ
contains rules of the following forms:
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1. s0 → [S, q, s̄0, i] i ∈ {1, . . . , n}
2. [γ, q, s, i]→ (γ′)R[ε, r, s, i] if γ ∈ N∗, |γ| ≤ l s.t. γ l�⇒1

Pi
γ′

3. a[ε, r, s, i]a→ [ε, r, s, i] i ∈ {1, . . . , n}
4. Z[ε, r, s, i]→ f if si→ s′ ∈ δ̄ for some s′ ∈ F̄
5. A[A1 . . . Ao, r, s, i]→ [A1 . . . AoA, r, s, i] if A ∈ N, o < l
6. [A1 . . . Al, r, s, i]→ [A1 . . . Al, e, s, i] i ∈ {1, . . . , n}
7. a[A1 . . . Ao, r, s, i]→ a[A1 . . . Ao, e, s, i] if o < l, a ∈ T
8. Z[A1 . . . Ao, r, s, i]→ Z[A1 . . . Ao, e, s, i] if o < l
9. [γ, e, s, i]→ [γ, q, s′, i′] if sub(γ) ∩Nleft(Pi) = ∅,

si→ s′ ∈ δ̄
i′ ∈ {1, . . . , n}

10. [γ, e, s, i]→ [γ, q, s, i] if sub(γ) ∩Nleft(Pi) 6= ∅

We prove that L(M) = lL
L(M̄)
f (Γ).

(⊆:) First, we prove the following claim.

Claim A. If ZδR[γ, q, s, i1]w ⇒∗ f in M , then γδ l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp = w, p ≥ 0 in Γ and i1 . . . ip ∈ suf(L(M̄)).

Proof of Claim A. By induction on the number of rules constructed
in 2 used in a sequence of moves.

Basis: Only one rule constructed in 2 is used. Then,

ZδR[γ, q, s, i0]w ⇒ Z(γ′δ)R[ε, r, s, i0]w ⇒|γ′δ| Z[ε, r, s, i0]⇒ f,

where γ = γ0αγ1, γ′ = γ0βγ1, α → β ∈ Pi0 , γ ∈ N+, γ′δ ∈ T ∗. Therefore,
γ0 = γ1 = ε, γ′δ = w. Then,

γδ l�⇒Pi0
w.

By a rule constructed in 4 i0 ∈ suf(L(M̄)) and the basis holds.

Induction hypothesis: Suppose that the claim holds for all sequences of moves
containing no more than j rules constructed in 2.

Induction step: Consider a sequence of moves containing j + 1 rules con-
structed in 2:
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ZδR[γ, q, s, i0]w

⇒ Z(γ′δ)R[ε, r, s, i0]w (by a prod. constructed in 2)

⇒∗ Z(δ′)R[ε, r, s, i0]w′ (by prod. constructed in 3)

⇒∗ Z(δ′′)R[γ′′, r, s, i0]w′ (by prod. constructed in 5)

⇒ Z(δ′′)R[γ′′, e, s, i0]w′ (by a prod. constructed in 6, 7 or 8)

⇒ Z(δ′′)R[γ′′, q, s′, i1]w′ (by a prod. constructed in 9 or 10)
⇒∗ f

where γ = γ0αγ1, γ′ = γ0βγ1, α → β ∈ Pi0 , δ′ ∈ NV ∗ ∪ {ε}, v ∈ T ∗,
γ′δ = vδ′, vw′ = w, δ′ = γ′′δ′′, either si → s′ or s = s′, and one of the
following holds:

• |γ′′| = l, or

• |γ′′| < l and δ′′ ∈ TV ∗ ∪ {ε}.

Then, by the rule α→ β,

γ0αγ1δ l�⇒Pi0
γ0βγ1δ,

where |γ0αγ1| ≤ l, γ0βγ1δ = vδ′ = vγ′′δ′′ and, by the induction hypothesis,

vγ′′δ′′ l�⇒t
Pi1

vw1 l�⇒t
Pi2

vw2 . . . l�⇒t
Pip

vwp = vw and

i1 . . . ip ∈ suf(L(M̄)),

where p ≥ 0.
If a rule constructed in 9 was used, γ0αγ1δ l�⇒t

Pi0
γ0βγ1δ is a t-mode

derivation, i0i1i2 . . . ip ∈ suf(L(M̄)) and the claim holds.
If a rule constructed in 10 was used, i0 = i1, γ0αγ1δ l�⇒t

Pi1
vw1, i1i2 . . . ip ∈

suf(L(M̄)) and the claim holds. ut

Let Zs0w ⇒ Z[S, q, s̄0, i1]w, by a rule constructed in 1. By the previous
claim, Z[S, q, s̄0, i1]w ⇒∗ f implies S l�⇒t

Pi1
w1 l�⇒t

Pi2
w2 . . . l�⇒t

Pip
wp =

w, p ≥ 0 in Γ and i1 . . . ip ∈ suf(L(M̄)). ut

(⊇:) First, we prove the following claim.

Claim B. If τ0x0 l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp = w in Γ, where

p ≥ 0, τ0 ∈ N+, x0 ∈ TV ∗ ∪ {ε}, wi ∈ V ∗, i ∈ {1, . . . , p − 1}, wp ∈ T ∗ and

i1 . . . ip ∈ suf(L(M̄)), then Z(τ2
0x0)

R
[τ1

0 , q, s, i1]w ⇒∗ f , for some s ∈ Q̄,
where τ0 = τ1

0 τ
2
0 , |τ0| ≤ l implies τ1

0 = τ0, and |τ0| > l implies |τ1
0 | = l.

Proof of Claim B. By induction on the length of derivations.
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Basis: Let τ0x0 l�⇒Pi0
τ ′0x0 = w, where τ1

0 = γ0αγ1, τ ′0 = γ0βγ1τ
2
0 , α→ β ∈

Pi0 , τ ′0x0 ∈ lL
L(M̄)
f (Γ). Therefore, γ0 = γ1 = τ2

0 = ε and for some s ∈ Q̄,

si0 → s′ ∈ δ̄, where s′ ∈ F̄ . M simulates this derivation step in the following
way:

Z(τ2
0x0)

R
[τ1

0 , q, s, i0]w

⇒ Z(τ ′0x0)R[ε, r, s, i0]w (by a prod. constructed in 2)

⇒|τ ′0x0| Z[ε, r, s, i0] (by prod. constructed in 3)
⇒ f (by a prod. constructed in 4).

Therefore, the basis holds.

Induction hypothesis: Suppose that the claim holds for all derivations of
length j or less.

Induction step: Consider a derivation of length j + 1:

τ0x0 l�⇒Pi0
τ ′0x0 = v1τ1x1 l�⇒t

Pi1
v1w1 l�⇒t

Pi2
w2 . . . l�⇒t

Pip
wp = w = v1w

′,

where p ≥ 0, v1 ∈ T ∗, τ0, τ1 ∈ N+, τ ′0 ∈ V ∗, x0, x1 ∈ TV ∗ ∪ {ε}, wi ∈ V ∗, i ∈
{1, . . . , p− 1}, wp, w′ ∈ T ∗. Then, M simulates this derivation as follows:

Z(τ2
0x0)

R
[τ1

0 , q, s, i0]w

⇒ Z(τ ′0x0)R[ε, r, s, i0]w (by a prod. constructed in 2)

= Z(v1τ1x1)R[ε, r, s, i0]v1w
′

⇒|v1| Z(τ1x1)R[ε, r, s, i0]w′ (by prod. constructed in 3)

⇒|τ11 | Z(τ2
1x1)

R
[τ1

1 , r, s, i0]w′ (by prod. constructed in 5)

⇒ Z(τ2
1x1)

R
[τ1

1 , e, s, i0]w′ (by a prod. constructed in 6, 7, or 8)

⇒ Z(τ2
1x1)

R
[τ1

1 , q, s
′, i1]w′ (by a prod. constructed in 9 or 10)

⇒∗ f (by the induction hypothesis)

If τ0x0 l�⇒Pi0
τ ′0x0 is a t-mode derivation, a rule of type 9 is used during

the simulation. Otherwise, a rule of type 10 is used (and therefore i0 = i1).
Hence, the claim holds. ut

Let S l�⇒Pi0
uτ0x0 l�⇒t

Pi1
. . . l�⇒t

Pip
uw, where p ≥ 0, u,w ∈ T ∗,

τ0 ∈ N+ ∪ {ε}, x0 ∈ TV ∗ ∪ {ε} and i1 . . . ip ∈ L(M̄). If uτ0x0 6∈ T ∗, M
simulates this derivation in the following way:
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Zs0uw
⇒ Z[S, q, s, i0] (by a prod. constructed in 1)

⇒ Z(uτ0x0)R[ε, r, s, i0]uw (by a prod. constructed in 2)

⇒|u| Z(τ0x0)R[ε, r, s, i0]w (by prod. constructed in 3)

⇒|τ10 | Z(τ2
0x0)

R
[τ1

0 , r, s, i0]w (by prod. constructed in 5)

⇒ Z(τ2
0x0)

R
[τ1

0 , e, s, i0]w (by a prod. constructed in 6, 7, or 8)

⇒ Z(τ2
0x0)

R
[τ1

0 , q, s
′, i1]w (by a prod. constructed in 9 or 10)

⇒∗ f (by the previous claim)

If uτ0x0 ∈ T ∗, M simulates this derivation in the following way:

Zs0uw
⇒ Z[S, q, s, i0] (by a prod. constructed in 1)

⇒ Z(uτ0x0)R[ε, r, s, i0]uw (by a prod. constructed in 2)

⇒|uτ0x0| Z[ε, r, s, i0]w (by prod. constructed in 3)
⇒ f (by a prod. constructed in 4)

From the previous claims, it follows that the lemma holds. ut

By the previous lemma, we have the following result.

Theorem 1. Let l be a positive integer. Then, CF = lGS
REG.

Proof of Theorem 1. One inclusion is clear, the other follows from
Lemma 1. ut

The Theorem 1 says, that grammar systems under the first restriction
are much weaker than grammar systems without this restriction. Now, we
prove that the second restriction in this paper has no efect on the generative
power.

Theorem 2. RE = NGS
REG(1).

Proof of Theorem 2. It is well-known (see [8]) that any recursively
enumerable language L is generated by a grammar G in the Geffert normal
form, i.e., by a grammar of the form

G = ({S,A,B,C}, T, P ∪ {ABC → ε}, S),

where P contains context-free productions of the form

S → uSa
S → uSv
S → uv,
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where u ∈ {A,AB}∗, v ∈ {BC,C}∗, and a ∈ T . In addition, any terminal
derivation in G is of the form S ⇒ ∗w1w2w by productions from P , where
w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, w ∈ T ∗, and w1w2w ⇒ ∗w is derived by
ABC → ε.

Clearly, G is a CD grammar system with only one component. Set the
control language to be {1}∗. Then, the theorem holds. ut

The last Theorem says that generative power of grammar systems under
the third restriction is less than generative power of grammar systems without
any restriction.

Proposition. For any m, h ≥ 1, Pm(CF− ε) = NGS
REG(m,h).

Proof of Proposition. All strings in the derivation contain no more
than m blocks of nonterminals and these blocks are also of length no more
than h. Hence, it is possible to represent each possible block by a single
nonterminal and create an equivalent grammar system, which contains only
context-free productions. From this and from Theorem 7.10 in [6], the propo-
sition holds.
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