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Abstract. The aim of this study was to describe some parametric estimation methods
for the Weibull, gamma and Gompertz distributions and to identify among them esti-
mators the most efficient in practical applications. Techniques which are considered as
traditional methods, like the maximum likelihood (MLE) and the method of moments
(MM) estimation but also some newer and less commonly used techniques like the L-
moment estimator (LME), least-square estimator (LSE), generalized spacing estimator
(GSE) and percentile estimator (PE) were presented. The application of each method
was demonstrated in a simulation study using data sets generated for different distribu-
tion parameters and sample sizes. Discussed estimators were compared in terms of their
efficiency and bias measured by mean-square errors (MSE) based on the simulations
results.
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1. Introduction

The two-parameter Weibull, gamma and Gompertz probability distributions have many use-
ful applications in areas of the technology and natural sciences (especially in failure and
survival analysis). Therefore the proper estimation of their parameters is a very important
and wide discussed problem.

The maximum likelihood (MLE) and the method of moments (MM) estimation are
nowadays traditional statistical methods. The MLE is the most common-used estimator
for its efficiency and good theoretical properties, while the method of moments is easily
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applicable and often gives explicit algebraic estimates for a considered probability distribu-
tion. However, in some special cases, these traditional estimators are ineffective in terms of
statistical or computation properties. In particular, for some (e.g. the Weibull and the Gom-
pertz) distributions even moment estimators do not provide explicit estimates of unknown
parameters and require application of the numerical methods.

Therefore, other methods have been proposed in statistical literature as an alternative to
these traditional techniques. Among them methods such as the L-moment estimator (LME),
least-square estimator (LSE), generalized spacing estimator (GSE) and percentile estimator
(PE) are often suggested. Generally, these methods do not present better theoretical proper-
ties than the well-known MLE and MM methods, but in special cases they could be a better
approximation of unknown parameters.

The aim of this study was to describe some parametric estimation methods for the
Weibull, gamma and Gompertz distributions and to identify in a simulation study the most
efficient estimator among them. The application of each method was demonstrated for dis-
cussed probability distributions using data sets generated by the R statistical software for
different values of distribution parameters and data sample sizes. The estimators were com-
pared in terms of their efficiency and bias measured by the mean-square error (MSE).

2. The Weibull, gamma and Gompertz distribution

The Weibull, gamma and Gompertz distributions are parametric distributions commonly
used in practical applications for their flexibility and good fit to survival and failure data.
These two-parameter distributions have increasing, decreasing or stable failure rates de-
pending on the shape parameter value. On the other hand the scale parameter determines
a spread of the distribution. Density functions f = f(x, λ, k) for the Weibull, gamma and
Gompertz distributions are given as in Tab. 1.

Tab. 1. Density functions of the Weibull, gamma and Gompertz distributions

Distribution f(x, λ, k)

Weibull k
λ ·
(
x
λ

)k−1 · e−( xλ )
k

, x > 0, λ > 0, k > 0

gamma xk−1 · e−
x
λ

Γ(k)·λk , x > 0, λ > 0, k > 0

Gompertz λekx · exp
(
−λk ·

(
ekx − 1

))
, x > 0, λ > 0, k > 0

In the above expressions and the rest of this paper λ and k denote the scale of the shape
distribution parameters, respectively.
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3. Description of the estimators

In this section I give a brief description of the parameter estimators used in the study. In
the next section I present simulation results and comparison of estimators for different val-
ues of the distribution parameters and data sample sizes. Concluding remarks are given in
Section 5.

Most of the estimation methods considered in this study do not provide explicit esti-
mates of the distribution parameters and their application requires numerical calculations.
In such cases the Newton-Raphson’s (for univariate equations) or the Nelder-Mead’s (for
multivariate equations) methods were applied in the study.

3.1. The maximum likelihood estimation method

The maximum likelihood estimation method had been used in special cases by Gauss in
1812 but a full description of properties and a presentation of its application were performed
100 years later by Ronald Fisher [1]. Nowadays, the maximum likelihood method is the
most popular estimation technique, mainly for its good theoretical properties. See other
literature [5, 12, 18, 20] for the existence and the uniqueness of the maximum likelihood
estimates for discussed distributions.

The idea of the maximum likelihood method is based on the assumption that observed
data are the most likely outcome of a random experiment in respect to the considered prob-
ability distribution. In the discussed method the key role plays the likelihood function spec-
ified as the probability of observed data depending on the values of distribution parameters.
In case of the Weibull, gamma and the Gompertz distributions the likelihood function L is
given as in Tab. 2.

Tab. 2. The likelihood functions L for the Weibull, gamma and Gompertz distributions

Distribution L (k, λ , x1, . . . , xn)

Weibull
(
k
λ

)n∏n
i=1

(
xi
λ

)k−1 · e
−

n∑
i=1

( xiλ )
k

gamma 1
Γ(k)n·λn

∏n
i=1

(
xi
λ

)k−1 · e
−

n∑
i=1

xi
λ

Gompertz λn · exp

(
k

n∑
i=1

xi − λ
k ·
(

n∑
i=1

ekxi − n
))

The maximum likelihood estimators of the distribution parameters are found by max-
imizing the likelihood functions L (actually their logarithms) with respect to parameter
values. Maximum likelihood estimates of the shape and scale parameters for the Weibull,
gamma and Gompertz distributions are therefore the solutions of equations (which are ob-
tained by equating partial derivatives of ln(L) to zero) presented in Tab. 3.
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Tab. 3. Equations specifying the MLE estimates for the Weibull, gamma and Gompertz
distributions

Distribution MLE estimates

Weibull n ·
n∑
i=1

xk̂i · ln(xi) =
n∑
i=1

xk̂i ·
(
n
k̂

+
n∑
i=1

ln(xi)

)
, λ̂ = k̂

√
1
n

n∑
i=1

xk̂i

gamma x̄ = k̂ · n
√

Πn
i=1xi · exp

(
− ·Γ

′(k̂)
Γ(k̂)

)
, λ̂ = x̄

k̂

Gompertz
(

n∑
i=1

ek̂xi − n
)
·
(
k̂x̄+ 1

)
= k̂ ·

n∑
i=1

xie
k̂xi , λ̂ = nk̂

n∑
i=1

ek̂xi−n

Discussed problems have no explicit algebraic solutions, therefore numerical calcu-
lations are required. In the simulation study for the maximum likelihood estimation the
Newton-Raphson’s method was applied.

3.2. The method of moments estimation

The method of moments estimation is based on a simple observation that for a large enough
data sample drawn from a given probability distribution empirical and theoretical moments
have asymptotically equal values. In mathematical consideration this remark is known as
the strong law of large numbers.

In Tab. 4 the selected theoretical moments of the Weibull, gamma and Gompertz distri-
butions are given,

Tab. 4. Theoretical moments of the Weibull, gamma and Gompertz distributions

Distribution Theoretical moments

Weibull µ1 = λ · Γ
(
1 + 1

k

)
, µ2 = λ2 · Γ

(
1 + 2

k

)
gamma µ1 = kλ, σ2

2 = kλ2

Gompertz µ1 = 1
k · e

λ
k · Γ

(
0, λk

)
, µ2 = e

λ
k · 1

k2 ·
∫∞
λ
k

(
lnu− ln

(
λ
k

))2 · e−udu
where µk denotes raw k-moments and σ2

2 the variance of the probability distribution. Start-
ing from equalities of specified theoretical moments and their empirical analogues (respec-
tively mk and s2

2) we obtain estimates of parameters for the Weibull, gamma and Gompertz
distributions. The results of the calculations are presented in Tab. 5.

The method of moments estimation provides an explicit algebraic solution only for the
gamma distribution. In the rest of the analyzed distributions, similarly as in the situation
discussed for the MLE, estimation of unknown parameters requires application of numerical
calculations.
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Tab. 5. The MM etimates for the Weibull, gamma and Gompertz distributions

Distribution MM estimates

Weibull
Γ(1+ 2

k̂
)

Γ2(1+ 1
k̂
)

=
(s22+m2

1)
m2

1
, λ̂ = m1

Γ(1+ 1
k̂
)

gamma λ̂ =
s22
m1
, k̂ =

m2
1

s22

Gompertz if x is a solution of m2

m1
2 · ex · Γ2 (0, x) =

∫∞
x
e−u (lnu− lnx)

2
du, then

k̂ = ex · Γ(0,x)
m1

, λ̂ = k̂ · x

3.3. The L-moments method estimation

The L-moments method was suggested in 1990 by British mathematician J. Hosking [10]
and it is one of the series of estimation techniques based on order statistics.

Let X be a random variable and X1:n, . . . , Xn:n be the order statistics of a random
sample drawn from a continuous distribution of X . We consider one of the characteristics
of variable X called the L-moments and define it as:

λr =
1

r
·
r−1∑
k=0

(−1)k
(
r − 1

k

)
EXr−k:r, r = 1, . . . , n.

Particularly, for continuous probability distributions there are:

λ1 = EX, λ2 =

∫
R
x · (2f(x)F (x)− f(x)) dx.

L-moments are the coefficients of the shifted Legendre series determined for the quantile
function of X . The shifted Legendre polynomials are orthogonal on interval (0, 1) with
a constant weight function. Hosking proved [10] that L-moments of a real-valued random
variable X exist if and only if X has a finite mean. In that case the distribution of X is
characterized by a set of its L-moments. The natural definition of the empirical L-moments
for the observed data x1, . . . , xn is as follows:

lr =
1(
n
r

) · ∑
16i16...6ir6n

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
xir−k:n, r = 1, . . . , n.

Comparing theoretical and sample L-moments for the Weibull, gamma and Gompertz
distributions we get estimates of k and λ parameters given as solutions of equations pre-
sented in Tab. 6.

See [10] for more details about theoretical properties and examples of the L-moments
applications in practice.



72

Tab. 6. The equations specifying the LME estimates for the Weibull, gamma and Gompertz
distributions

Distribution LME estimates

Weibull k̂ = − ln(2)

ln
(

1− l2l1
) , λ̂ = l1

Γ(1+ 1
k̂
)

gamma l2
l1

= 1√
π

Γ(k̂+ 1
2 )

k̂Γ(k̂)
, λ̂ = l1

k̂

Gompertz if x is a solution of l1
l1−l2 = γ(0,x)

ex·γ(0,2x) , then k̂ = ex·γ(0,x)
l1

, λ̂ = x · k̂

3.4. The least-square estimation method

Suppose that X1, . . . , Xn is a random sample with continuous distribution function Fθ and
X1:n, . . . , Xn:n is the order statistics. Theoretical mean values of random variables obtained
by transformation of order statistics by distribution function Fθ are following:

E (Fθ (Xi:n)) =
i

n+ 1
, i = 1, . . . , n.

The least-square estimation (LSE) method is based on a fact that the empirical and the-
oretical mean values of the variables Fθ(Xi:n) have for a large enough sample size asymp-
totically equal values (for each i = 1, . . . , n). In the LSE method the distance between
that values is determined by the Euclidean measure in Rn. The initially considered estima-
tion problem could be therefore transformed to the minimization problem of the following
expression:

n∑
i=1

(
Fθ(xi:n)− i

n+ 1

)2

.

Minimization of this expression for discussed distributions is very complicated and re-
quires many calculations. However, in some cases transformation of the minimization prob-
lem to a linear form allows to easily get a solution. The least-square estimators determined
for the Weibull distribution after linearization of the LSE problem are given as:

k̂ =

∑n
i=1 yixi − nx̄ȳ∑n
i=1(xi − x)2

, λ̂ = y − k̂x

and for the Gompertz distribution, if b̂ is a solution of:∑n
i=1 yi · (1− eb̂xi)∑n
i=1(1− eb̂xi)2

=

∑n
i=1 yixi · eb̂xi∑n

i=1 xi · eb̂xi(1− eb̂xi)
,

then

λ̂ = b̂, k̂ =

∑n
i=1 yi · (1− eb̂xi)∑n
i=1(1− eb̂xi)2

· b̂.
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Nature of the gamma distribution prevents application of linearization. Usage of the LSE
method in that case requires many numerical computations and is exposed to a significant
bias. Therefore in the estimation of the gamma distribution parameters the LSE method was
not considered.

In the above calculations we considered approximation of Fθ(xi:n) by mean values. In
some statistical studies also another possible approximations were proposed, e.g. median
values or adjusted mean values ranks as follows:

• pi = i−0,5
n (an adjusted mean rank),

• pi = i−0,3
n+0,4 (a median rank),

• pi =
i− 3

8

n+ 1
4

(a symmetrical rank).

To compare different forms of Fθ(Xi:n) values approximation, in terms of their influ-
ence on final estimation results, in the simulation study the mean values and the median
values ranks (the most popular ranks in statistical literature) were considered. Simulation
results for these values are denoted in the paper by LSE1 and LSE2, respectively. More
details about the problem of the proper choice of the approximation values for Fθ(Xi:n)
variables are available in literature [3, 6].

3.5. The generalize spacing method estimation

Let X1, . . . , Xn be a random sample drawn from a continuous distribution with distribution
function Fθ, and X1:n, . . . , Xn:n be an order sample. The generalize spacing estimation
(GSE) method originally proposed by R. Cheng and N. Amin [4] and independently by
B. Ranneby [19] is based on a concept of ”spacings” defined as follows:

Di (θ) = Fθ (Xi:n)− Fθ (Xi−1:n) , i = 1, . . . , n+ 1,

where Fθ(X0:n) ≡ 0 and Fθ(Xn+1:n) ≡ 1.
In the consequence of the distribution function Fθ and random sample properties the

specified variables Di are independent and identically distributed with following mean val-
ues:

E (Di) =
1

n+ 1
, i = 1, . . . , n.

The discussed method is based on a fact that for a sufficiently large sample of observed
values the sequence of the {Di(θ)}i=1,...,n is asymptotically equal to the sequence of their

theoretical mean values
{

1
n+1

}
i=1,...,n

. To measure the distance between these sequences

in the GSE method the Csiszar h-divergence is proposed. In terms of specified concepts the
GSEs are found by minimizing the following expression with respect to θ:

−
n∑
i=1

h ((n+ 1) ·Di(θ))

n+ 1
,
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where h is a strictly convex, real-valued function defined on the interval (0,∞) and such
that h(1) = 0.

The choice of the h function is not unique, therefore the GSE is not one estimator, but
rather a category of estimators with different properties. The first proposed and the most
common-used estimator across GSEs class is the maximum product of spacings (MPS) es-
timator suggested by Cheng and Amin [4] for h(x) = −log(x). The h-divergence specified
in this case is the well-known Kullback-Leibler divergence widely applied in the entropy
theory. The MPS estimator is found by maximizing the following equation:

n∑
i=1

lnDi(θ) =
n∑
i=1

log (Fθ (Xi:n)− Fθ (Xi−1:n)) .

In [9] and [2] there was proved that the MPS estimator has the best theoretical properties
among estimators provided by the generalize spacing method. Therefore only the MPS
method was included in the simulation study. See also other papers [7, 8] for more de-
tails about properties of GSEs (consistency, asymptotic normality) and their applications in
practice.

3.6. The percentile estimation method

The mathematical form of the Weibull distribution allows application of one more estima-
tion method. The proposed technique is based on percentiles and is structurally similar to
the traditional method of moments.

For the Weibull distribution and percentile xp specified for percent p the following equa-
tion is true:

p = 1− exp

(
−
(xp
λ

)k)
.

Based on the above equation determined for two selected and different percentiles x̂1

and x̂2 corresponding to p1 and p2 percents, respectively, we get the following percentile
method (PE) estimates of the unknown parameters:

k̂ =
ln
(

ln
(

1
1−p1

))
− ln

(
ln
(

1
1−p2

))
ln (x̂1 − x̂2)

, λ̂ = x̂1 · exp

(
−1

k̂
· ln
(

ln

(
1

1− p1

)))
.

In the conducted simulation study the 25% and 75% percentiles in the PE simulation were
considered.

4. The simulation study

This section contains the description and results of simulation-based comparisons of pre-
sented estimators in terms of their bias and efficiency. Mean values, confidence intervals
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and mean square errors (MSE) of estimators were calculated over 10,000 replications gen-
erated for each of the discussed probability distribution with different values of distributions
parameters and sample sizes (n = 5, 20, 100) included in the study. The scale and shape
parameter values were taken from published studies of the mice, rats and humans survival,
road traffic and food storage failures or the DNA sequences distribution [11, 13, 15, 16, 17].
The included data represent the main cases of survival curve shapes and scales observed in
practice.

The comparison of considered methods was based on the MSE quantity defined as:

MSE({λ̂i}i, {k̂i}i, λ, k) =

√√√√ 1

N
·
N∑
i=1

(
(λ̂i − λ)2 + (k̂i − k)2

)
,

where {λ̂i}i and {k̂i}i are sequences of estimates values for scale and shape parameters,
while λ and k are the true parameter values. All computations were conducted using the
R statistical program.

Lack of an explicit algebraic solution of the estimation problem was often the case,
therefore numerical calculations were required. In the conducted simulations the Newton-
Raphson’s (in univariate cases) and the Nelder-Mead’s (in multivariate cases) methods were
applied. These two algorithms are implemented in the R program as UNIROOT and OP-
TIM procedures, respectively. It should be emphasized that in most cases in this study the
interval of (0.1, 100) was taken to search for the root using the UNIROOT algorithm. The
only exceptions are the simulations conducted for the LSE estimates of the Gompertz dis-
tribution parameters. In that cases applications of the considered method with a standard
approach (e.g. with interval (0.1, 10)) generates very bad results, therefore the smaller in-
terval (0.000001, 10) was applied. Necessity of applying this correction is a limitation of
the LSE method.

The means of the estimates and the MSE values obtained in the conducted simulations
for the Weibull, gamma and Gompertz distributions are presented in Tabs 7–9 and addition-
ally, in a graphical way in Figs 1–3. For the Weibull and gamma distributions numerical
calculations were convergent, while in some replications for the Gompertz distribution dis-
cussed estimation methods failed. To present convergence of estimation methods for this
distribution, in Tab. 9 the numbers of convergent replications (denoted by N) in the con-
ducted simulations were additionally given. The bold font inside Tabs 7, 8 and 9 indicates
the best estimator in a given estimation problem.
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Tab. 7. Simulation results for the Weibull distribution
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M
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=

0.
60

,λ
=

3.
71

M
M
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05

6
5.

23
1
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28
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73
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4
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Tab. 8. Simulation results for the gamma distribution
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Tab. 9. Simulation results for the Gompertz distribution
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Fig. 1. An illustrative overview of the MSE values from the simulation study for the Weibull
distribution with true parameters: λ = 3.71 and k = 0.60

Fig. 2. An illustrative overview of the MSE values from the simulation study for the gamma
distribution with true parameters: λ = 30.30 and k = 4.70
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Fig. 3. An illustrative overview of the MSE values from the simulation study for the Gom-
pertz distribution with true parameters: λ = 2.57 and k = 0.05

There is a broad spectrum of available estimation methods in cases of the Weibull and
the Gompertz distributions. Except for the percentile method, which provides relatively
poor approximation of true distribution parameters, the others of the discussed estimators
generate roughly comparable results and bias.

Based on the simulation results given in Tabs 7 and 9 (generated for the Weibull and the
Gompertz distributions) the MLE, LME and MPS estimators present the smallest bias in
terms of the MSE, among described estimation techniques and over most of the considered
parameter values and sample sizes. Therefore in the case of the Weibull and the Gompertz
distributions these estimators are preferred.

For the gamma distribution only traditional methods are proposed (Tab. 8). The charac-
ter of the gamma distribution function causes that results of the others discussed estimators
have a large variance or their application is very problematic.

Most of the considered estimators do not have explicit algebraic formulations. Therefore
estimation of the Weibull, gamma or Gompertz distribution parameters often requires appli-
cation of numerical methods and selection of proper starting values for these calculations.
In the conducted simulation study different initial values were considered and analyzed for
their influence on the final results (data not shown). Particularly sensitive to these varia-
tions were the LSE and MPS estimators, while the traditional estimation methods (MLE
and MM) and the LME were almost completely resistant to them.

Additionally, it should be emphasized that the results of the simulation study are always
related with some kind of uncertainty, caused by the numerical calculation. This effect
is a result of both application of the numerical methods and computer evaluation. The
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discussed uncertainty should be taken into consideration while interpreting results in each
of the considered cases.

5. Conclusions

Overall, based on the simulation results, it is clear that we could not indicate one and the best
estimation method in general. In each case the choice of the appropriate estimator should
be taken carefully, particularly with consideration of the given sample size and assumed
probability distribution. On the other hand, obtained results may suggest that application of
the traditional, well-known methods is justified in most cases.
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